6,737 research outputs found

    A novel wideband dynamic directional indoor channel model based on a Markov process

    Get PDF
    This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available

    Propagation modelling and measurements in a populated indoor environment at 5.2 GHz

    Get PDF
    There are a number of significant radiowave propagation phenomena present in the populated indoor environment, including multipath fading and human body effects. The latter can be divided into shadowing and scattering caused by pedestrian movement, and antenna-body interaction with bodyworn or hand portable terminals [1]. Human occupants within indoor environments are not always stationary and their movement will lead to temporal channel variations that can strongly affect the quality of indoor wireless communication systems. Hence, populated environments remain a major challenge for wireless local area networks (WLAN) and other indoor communication systems. Therefore, it is important to develop an understanding of the potential and limitations of indoor radiowave propagation at key frequencies of interest, such as the 5.2 GHz band employed by commercial wireless LAN standards such as IEEE 802.11a and HiperLAN 2. Although several indoor wireless models have been proposed in the literature, these temporal variations have not yet been thoroughly investigated. Therefore, we have made an important contribution to the area by conducting a systematic study of the problem, including a propagation measurement campaign and statistical channel characterization of human body effects on line-of-sight indoor propagation at 5.2 GHz. Measurements were performed in the everyday environment of a 7.2 m wide University hallway to determine the statistical characteristics of the 5.2 GHz channel for a fixed, transverse line-of-sight (LOS) link perturbed by pedestrian movement. Data were acquired at hours of relatively high pedestrian activity, between 12.00 and 14.00. The location was chosen as a typical indoor wireless system environment that had sufficient channel variability to permit a valid statistical analysis. The paper compares the first and second order statistics of the empirical signals with the Gaussian-derived distributions commonly used in wireless communications. The analysis shows that, as the number of pedestrians within the measurement location increases, the Ricean K-factor that best fits the Cumulative Distribution Function (CDF) of the empirical data tends to decrease proportionally, ranging from K=7 with 1 pedestrian to K=0 with 4 pedestrians. These results are consistent with previous results obtained for controlled measurement scenarios using a fixed link at 5.2 GHz in [2], where the K factor reduced as the number of pedestrians within a controlled measurement area increased. Level crossing rate results were Rice distributed, considering a maximum Doppler frequency of 8.67 Hz. While average fade duration results were significantly higher than theoretically computed Rice and Rayleigh, due to the fades caused by pedestrians. A novel statistical model that accurately describes the 5.2 GHz channel in the considered indoor environment is proposed. For the first time, the received envelope CDF is explicitly described in terms of a quantitative measurement of pedestrian traffic within the indoor environment. The model provides an insight into the prediction of human body shadowing effects for indoor channels at 5.2 GHz

    5G 3GPP-like Channel Models for Outdoor Urban Microcellular and Macrocellular Environments

    Get PDF
    For the development of new 5G systems to operate in bands up to 100 GHz, there is a need for accurate radio propagation models at these bands that currently are not addressed by existing channel models developed for bands below 6 GHz. This document presents a preliminary overview of 5G channel models for bands up to 100 GHz. These have been derived based on extensive measurement and ray tracing results across a multitude of frequencies from 6 GHz to 100 GHz, and this document describes an initial 3D channel model which includes: 1) typical deployment scenarios for urban microcells (UMi) and urban macrocells (UMa), and 2) a baseline model for incorporating path loss, shadow fading, line of sight probability, penetration and blockage models for the typical scenarios. Various processing methodologies such as clustering and antenna decoupling algorithms are also presented.Comment: To be published in 2016 IEEE 83rd Vehicular Technology Conference Spring (VTC 2016-Spring), Nanjing, China, May 201

    Partner selection in indoor-to-outdoor cooperative networks: an experimental study

    Full text link
    In this paper, we develop a partner selection protocol for enhancing the network lifetime in cooperative wireless networks. The case-study is the cooperative relayed transmission from fixed indoor nodes to a common outdoor access point. A stochastic bivariate model for the spatial distribution of the fading parameters that govern the link performance, namely the Rician K-factor and the path-loss, is proposed and validated by means of real channel measurements. The partner selection protocol is based on the real-time estimation of a function of these fading parameters, i.e., the coding gain. To reduce the complexity of the link quality assessment, a Bayesian approach is proposed that uses the site-specific bivariate model as a-priori information for the coding gain estimation. This link quality estimator allows network lifetime gains almost as if all K-factor values were known. Furthermore, it suits IEEE 802.15.4 compliant networks as it efficiently exploits the information acquired from the receiver signal strength indicator. Extensive numerical results highlight the trade-off between complexity, robustness to model mismatches and network lifetime performance. We show for instance that infrequent updates of the site-specific model through K-factor estimation over a subset of links are sufficient to at least double the network lifetime with respect to existing algorithms based on path loss information only.Comment: This work has been submitted to IEEE Journal on Selected Areas in Communications in August 201

    Investigation of Wireless Channel Asymmetry in Indoor Environments

    Full text link
    Asymmetry is unquestionably an important characteristic of the wireless propagation channel, which needs to be accurately modeled for wireless and mobile communications, 5G networks, and associated applications such as indoor/outdoor localization. This paper reports on the potential causes of propagation asymmetry. Practical channel measurements at Khalifa University premises proved that wireless channels are asymmetric in realistic scenarios. Some important conclusions and recommendation are also summarized.Comment: Accepted in IEEE International Symposium on Antennas and Propagation (APS17), San Diego, California, 9-14 Jul. 2017. arXiv admin note: substantial text overlap with arXiv:1704.0687
    corecore