155 research outputs found

    Robustness in blind camera identification

    Get PDF

    Coherence of PRNU weighted estimations for improved source camera identification

    Get PDF
    This paper presents a method for Photo Response Non Uniformity (PRNU) pattern noise based camera identification. It takes advantage of the coherence between different PRNU estimations restricted to specific image regions. The main idea is based on the following observations: different methods can be used for estimating PRNU contribution in a given image; the estimation has not the same accuracy in the whole image as a more faithful estimation is expected from flat regions. Hence, two different estimations of the reference PRNU have been considered in the classification procedure, and the coherence of the similarity metric between them, when evaluated in three different image regions, is used as classification feature. More coherence is expected in case of matching, i.e. the image has been acquired by the analysed device, than in the opposite case, where similarity metric is almost noisy and then unpredictable. Presented results show that the proposed approach provides comparable and often better classification results of some state of the art methods, showing to be robust to lack of flat field (FF) images availability, devices of the same brand or model, uploading/downloading from social networks

    ToothPic: camera-based image retrieval on large scales

    Get PDF
    Being able to reliably link a picture to the device that shot it is of paramount importance to give credit or assign responsibility to the author of the picture itself. However, this task needs to be performed at large scales due to the recent explosion in the number of photos taken and shared. Existing methods cannot satisfy those requirements. Methods based on the Photo Response Non-Uniformity (PRNU) of digital sensors are able to link a photo to the device that shot it and have already been used as proof in the Court of Law. Such methods are reliable but so far, they can be only used for small-scale forensic tasks involving few cameras and pictures. ToothPic, an acronym for "Who Took This Picture?", is a novel image retrieval engine that allows to find all the pictures in a large-scale database shot by a given query camera

    Are Social Networks Watermarking Us or Are We (Unawarely) Watermarking Ourself?

    Get PDF
    In the last decade, Social Networks (SNs) have deeply changed many aspects of society, and one of the most widespread behaviours is the sharing of pictures. However, malicious users often exploit shared pictures to create fake profiles, leading to the growth of cybercrime. Thus, keeping in mind this scenario, authorship attribution and verification through image watermarking techniques are becoming more and more important. In this paper, we firstly investigate how thirteen of the most popular SNs treat uploaded pictures in order to identify a possible implementation of image watermarking techniques by respective SNs. Second, we test the robustness of several image watermarking algorithms on these thirteen SNs. Finally, we verify whether a method based on the Photo-Response Non-Uniformity (PRNU) technique, which is usually used in digital forensic or image forgery detection activities, can be successfully used as a watermarking approach for authorship attribution and verification of pictures on SNs. The proposed method is sufficiently robust, in spite of the fact that pictures are often downgraded during the process of uploading to the SNs. Moreover, in comparison to conventional watermarking methods the proposed method can successfully pass through different SNs, solving related problems such as profile linking and fake profile detection. The results of our analysis on a real dataset of 8400 pictures show that the proposed method is more effective than other watermarking techniques and can help to address serious questions about privacy and security on SNs. Moreover, the proposed method paves the way for the definition of multi-factor online authentication mechanisms based on robust digital features

    DIPPAS: A Deep Image Prior PRNU Anonymization Scheme

    Get PDF
    Source device identification is an important topic in image forensics since it allows to trace back the origin of an image. Its forensics counter-part is source device anonymization, that is, to mask any trace on the image that can be useful for identifying the source device. A typical trace exploited for source device identification is the Photo Response Non-Uniformity (PRNU), a noise pattern left by the device on the acquired images. In this paper, we devise a methodology for suppressing such a trace from natural images without significant impact on image quality. Specifically, we turn PRNU anonymization into an optimization problem in a Deep Image Prior (DIP) framework. In a nutshell, a Convolutional Neural Network (CNN) acts as generator and returns an image that is anonymized with respect to the source PRNU, still maintaining high visual quality. With respect to widely-adopted deep learning paradigms, our proposed CNN is not trained on a set of input-target pairs of images. Instead, it is optimized to reconstruct the PRNU-free image from the original image under analysis itself. This makes the approach particularly suitable in scenarios where large heterogeneous databases are analyzed and prevents any problem due to lack of generalization. Through numerical examples on publicly available datasets, we prove our methodology to be effective compared to state-of-the-art techniques
    • …
    corecore