2,613 research outputs found

    Dynamic Demand-Capacity Balancing for Air Traffic Management Using Constraint-Based Local Search: First Results

    Full text link
    Using constraint-based local search, we effectively model and efficiently solve the problem of balancing the traffic demands on portions of the European airspace while ensuring that their capacity constraints are satisfied. The traffic demand of a portion of airspace is the hourly number of flights planned to enter it, and its capacity is the upper bound on this number under which air-traffic controllers can work. Currently, the only form of demand-capacity balancing we allow is ground holding, that is the changing of the take-off times of not yet airborne flights. Experiments with projected European flight plans of the year 2030 show that already this first form of demand-capacity balancing is feasible without incurring too much total delay and that it can lead to a significantly better demand-capacity balance

    Towards Autonomous Aviation Operations: What Can We Learn from Other Areas of Automation?

    Get PDF
    Rapid advances in automation has disrupted and transformed several industries in the past 25 years. Automation has evolved from regulation and control of simple systems like controlling the temperature in a room to the autonomous control of complex systems involving network of systems. The reason for automation varies from industry to industry depending on the complexity and benefits resulting from increased levels of automation. Automation may be needed to either reduce costs or deal with hazardous environment or make real-time decisions without the availability of humans. Space autonomy, Internet, robotic vehicles, intelligent systems, wireless networks and power systems provide successful examples of various levels of automation. NASA is conducting research in autonomy and developing plans to increase the levels of automation in aviation operations. This paper provides a brief review of levels of automation, previous efforts to increase levels of automation in aviation operations and current level of automation in the various tasks involved in aviation operations. It develops a methodology to assess the research and development in modeling, sensing and actuation needed to advance the level of automation and the benefits associated with higher levels of automation. Section II describes provides an overview of automation and previous attempts at automation in aviation. Section III provides the role of automation and lessons learned in Space Autonomy. Section IV describes the success of automation in Intelligent Transportation Systems. Section V provides a comparison between the development of automation in other areas and the needs of aviation. Section VI provides an approach to achieve increased automation in aviation operations based on the progress in other areas. The final paper will provide a detailed analysis of the benefits of increased automation for the Traffic Flow Management (TFM) function in aviation operations

    Advancing the Standards for Unmanned Air System Communications, Navigation and Surveillance

    Get PDF
    Under NASA program NNA16BD84C, new architectures were identified and developed for supporting reliable and secure Communications, Navigation and Surveillance (CNS) needs for Unmanned Air Systems (UAS) operating in both controlled and uncontrolled airspace. An analysis of architectures for the two categories of airspace and an implementation technology readiness analysis were performed. These studies produced NASA reports that have been made available in the public domain and have been briefed in previous conferences. We now consider how the products of the study are influencing emerging directions in the aviation standards communities. The International Civil Aviation Organization (ICAO) Communications Panel (CP), Working Group I (WG-I) is currently developing a communications network architecture known as the Aeronautical Telecommunications Network with Internet Protocol Services (ATN/IPS). The target use case for this service is secure and reliable Air Traffic Management (ATM) for manned aircraft operating in controlled airspace. However, the work is more and more also considering the emerging class of airspace users known as Remotely Piloted Aircraft Systems (RPAS), which refers to certain UAS classes. In addition, two Special Committees (SCs) in the Radio Technical Commission for Aeronautics (RTCA) are developing Minimum Aviation System Performance Standards (MASPS) and Minimum Operational Performance Standards (MOPS) for UAS. RTCA SC-223 is investigating an Internet Protocol Suite (IPS) and AeroMACS aviation data link for interoperable (INTEROP) UAS communications. Meanwhile, RTCA SC-228 is working to develop Detect And Avoid (DAA) equipment and a Command and Control (C2) Data Link MOPS establishing LBand and C-Band solutions. These RTCA Special Committees along with ICAO CP WG/I are therefore overlapping in terms of the Communication, Navigation and Surveillance (CNS) alternatives they are seeking to provide for an integrated manned- and unmanned air traffic management service as well as remote pilot command and control. This paper presents UAS CNS architecture concepts developed under the NASA program that apply to all three of the aforementioned committees. It discusses the similarities and differences in the problem spaces under consideration in each committee, and considers the application of a common set of CNS alternatives that can be widely applied. As the works of these committees progress, it is clear that the overlap will need to be addressed to ensure a consistent and safe framework for worldwide aviation. In this study, we discuss similarities and differences in the various operational models and show how the CNS architectures developed under the NASA program apply

    Automated Flight Routing Using Stochastic Dynamic Programming

    Get PDF
    Airspace capacity reduction due to convective weather impedes air traffic flows and causes traffic congestion. This study presents an algorithm that reroutes flights in the presence of winds, enroute convective weather, and congested airspace based on stochastic dynamic programming. A stochastic disturbance model incorporates into the reroute design process the capacity uncertainty. A trajectory-based airspace demand model is employed for calculating current and future airspace demand. The optimal routes minimize the total expected traveling time, weather incursion, and induced congestion costs. They are compared to weather-avoidance routes calculated using deterministic dynamic programming. The stochastic reroutes have smaller deviation probability than the deterministic counterpart when both reroutes have similar total flight distance. The stochastic rerouting algorithm takes into account all convective weather fields with all severity levels while the deterministic algorithm only accounts for convective weather systems exceeding a specified level of severity. When the stochastic reroutes are compared to the actual flight routes, they have similar total flight time, and both have about 1% of travel time crossing congested enroute sectors on average. The actual flight routes induce slightly less traffic congestion than the stochastic reroutes but intercept more severe convective weather

    Comparison of Controller and Flight Deck Algorithm Performance During Interval Management with Dynamic Arrival Trees (STARS)

    Get PDF
    Managing the interval between arrival aircraft is a major part of the en route and TRACON controller s job. In an effort to reduce controller workload and low altitude vectoring, algorithms have been developed to allow pilots to take responsibility for, achieve and maintain proper spacing. Additionally, algorithms have been developed to create dynamic weather-free arrival routes in the presence of convective weather. In a recent study we examined an algorithm to handle dynamic re-routing in the presence of convective weather and two distinct spacing algorithms. The spacing algorithms originated from different core algorithms; both were enhanced with trajectory intent data for the study. These two algorithms were used simultaneously in a human-in-the-loop (HITL) simulation where pilots performed weather-impacted arrival operations into Louisville International Airport while also performing interval management (IM) on some trials. The controllers retained responsibility for separation and for managing the en route airspace and some trials managing IM. The goal was a stress test of dynamic arrival algorithms with ground and airborne spacing concepts. The flight deck spacing algorithms or controller managed spacing not only had to be robust to the dynamic nature of aircraft re-routing around weather but also had to be compatible with two alternative algorithms for achieving the spacing goal. Flight deck interval management spacing in this simulation provided a clear reduction in controller workload relative to when controllers were responsible for spacing the aircraft. At the same time, spacing was much less variable with the flight deck automated spacing. Even though the approaches taken by the two spacing algorithms to achieve the interval management goals were slightly different they seem to be simpatico in achieving the interval management goal of 130 sec by the TRACON boundary

    MODELS AND SOLUTION ALGORITHMS FOR EQUITABLE RESOURCE ALLOCATION IN AIR TRAFFIC FLOW MANAGEMENT

    Get PDF
    Population growth and economic development lead to increasing demand for travel and pose mobility challenges on capacity-limited air traffic networks. The U.S. National Airspace System (NAS) has been operated near the capacity, and air traffic congestion is expected to remain as a top concern for the related system operators, passengers and airlines. This dissertation develops a number of model reformulations and efficient solution algorithms to address resource allocation problems in air traffic flow management, while explicitly accounting for equitable objectives in order to encourage further collaborations by different stakeholders. This dissertation first develops a bi-criteria optimization model to offload excess demand from different competing airlines in the congested airspace when the predicted traffic demand is higher than available capacity. Computationally efficient network flow models with side constraints are developed and extensively tested using datasets obtained from the Enhanced Traffic Management System (ETMS) database (now known as the Traffic Flow Management System). Representative Pareto-optimal tradeoff frontiers are consequently generated to allow decision-makers to identify best-compromising solutions based on relative weights and systematical considerations of both efficiency and equity. This dissertation further models and solves an integrated flight re-routing problem on an airspace network. Given a network of airspace sectors with a set of waypoint entries and a set of flights belonging to different air carriers, the optimization model aims to minimize the total flight travel time subject to a set of flight routing equity, operational and safety requirements. A time-dependent network flow programming formulation is proposed with stochastic sector capacities and rerouting equity for each air carrier as side constraints. A Lagrangian relaxation based method is used to dualize these constraints and decompose the original complex problem into a sequence of single flight rerouting/scheduling problems. Finally, within a multi-objective utility maximization framework, the dissertation proposes several practically useful heuristic algorithms for the long-term airport slot assignment problem. Alternative models are constructed to decompose the complex model into a series of hourly assignment sub-problems. A new paired assignment heuristic algorithm is developed to adapt the round robin scheduling principle for improving fairness measures across different airlines. Computational results are presented to show the strength of each proposed modeling approach

    La configuració U-space impacta en la seguretat, capacitat i flexibilitat

    Get PDF
    El present treball de final de grau està enfocat a l'estudi del concepte U-space, els seus actuals i futurs serveis i procediments per a permetre l'accés de UAVs a l'espai aeri de manera segura, eficient i flexible, i l'anàlisi dels resultats de simulacions estudiant com a diferents configuracions de l'espai aeri impacten en la flexibilitat i capacitat del sistemaEl presente trabajo de final de grado está enfocado al estudio del concepto U-space, sus actuales y futuros servicios y procedimientos para permitir el acceso de UAVs al espacio aéreo de forma segura, eficiente y flexible, y el análisis de los resultados de simulaciones estudiando como diferentes configuraciones del espacio aéreo impactan en la flexibilidad y capacidad del sistemaThe present final degree study is focused on the exploration of the U-space concept, its current and future services and procedures to allow the access of UAVs to the airspace in a safe, efficient and flexible way, and the analysis of the results of simulations studying how different airspace configurations impact on the flexibility and capacity of the syste

    Analysis of a Dynamic Multi-Track Airway Concept for Air Traffic Management

    Get PDF
    The Dynamic Multi-track Airways (DMA) Concept for Air Traffic Management (ATM) proposes a network of high-altitude airways constructed of multiple, closely spaced, parallel tracks designed to increase en-route capacity in high-demand airspace corridors. Segregated from non-airway operations, these multi-track airways establish high-priority traffic flow corridors along optimal routes between major terminal areas throughout the National Airspace System (NAS). Air traffic controllers transition aircraft equipped for DMA operations to DMA entry points, the aircraft use autonomous control of airspeed to fly the continuous-airspace airway and achieve an economic benefit, and controllers then transition the aircraft from the DMA exit to the terminal area. Aircraft authority within the DMA includes responsibility for spacing and/or separation from other DMA aircraft. The DMA controller is responsible for coordinating the entry and exit of traffic to and from the DMA and for traffic flow management (TFM), including adjusting DMA routing on a daily basis to account for predicted weather and wind patterns and re-routing DMAs in real time to accommodate unpredicted weather changes. However, the DMA controller is not responsible for monitoring the DMA for traffic separation. This report defines the mature state concept, explores its feasibility and performance, and identifies potential benefits. The report also discusses (a) an analysis of a single DMA, which was modeled within the NAS to assess capacity and determine the impact of a single DMA on regional sector loads and conflict potential; (b) a demand analysis, which was conducted to determine likely city-pair candidates for a nationwide DMA network and to determine the expected demand fraction; (c) two track configurations, which were modeled and analyzed for their operational characteristic; (d) software-prototype airborne capabilities developed for DMA operations research; (e) a feasibility analysis of key attributes in the concept design; (f) a near-term, transitional application of the DMA concept as a proving ground for new airborne technologies; and (g) conclusions. The analysis indicates that the operational feasibility of a national DMA network faces significant challenges, especially for interactions between DMAs and between DMA and non-DMA traffic. Provided these issues are resolved, sectors near DMAs could experience significant local capacity benefits
    corecore