2 research outputs found

    Assessing self-organization and emergence in Evolvable Assembly Systems (EAS)

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de ComputadoresThere is a growing interest from industry in the applications of distributed IT. Currently, most modern plants use distributed controllers either to control production processes, monitor them or both. Despite the efforts on the last years to improve the implementation of the new manufacturing paradigms, the industry is still mainly using traditional controllers. Now, more than ever, with an economic crisis the costumers are searching for cheap and customized products, which represents a great opportunity for the new paradigms to claim their space in the market. Most of the research on distributed manufacturing is regarding the control and communication infrastructure. They are key aspects for self-organization and there is a lack of study on the metrics that regulate the self-organization and autonomous response of modern production paradigms. This thesis presents a probabilistic framework that promotes self-organization on a multiagent system based on a new manufacturing concept, the Evolvable Assembly Systems/Evolvable Production Systems. A methodology is proposed to assess the impact of self-organization on the system behavior, by the application of the probabilistic framework that has the dual purpose of controlling and explaining the system dynamics. The probabilistic framework shows the likelihood of some resources being allocated to the production process. This information is constantly updated and exchanged by the agents that compose the system. The emergent effect of this self-organization dynamic is an even load balancing across the system without any centralized controller. The target systems of this work are therefore small systems with small production batches but with a high variability of production conditions and products. The agents that compose the system originated in the agent based architecture of the FP7-IDEAS proejct. This work has extended these agents and the outcome has been tested in the IDEAS demonstrators, as the changes have been incorporated in the latest version of the architecture, and in a simulation and more controlled environment were the proposed metric and its influence were assessed

    Mapping Industry 4.0 Enabling Technologies into United Nations Sustainability Development Goals

    Get PDF
    The emerging of the fourth industrial revolution, also known as Industry 4.0 (I4.0), from the advancement in several technologies is viewed not only to promote economic growth, but also to enable a greener future. The 2030 Agenda of the United Nations for sustainable development sets out clear goals for the industry to foster the economy, while preserving social well-being and ecological validity. However, the influence of I4.0 technologies on the achievement of the Sustainable Development Goals (SDG) has not been conclusively or systematically investigated. By understanding the link between the I4.0 technologies and the SDGs, researchers can better support policymakers to consider the technological advancement in updating and harmonizing policies and strategies in different sectors (i.e., education, industry, and governmental) with the SDGs. To address this gap, academic experts in this paper have investigated the influence of I4.0 technologies on the sustainability targets identified by the UN. Key I4.0 element technologies have been classified to enable a quantitative mapping with the 17 SDGs. The results indicate that the majority of the I4.0 technologies can contribute positively to achieving the UN agenda. It was also found that the effects of the technologies on individual goals varies between direct and strong, and indirect and weak influences. The main insights and lessons learned from the mapping are provided to support future policy
    corecore