4 research outputs found

    Virtual Worlds and Conservational Channel Evolution and Pollutant Transport Systems (Concepts)

    Get PDF
    Many models exist that predict channel morphology. Channel morphology is defined as the change in geometric parameters of a river. Channel morphology is affected by many factors. Some of these factors are caused either by man or by nature. To combat the adverse effects that man and nature may cause to a water system, scientists and engineers develop stream rehabilitation plans. Stream rehabilitation as defined by Shields et al., states that restoration is the return from a degraded ecosystem back to a close approximation of its remaining natural potential [Shields et al., 2003]. Engineers construct plans that will restore streams back to their natural state by using techniques such as field investigation, analytical models, or numerical models. Each of these techniques is applied to projects based on specified criteria, objectives, and the expertise of the individuals devising the plan. The utilization of analytical and numerical models can be difficult, for many reasons, one of which is the intuitiveness of the modeling process. Many numerical models exist in the field of hydraulic engineering, fluvial geomorphology, landscape architecture, and stream ecology that evaluate and formulate stream rehabilitation plans. This dissertation will explore, in the field of Hydroscience , the creation of models that are not only accurate but also span the different disciplines. The goal of this dissertation is to transform a discrete numerical model (CONCEPTS) into a realistic 3D environment using open source game engines, while at the same time, conveying at least the equivalent information that was presented in the 1D numerical model

    Management and Visualisation of Non-linear History of Polygonal 3D Models

    Get PDF
    The research presented in this thesis concerns the problems of maintenance and revision control of large-scale three dimensional (3D) models over the Internet. As the models grow in size and the authoring tools grow in complexity, standard approaches to collaborative asset development become impractical. The prevalent paradigm of sharing files on a file system poses serious risks with regards, but not limited to, ensuring consistency and concurrency of multi-user 3D editing. Although modifications might be tracked manually using naming conventions or automatically in a version control system (VCS), understanding the provenance of a large 3D dataset is hard due to revision metadata not being associated with the underlying scene structures. Some tools and protocols enable seamless synchronisation of file and directory changes in remote locations. However, the existing web-based technologies are not yet fully exploiting the modern design patters for access to and management of alternative shared resources online. Therefore, four distinct but highly interconnected conceptual tools are explored. The first is the organisation of 3D assets within recent document-oriented No Structured Query Language (NoSQL) databases. These "schemaless" databases, unlike their relational counterparts, do not represent data in rigid table structures. Instead, they rely on polymorphic documents composed of key-value pairs that are much better suited to the diverse nature of 3D assets. Hence, a domain-specific non-linear revision control system 3D Repo is built around a NoSQL database to enable asynchronous editing similar to traditional VCSs. The second concept is that of visual 3D differencing and merging. The accompanying 3D Diff tool supports interactive conflict resolution at the level of scene graph nodes that are de facto the delta changes stored in the repository. The third is the utilisation of HyperText Transfer Protocol (HTTP) for the purposes of 3D data management. The XML3DRepo daemon application exposes the contents of the repository and the version control logic in a Representational State Transfer (REST) style of architecture. At the same time, it manifests the effects of various 3D encoding strategies on the file sizes and download times in modern web browsers. The fourth and final concept is the reverse-engineering of an editing history. Even if the models are being version controlled, the extracted provenance is limited to additions, deletions and modifications. The 3D Timeline tool, therefore, implies a plausible history of common modelling operations such as duplications, transformations, etc. Given a collection of 3D models, it estimates a part-based correspondence and visualises it in a temporal flow. The prototype tools developed as part of the research were evaluated in pilot user studies that suggest they are usable by the end users and well suited to their respective tasks. Together, the results constitute a novel framework that demonstrates the feasibility of a domain-specific 3D version control

    Improving Laboratory Learning Outcomes: An Investigation Into the Effect of Contextualising Laboratories Using Virtual Worlds and Remote Laboratories.

    Get PDF
    This thesis presents research into improving learning outcomes in laboratories. It was hypothesised that domain specific context can aid students in understanding the relationship between a laboratory (as a proxy for reality), the theoretical model being investigated within the laboratory activity and the real world. Specifically, the research addressed whether adding domain context to a laboratory activity could improve students' ability to identify the strengths and limitations of models as predictors of real-world behaviour. The domain context was included in a laboratory activity with the use of a remote radiation lab set within a context-rich virtual world. The empirical investigation used a pretest-posttest control group design to assess whether there was a statistically significant difference in the learning outcome between a treatment group who completed the lab in a contextualised virtual world, and the control group who conducted the activity in an empty virtual world. The results showed that there were no statistically significant differences between the groups and therefore there are cases where contextualising a laboratory activity will not have an effect on students' ability to identify the strengths and limitations of models as predictors of real-world behaviour. This research postulates that previous exposure to the model, the level of awareness students had of the context and the lack time available for reflection may have masked or attenuated the effect of the context. This research has contributed a framework for the analysis and design of domain context in laboratory activities, and an interface for integrating iLabs laboratories into the Open Wonderland virtual world. It has explicitly clarified the relationship between context, labs, models and the real world. Most significantly, this research has contributed knowledge to the field of laboratory learning outcomes and the understanding of how domain context affects laboratory activities

    A study of virtual environments for enterprise collaboration

    No full text
    corecore