
Rogério Paulo Guerreiro Rosa

Licenciado em Ciências de
Engenharia Electrotécnica e de Computadores

Assessing Self-Organization and Emergence
in Evolvable Assembly Systems (EAS)

Dissertação para obtenção do Grau de Mestre em
Engenharia Electrotécnica e de Computadores

Orientador : José António Barata de Oliveira,
Professor Auxiliar, FCT-UNL

Co-orientador : Luís Domingos Ferreira Ribeiro,
Doutor, UNINOVA

Júri:

Presidente: Doutor Pedro Alexandre da Costa Sousa

Arguente: Doutor Tiago Oliveira Machado de Figueiredo Cardoso

Vogais: Doutor José António Barata de Oliveira
Doutor Luís Domingos Ferreira Ribeiro

Setembro, 2013

iii

Assessing Self-Organization and Emergence in Evolvable Assembly Systems
(EAS)

Copyright c© Rogério Paulo Guerreiro Rosa, Faculdade de Ciências e Tecnologia, Univer-
sidade Nova de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito,
perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de ex-
emplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro
meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios
científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de in-
vestigação, não comerciais, desde que seja dado crédito ao autor e editor.

iv

To my mother, father, sister, brothers and my friends.

vi

Acknowledgements

I would like to acknowledge several people that helped me through the development
and writing of my thesis.

I would like to thank to Prof. José Barata for being my supervisor and for the possi-
bility of developing such an interesting work as well as for all the opportunities that he
has provided to me, in special the participation on the IDEAS project.

A special recognition to Prof. Luis Ribeiro. More than a supervisor, he is a friend.
The great success of the end of my journey in the university is thanks to him, he always
motivated me, guided and helped me when necessary. His professionalism, personality,
ambition, had a high influence on me. It was a truly honour to work with him, and I
really hope to have that honour again.

I would like to thank my lab colleagues, Andre Cavalcante, Steffen Schutz, Andre
Rocha, Ângelo Veiga and Mauro Dias, who have provided a great environment during
the development of this thesis.

To my colleagues from FCT-UNL that give me their support and friendship since the
beginning of this journey: João Virote, Luis Sousa, Hugo Silva, Filipe Correia and Hugo
Lopes, I would like to thank them for their friendship and support during this journey.

For last but not the least, I would like to show the most kind and special gratitude to
my family. To my mother and my father, for their support during this journey and for
being the best examples that I could have. To my brothers and sister, for being the best
persons to grow with. To my niece and my nephew, no matter how bad a day is, they
always bring happiness to it.

vii

viii

Abstract

There is a growing interest from industry in the applications of distributed IT. Cur-
rently, most modern plants use distributed controllers either to control production pro-
cesses, monitor them or both.

Despite the efforts on the last years to improve the implementation of the new manu-
facturing paradigms, the industry is still mainly using traditional controllers. Now, more
than ever, with an economic crisis the costumers are searching for cheap and customized
products, which represents a great opportunity for the new paradigms to claim their
space in the market.

Most of the research on distributed manufacturing is regarding the control and com-
munication infrastructure. They are key aspects for self-organization and there is a lack
of study on the metrics that regulate the self-organization and autonomous response of
modern production paradigms.

This thesis presents a probabilistic framework that promotes self-organization on a
multiagent system based on a new manufacturing concept, the Evolvable Assembly Sys-
tems/Evolvable Production Systems. A methodology is proposed to assess the impact
of self-organization on the system behavior, by the application of the probabilistic frame-
work that has the dual purpose of controlling and explaining the system dynamics.

The probabilistic framework shows the likelihood of some resources being allocated
to the production process. This information is constantly updated and exchanged by the
agents that compose the system. The emergent effect of this self-organization dynamic is
an even load balancing across the system without any centralized controller.

The target systems of this work are therefore small systems with small production
batches but with a high variability of production conditions and products.

The agents that compose the system originated in the agent based architecture of

ix

x

the FP7-IDEAS proejct. This work has extended these agents and the outcome has been
tested in the IDEAS demonstrators, as the changes have been incorporated in the latest
version of the architecture, and in a simulation and more controlled environment were
the proposed metric and its influence were assessed.

Keywords: Manufacturing, Distributed, Self-Organization, Emergence

Resumo

Existe um crescente interesse de parte da indústria na áreas das aplicações distríbui-
das em IT. Actualmente, a maioria das fábricas faz uso de controladores distribuidos
tanto para controlo de processos de produção, para os monitorar ou para ambas as apli-
cações.

Apesar dos esforços nos últimos anos para melhorar a implementação dos novos pa-
radigmas de manufactura, a indústria ainda usa principalmente controladores tradicio-
nais. No entanto, agora mais que nunca, em ambiente de crise económica os consumido-
res procuram por produtos baratos e customizados, representando uma grande oportu-
nidade para os novos paradigmas reclamarem o seu espaço.

A maioria da investigação nos sistemas distribuídos é focada na infra-estrutura de
comunicação e controlo. São ambos aspectos fundamentais para a auto-organização, no
entanto existe uma lacuna no estudo de métricas que regulam a auto-organização e a
resposta autónoma dos paradigmas modernos de manufactura.

Esta tese apresenta um enquadramento probabilístico que promove a auto-organização
num sistema multiagente baseado num conceito de manufactura novo, os Sistemas Evo-
lutivos de Assemblagem/Sistemas Evolutivos de Produção. É proposta uma metodo-
logia para avaliar o impacto da auto-organização no comportamento do sistema após a
aplicação do enquadramento probabilistico que tem um duplo propósito, que consiste
em controlar e explicar a dinâmica do sistema.

O enquadramento probabilístico mostra também a probabilidade que alguns recur-
sos têm de ser alocados a um processo de produção. Esta informação é constantemente
actualizada e trocada pelos agentes que compõem o sistema. O efeito emergente da dinâ-
mica auto-organizada é um balanceamento nivelado da carga no sistema sem qualquer
controlo centralizado.

xi

xii

Os sistemas alvos deste trabalho são pequenos sistemas, com pequenos lotes de pro-
dução mas com alta variedade nas condições de produção e nos produtos.

Os agentes que compõem o sistema têm origem na arquitectura agente de base do
projecto FP7-IDEAS. Este trabalho estende esses agentes e o resultado foi testado nos de-
monstradores do IDEAS, assim como as alterações foram incorporadas na última versão
da arquitectura, e em simulação num ambiente controlado a métrica proposta e a sua
influência foi avaliada.

Palavras-chave: Manufactura, Sistemas Distribuidos, Auto-Organização, Emergencia

Acronym

AGV Automatic Guided Vehicle
AMI Agent Machine Interface
ASk Atomic Skills
BA Broker Agent
BMS Bionic Manufacturing Systems
CLA Coalition Leader Agent
CSk Composite Skills
EAS Evolvable Assembly Systems
EPS Evolvable Production Systems
DA Deploy Agent
DPWS Devices Profile for Web Services
DSk Decision Skills
FMS Flexibile Manufacturing Systems
HMS Holonic Manufacturing Systems
HUA Handover Unit Agent
IADE IDEAS Agent Development Environment
MA Mechatronic Agent
MAC Mechatronic Agent Class
MMAS Mechatronic Multi-Agent Systems
MRA Machine Resource Agent
PA Product Agent
PSiA Product Sink Agent
PSoA Product Source Agent
RFID Radio-Frequency Identification
RMS Reconfigurable Manufacturing Systems
RTT Round Trip Time
SOC Self-Organized Criticality
TEA Transport Entity Agent
TS Transport System
TSA Transport System Agent
YPA Yellow Pages Agent

xiii

xiv

Contents

1 Introduction 1
1.1 Background . 1

1.2 Research Problem and Contributions . 2

1.3 Thesis Outline . 2

2 State-Of-The-Art 5
2.1 Manufacturing Paradigms . 5

2.1.1 Evolvable Production Systems . 6

2.1.2 Multi-Agent systems . 8

2.2 On Emergence, Self-Organization and Mechatronic Systems 10

2.2.1 Emergence . 10

2.2.2 Self-Organization . 12

2.2.3 Challenges in a mechatronic context 13

2.3 Integrated discussion . 13

3 Architecture 15
3.1 IADE . 15

3.1.1 Skill Definition . 15

3.1.2 Area Definition . 16

3.1.3 IADE Agent Architecture . 17

3.1.4 Agent interactions functional view 19

3.1.5 Simplified IADE stack and self-organization assessment 21

3.2 Emergence and Self-Organization in IADE 24

3.2.1 Contextualizing Emergence and Self-Organization 24

3.2.2 A metric to promote and assess self-organization and emergence . 25

4 Implementation 27
4.1 Mechatronic Agents . 27

4.1.1 IADE Data Model . 27

xv

xvi CONTENTS

4.1.2 IADE Main Interactions . 34
4.1.3 Reduced Stack - Data Model . 37
4.1.4 Reduced Stack - Interactions . 45

4.2 A tool to generate networks of skills . 47
4.2.1 Concept . 47
4.2.2 Network Generator Algorithm . 49

5 Results and Validation 51
5.1 Industrial Demonstrators . 51

5.1.1 Festo Cell . 51
5.1.2 IDEAS Pre-Demonstrator . 54
5.1.3 Masmec Demonstrator . 58

5.2 Simulations . 63
5.2.1 Skill Composition Tests . 64
5.2.2 Assessing Emergence and Self-Organizing tests 68

6 Conclusion and Future Work 75
6.1 Conclusions . 75
6.2 Future Work and Scientific Contributions 76

7 Appendix 1 - FIPA Request 85

8 Appendix 2 - FIPA Contract Net Protocol 87

9 Appendix 3 - T2 Results 89

List of Figures

2.1 MAS generic architecture . 9

3.1 Composite Skill Example . 16
3.2 Area Example . 17
3.3 IADE Agents . 17
3.4 IADE - Interaction flow at the start-up . 20
3.5 IADE - Interaction during runtime . 21
3.6 Simplified IADE Stack agents . 22
3.7 Simplified IADE Stack - Interactions flow during configuration 23
3.8 Simplified IADE Stack - Interactions flow during execution 23
3.9 System Example . 24
3.10 Scope of the decision metric . 25

4.1 IADE - Mechatronic Agent Class . 29
4.2 IADE - Skill Class . 30
4.3 IADE - Yellow Pages classes . 32
4.4 IADE - Transport System classes . 33
4.5 IADE - Registering and Subscribing for Agents 34
4.6 Plugging Agents in docking point . 35
4.7 IADE - CLA Negotiation . 35
4.8 IADE - PA Negotiation . 36
4.9 IADE - PA Moving . 37
4.10 IADE Execution . 37
4.11 Simplified IADE Stack - Mechatronic Agent Class Diagram 38
4.12 System example . 40
4.13 Simplified IADE Stack - Product Agent state machine 44
4.14 Simplified IADE Stack - Yellow Pages Agent Class Diagram 45
4.15 Simplified IADE Stack - Interactions between YPA and TSA 45
4.16 Simplified IADE Stack - Interactions between PA and TSA 46

xvii

xviii LIST OF FIGURES

4.17 Simplified IADE Stack - PA Negotiation Interactions 47
4.18 System Example . 48
4.19 Decomposition of the Pick and Place Skill 49

5.1 Festo Cell . 52
5.2 Festo Cell Layout . 52
5.3 Festo Cell - Feeder positions . 53
5.4 Festo Cell - Gripper 1 - Pick and Place . 54
5.5 Festo Cell - Gripper 2 - Pick and Place . 54
5.6 Festo Cell - Controllers . 55
5.7 IADE Pre-Demonstrator Layout . 55
5.8 IADE Pre-Demonstrator - Stacker Skills . 56
5.9 IADE Pre-Demonstrator - Stacker Axis horizontal positions 56
5.10 IADE Pre-Demonstrator - Glue Skill . 57
5.11 IADE Pre-Demonstrator - Test Skill . 57
5.12 IADE Pre-Demonstrator - Pick and Place Skill 57
5.13 IADE Pre-Demonstrator - Controllers . 58
5.14 Masmec Demonstrator Layout . 59
5.15 Masmec Demonstrator - Manual Load Skill 60
5.16 Masmec Demonstrator - Screw Skill . 60
5.17 Masmec Demonstrator - Test Skill . 61
5.18 Masmec Demonstrator - Label Skill . 61
5.19 Masmec Demonstrator - Label Skill . 61
5.20 Masmec Demonstrator - Labelling Station - Label Unit 62
5.21 Masmec Demonstrator - Manual Unload Skill 62
5.22 Masmec Demonstrator - Automatic Unload Skill 63
5.23 Masmec Demonstrator - Controllers . 63
5.24 Simulated System . 68
5.25 Average Metric Evolution and Product Number Evolution for T1 70
5.26 Contribution of PA types for the CLA implementing A in Area 1 (T1) . . . 71
5.27 Contribution of PA types for the CLA implementing A in Area 2 (T1) . . . 71
5.28 Comparison of the metric values computed by the CLAs and seen by PAs

over time in both areas for A (T1) . 72
5.29 Comparison of the metric values computed by the CLAs and seen by PAs

over time in both areas for B (T1) . 73
5.30 Average Metric Evolution and Product Number Evolution for T2 73
5.31 Comparasion of the Speed of the System with negotiation and without

negotiation . 74

7.1 Protocol FIPA Request . 85

8.1 Protocol Contract Net . 87

LIST OF FIGURES xix

9.1 Contribution of PA types for the CLA implementing A in Area 1 (T2) . . . 89
9.2 Contribution of PA types for the CLA implementing A in Area 2 (T2) . . . 90
9.3 Comparison of the metric values computed by the CLAs and seen by PAs

over time in both areas for A (T2) . 90
9.4 Comparison of the metric values computed by the CLAs and seen by PAs

over time in both areas for B (T2) . 91

xx LIST OF FIGURES

List of Tables

3.1 Possible Interaction between the IADE Agents, x denotes interaction . . . 19
3.2 Possible Interaction between the Simplified IADE Agents 22

4.1 Metric Values Example . 40
4.2 Metric values - Case 1 . 42
4.3 Metric values - Case 2 . 42
4.4 Total Metric values - Case 1 . 43
4.5 Total Metric values - Case 2 . 43

5.1 Messages Processed at PA level . 66
5.2 Requests Received by CLAs . 66
5.3 Refuses Sent by CLAs . 66
5.4 Refuses Received by CLAs . 67
5.5 Execution Requests Received by MRAs . 67
5.6 Execution Times for CLAs . 67
5.7 Average PAs requests processed by CLAs (T1) 71
5.8 Average PAs requests processed by CLAs (T2) 74

xxi

xxii LIST OF TABLES

1
Introduction

1.1 Background

In a continuous changing world with a more demanding, both from a product customiza-
tion and sustainability points of view, with changing consumer habits and the subsequent
decrease at the products life-cycle, a change in the established productions paradigms is
required to maintain competitiveness in a global market.

In 1990’s some competitive priorities as responsiveness, flexibility, quality, concern
for the environment and international competitiveness have emerged [1], forcing the
industry to search for new approaches on manufacturing control. Self-diagnostics, self-
repair, self-organization, flexibility, extendibility are some of properties desired for the
new generation of manufacturing control systems. To meet these requirements several
new approaches have emerged, the Holonic Manufacturing Systems (HMS) [2], inspired
on the holonic concept introduced by the philosopher Arthur Koestler [3], the Bionic
Manufacturing Systems (BMS) based on biological organisms [4, 5], Reconfigurable Man-
ufacturing Systems (RMS), designed for a rapid change in the system structure [6], and
the Evolvable Assembly Systems (EAS) [7] and Evolvable Production Systems (EPS) [8],
that closely relate to this work.

Despite the continuous efforts, the prototype implementations based on these ap-
proaches are not yet mature, facing some technical challenges, implying that it is not yet
feasible to readily apply these concepts in an industrial context.

In fact, and despite the adoption debate [9, 10], the small scale and the limitations

1

1. INTRODUCTION 1.2. Research Problem and Contributions

of the prototypes do not allow the proper validation of the reference architectures. Fur-
thermore, although most of the architectures are conceptually simple, their implementa-
tion is technically challenging. It is often the case that the implementation often fails to
meet industrial standards or its applicability is narrowed to extremely simple cases. For
this reason, there are only a few cases of industry-oriented prototypes. These emerging
paradigms are extremely promising. Hence the prototyping at a pre-industrial stage is
of paramount importance. This is the direction taken by the present work which was
integrated with the FP7 IDEAS project.

1.2 Research Problem and Contributions

The present work, supported by the scientific background of the FP7 IDEAS project [11],
has a strong implementation and prototyping contribution. In particular, it stands as
a proof-of-concept of the feasibility of some Evolvable Production Systems related con-
cepts, namely emergence and self-organization. Self-organization is a central topic in
the dynamics of modern production paradigms. It is also normally linked with unpre-
dictability and abnormal behaviour. More conservative industrialists perceive it as "the
system doing all sort of dangerous actions (undesired emergent behaviour) on its own".

In this context, the present implementation oriented work aims at showing how self-
organization can be introduced in a mechatronic stack. Furthermore, and with the pur-
pose of clarifying how (un)predictable these systems may be, the interactions between
some of the agents, in the IDEAS stack, were studied, in simulation, to uncover the hid-
den dynamics of self-organization in the context of the IDEAS project.

For this purpose the stack was first applied to three pre-industrial demonstrators to
assess the validity of the implementation.

Afterwards, in simulation, a decision metric was designed and applied to the system
in order to quantify how likely some agents are to take some decisions. The same agent
stack was considered.

In this context, the results of this work contributed to the IDEAS project, as part of
the official implementation, and to raise the awareness that self-organizing mechatronic
systems are not necessarily unpredictable as their dynamics can be explained.

1.3 Thesis Outline

This thesis is composed by six main chapters: Introduction, State-of-the-Art, Architecture,
Implementation, Results and Validation and Conclusion and Future Work.

The first and present chapter, Introduction, gives a short introduction of the research
problem, the contributions and research activities wherein this thesis has been developed.

2

1. INTRODUCTION 1.3. Thesis Outline

The State-of-the-Art chapter briefs the context of this thesis. Initially presents a short
resume on the new paradigms for manufacturing systems and multi-agent systems, and
finally briefly discusses about emergence and self-organizing in the context of mecha-
tronic systems.

On the Architecture chapter, the IDEAS reference architecture is presented, including
the supporting concepts and reference agent interactions. The decision metric used, later
on, to assess the self-organization response is also detailed.

The fourth chapter, Implementation, presents the implementation of the architecture
detailed in the previous chapter. The entities that compose the system, the interactions
between them and the developed algorithm that implements the suggested decision pro-
cess are also fully detailed.

The Results chapter presents three real physical layouts where system has been tested
and validated, and details the results obtained through simulation when assessing the
proposed decision metric.

Finally, the chapter Conclusion and Future work is a critic overview of the work devel-
oped for this thesis and its potential future research directions.

3

1. INTRODUCTION 1.3. Thesis Outline

4

2
State-Of-The-Art

2.1 Manufacturing Paradigms

In the 70’s people started to become more fashion-conscious, demanding up-to-date prod-
ucts incorporating the latest gadgets, leading to a new trend of raising products variety
with a smaller life-cycle [12]. However, the industry questioned this trend, promoting
campaigns to limit the product diversity and low-priced quality products. This strategy
proved to be wrong since the profits did not increase, the markets were composed of
many niches and the costumer tastes kept changing, being necessary to promote flexibil-
ity to face the new markets trends without increasing the production costs [12]. All this
culminated with the emergence of the Flexible Manufacturing Systems (FMS). The man-
ufacturing flexibility concept means the ability to produce different products efficiently
through a manufacturing resources reconfiguration [13].

The Agile Manufacturing concept introduced by Nagel and Dove at the Iacocca in-
stitute [14] implies that agility is the ability to thrive and prosper in an environment
of constant and unpredictable change [15]. The agile paradigm differs from the FMS by
being more than flexible covering different areas from management to shop-floor control.

The Holonic Manufacturing Systems (HMS) [2, 16, 17, 18] are inspired on the holon
concept of Arthur Koestler’s work [3] which describes the living systems and their social
organization. The "holon" word is a combination of "holos", meaning whole, and the
suffix "on", meaning part. The Holonic concept is hierarchically divided and a Holon
can be an organism composed by minor organisms and be part of a bigger organism
simultaneously. The application of this concept in manufacturing results in a system with
several subsystems that can be decomposed to exhibit the holonic behaviour [16]. The

5

2. STATE-OF-THE-ART 2.1. Manufacturing Paradigms

interaction between the parts is, however, easier to describe and contextualize than it is
to implement. It is, nevertheless, a central concept in most modern production paradigms
as it stands as the first step towards complexity encapsulation. This means the holonic
approach, and others that follow, can conceptually support a multilevel description of a
mechatronic system.

The Bionic Manufacturing Systems (BMS) [4], similarly to HMS, take inspiration in
living organisms focusing on organs. In this context, a manufacturing system is a com-
position of cells and organs. The BMS relies on a kind of product agent that is able to
produce itself by enacting a self-organization system response. The main concept is that
the shop-floor components are able to dynamically interact with each other exchanging
DNA like data. Later an extension of BMS with learning capabilities was proposed [19].
Although the philosophical background differs from HMS, the same base ingredients
are shared: complexity encapsulation, self-organization, decentralization of the decision
problem(and also of mechanisms that jointly contribute to solve a production problem,
whose scope exceeds the one of individual parts).

The Reconfigurable Manufacturing Systems (RMS) [6, 20] are designed to have capa-
bilities for a fast reconfiguration and integration of the system components. To achieve
these capabilities, a RMS system should be designed with some characteristics such as:
Modularity, Integrability, Convertibility, Diagnosability, Customization and Scalability [21].
The RMS do not envision a new specific paradigm, but they set guidelines on how tech-
nology should be to support such dynamic shop-floors. The main enabler of the suc-
cessful application of these emerging paradigms, probably does not lie in paradigms nor
technology alone, but rather when both are conveniently combined. In [22], the author
identify three fundamental gaps that frequently limit the correct path from conceptual-
ization to implementation.

2.1.1 Evolvable Production Systems

The EAS/EPS paradigms [7], recently introduced, shares some particularities with the
HMS, BMS and RMS, which, not surprisingly, are the idea of encapsulation and self-
organization.

An EAS/EPS system should comprise two characteristics: The ability to evolve and
adapt. Adaptation in the sense that the system needs to be able to propose an alterna-
tive configuration to minimize the adverse effects of disturbances. Adaptation is short-
termed and normally entails self-reconfiguration typically in the form of parameter’s ad-
justments. Regarding the evolution, the system has to be able to allow the introduction
of new modules or removal of existing modules [8]. Evolution is, therefore, a long-term
process that involves strategic decisions and cost evaluation. The EAS/EPS follow three
fundamental guiding principles [23, 24, 8, 25]:

6

2. STATE-OF-THE-ART 2.1. Manufacturing Paradigms

• Principle 1: "The most innovative product design can only be achieved if no assem-
bly process constraints are posed. The ensuing, fully independent, process selection
procedure may then result in an optimal assembly system methodology".

• Principle 2: "Systems under a dynamic condition need to be evolvable. i.e., they
need to have an inherent capability of evolution to address the new or changing set
of requirements".

• Principle 3: "EPS systems are based in intelligent, process oriented, self-contained,
self-organizing modules that can aggregate to deliver different functionalities on
demand".

To achieve this an EAS/EPS system must be designed taking into consideration the
following features [26, 27]:

• Modularization: Similarly to HMS, BMS and RMS paradigms the notion of inde-
pendent modules should be present on an EPS/EAS system.

• Granularity: An EPS/EAS should allow several levels of granularity (i.e. one mod-
ule can be a simple gripper or the whole robot).

• Plugability: The ability to handle the introduction of new modules while the system
is running. The system must be able to redesign the internal dynamics in order to
keep its efficiency.

• Reconfigurability: The system needs to be able to handle the redesign of the layout
without compromising any functionality.

All these features bring the EAS/EPS very close to RMS, being mistakenly consid-
ered the same concept with different interpretations, however, some differences between
the concepts can be spotted. The RMS focuses on the reconfigurability of system com-
ponents while EAS is focused on the adaptability. As stated before the EAS/EPS allow
several levels of module granularity, the RMS follow an approach of "transport-handling-
assembly-finalisation" block, which implies a limitation on granularity [28].

EPS/EAS have been developed along a successful series of multidisciplinary inter-
national research projects. The latest of these projects, the FP7 IDEAS project, was the
background environment supporting the development of this work. IDEAS focused not
only on the scientific development of EPS related concepts as well in the development
and pre-industrial validation of supporting technology from a mechatronic point of view
(software and hardware). The agents later detailed, whose implementation is the back-
bone of this work, are a fundamental part of the software concept as EPS envision a
multiagent based system.

7

2. STATE-OF-THE-ART 2.1. Manufacturing Paradigms

2.1.2 Multi-Agent systems

Although there is not a consensus about the definition of an Agent, in this work the
adopted definition is the given by Wooldridge [29, 30, 31]:

”An agent is a computer system that is situated in some environment, and that is
capable of autonomous action in this environment in order to meet its delegated objec-
tives.”

Autonomous action is indeed the most important characteristic when defining an
agent. Other important characteristics include Reactivity, Rationality, Proactiveness,
Social Ability, Adaptability, Continuity and Mobility [30, 32, 33].

Although, these characteristics affect most the individual architecture of an agent,
there are at least two, social-ability and mobility, that can only be expressed in a multia-
gent context.

The prominence of the others normally defines the agent’s behaviour. Reactive agents
normally require less computational effort in their decision process. However, they may
be sensitive to decision myopia. On the other hand, Rational agents consume more com-
putational resources and, although decision myopia may not constitute a problem, the
time required to enact a decision can be too long. In this context, the perception of the
world that led to that decision may not be valid any more when the decision becomes
effective.

It is reasonable to envision an agent as a problem solver. In a multi-agent context
one is therefore considering a distributed set/network of problem solvers. Furthermore,
the components of this network can make use of their social-ability to collectively solve
problems.

From a technological point of view, the implementation of such system implies the
existence of an agent platform upon which the reference architecture can be instantiated.

Regardless of the agent characteristics the architecture normally defines generic classes
of agents and their interactions. The focus on this generic design is fundamental to sup-
port the encapsulation, self-organization and scalability requirements of modern paradigms.

The Figure 2.1 [26] represents one of such generic architectures for a MAS framework
regarding the EAS/EPS concepts. It is derived from the CoBASA architecure [32]. The
architecture contains the following agents:

• Mechatronic Agent (MA): It is a threefold entity constituted by an equipment, its
controller and the active logical part (the agent). The mechatronic agent is, in this
context, a self-containing pluggable unit.

• Broker Agent (BA):The BA is an intermediary agent that keeps the information

8

2. STATE-OF-THE-ART 2.1. Manufacturing Paradigms

Figure 2.1: MAS generic architecture

about the other agents present in the system. It also facilitates their interactions.

• Coalition Leader Agent (CLA): The function of this agent is to promote the organi-
zation between the other agents in order to aggregate the functionalities provided
by them. It is therefore paramount in promoting the emergent behaviour that leads
to an organized structure.

• Agent Machine Interface (AMI): Is the agent that controls the hardware modules.
This agent works as an intermediary between the mechatronic equipment and the
agent when the full integration of the mechatronic agent cannot be attained.

The purpose of the architecture is also a fundamental point that needs to be consid-
ered as it definitely influences the implementation decisions and supporting technolo-
gies. For instance, the generic architecture depicted in Figure 2.1 is focused on system
re-engineering. The IDEAS architecture detailed in the next chapter also entails fast re-
engineering, but includes other aspects such as control and material handling in an emer-
gence and self-organization framework.

In this context, it is crucial to clearly understand the meaning of these concepts in a
mechatronic scenario. The next subsection presents a brief discussion of both concepts.
This is highly relevant since EPS/EAS evolve around the idea of Adaptation and Evolv-
ability supported by self-organization and emergent behaviour but do not specify the
mechanisms to attain so. Having stated so there have been preliminary implementations,

9

2. STATE-OF-THE-ART 2.2. On Emergence, Self-Organization and Mechatronic Systems

specially in the academic domain of EPS/EAS in particular:

• MAS - oriented: [34, 35] preliminary implementations on a didatic kit based on the
CoBASA architecture but featuring material handling.

• Web Service - oriented: [36] a similar implementation exploring web service tech-
nology in particular the emerging Devices Profile for Web Services (DPWS) stack.

Some basic self-organization mechanisms were explored in these papers that eventu-
ally led to the solution presented in this work.

2.2 On Emergence, Self-Organization and Mechatronic Systems

2.2.1 Emergence

Emergence and Self-organization are central concepts in recent production paradigms
and architectures. They are also frequently used in an loosely way. The concept of emer-
gence is attributed to G. H. Lewes. Lewes observed that "although each effect is the
resultant of its components, we cannot always trace the steps of the process, so as to see
in the product the mode of operation of each factor" [37]. Holland supports roughly the
same definition: "there are regularities in system behaviour that are not revealed by direct
inspection of the laws satisfied by the components" [38]. If one inspects other definitions
of emergence the notion that the whole is more than the sum of the parts dangerously
emerges to "raise the spectre of illegitimately getting something out of nothing" [39].

There appears to be several ingredients to identify emergence. Whether or not the
observer is one of these decisive ingredients is one of the most relevant discussion top-
ics. While some authors deem the observer necessary, see for instance [40] that claims
that "the concept of emergence is much better captured through the sound analysis of the
observer’s structure", others reject the observer as condition to identify emergence [41].
There is a very important qualitative, phenotype-like, dimension of emergence that con-
veys significance to the observer which is generally rejected by pure reductionists. This
debate revolves around the "how" and the "why". While pure reductionists contend that
emergence is associated with a certain degree of ignorance from the observer in respect
to the "how", they often neglect the "why" which, due to the observer’s inability to fully
grasp the causal matrix, hinders pure determinism and prevents him from, in most cases,
relating the mechanisms that explain how a set of parts lead to useful phenomena as an
whole [42]. The why normally relates to a set of observable properties which can be more
or less salient according to [37]:

• "Radical novelty: emergents have features that are not previously observed in the
complex system under observation. This novelty is the source of the claim that

10

2. STATE-OF-THE-ART 2.2. On Emergence, Self-Organization and Mechatronic Systems

features of emergents are neither predictable nor deducible from lower or micro-
level components. In other words, radically novel emergents are not able to be
anticipated in their full richness before they actually show themselves."

• "Coherence or correlation: emergents appear as integrated wholes that tend to
maintain some sense of identity over time. This coherence spans and correlates
the separate lower-level components into a higher-level unity."

• "Global or macro level: since coherence represents a correlation that spans separate
components, the locus of emergent phenomena occurs at a global or macro level,
in contrast to the micro-level locus of their components. Observation of emergents,
therefore, is of their behaviour on this macro level."

• "Dynamical: emergent phenomena are not pre-given wholes but arise as a complex
system evolves over time. As a dynamical construct, emergence is associated with
the arising of new attractors in dynamical systems (i.e., bifurcation)."

• "Ostensive: emergents are recognized by showing themselves, i.e., they are osten-
sively recognized. (...)Because of the nature of complex systems, each ostensive
showing of emergent phenomena will be different to some degree from previous
ones."

In [43] the following properties are additionally considered as pertaining to emer-
gence:

• "Interacting parts - The parts need to interact - parallelism is not enough. Without
interactions, interesting macro-level behaviours will never arise. The emergents
arise from the interactions between the parts."

• "Decentralized control - Decentralized control is using only local mechanisms to
influence global behaviour. There is no central control. i.e. no single part of the
system directs the macro level behaviour. The actions of the parts are controllable.
The whole is not directly controllable (...)"

• "Two-Way Link - In emergent systems there is a bidirectional link between the
macro-level and the micro level, the parts give rise to an emergent structure. (...) In
the other direction, the emergent structure influences the parts"

• "Robustness and Flexibility - (...) Emergents are relatively insensitive to perturba-
tions or errors (...)"

If one considers the observer a fundamental part in the identification of emergence
then time and scale of the observation are also fundamental ingredients of emergence. In
this context Castelfranchi [44] proposes a threefold classification of emergence:

11

2. STATE-OF-THE-ART 2.2. On Emergence, Self-Organization and Mechatronic Systems

• Diachronic emergence - is a time based process requiring a favourable convergence
of factors, typically the critical accumulation of "components, or ingredients and
forerunners of that phenomena" that in the right mix can trigger a disruption in the
system leading to different system phases.

• Synchronic emergence - is related to the point and scale of the observation process
itself. From a specific point of view correlations between otherwise uncorrelated
entities may become evident.

• Descriptive emergence - relates to the description of emergence properties in the
macro level where they are visible and measurable. It is a form of emergence that
suits the observers descriptive purposes in respect to the observed system.

It is however difficult to devise rules on how to decide on the time frame and scale
of the observations. The link between emergence and self-organization has been widely
debated.

2.2.2 Self-Organization

A general definition of self-organization is: "a system is self-organizing if it acquires a
spatial, temporal or functional structure without specific interference from the outside.
By specific we mean that the structure or functioning is not impressed on the system, but
that the system is acted upon from the outside in a non specific fashion"[45].

Self-organization is often observed in natural systems yet in most cases the organiza-
tion of these systems happens at critical state. This sort of organization is typically cited
in the literature as Self-Organized Criticality (SOC). The concept is normally attributed
to Bak, Tang and Wisenfeld when they proposed the sandpile model as an example of
the quantification of SOC [46]. As detailed in [46] "the system naturally evolves to the
state without detailed specification of initial conditions (i.e. the critical state is an attrac-
tor of the dynamics). Moreover, the critical state is robust with respect to variations of
parameters, and the presence of quenched randomness".

As detailed in [43] this ability to retain order is fundamental in the characterization
of self-organization and further, in addition to the previously described properties, in
the identification of pure emergent systems, pure self-organizing systems or systems that
denote both.

Context seems to decisively influence the identification of emergence and self-organization.
In the domain of emerging production paradigms both concepts have become buzz words
and are often loosely applied to describe mechatronic systems that can adapt to changing
conditions very often by adjusting processes’ parametrization or, in extremely rare cases,
their physical/mechanical configuration. There is generally a scarcity of metrics that de-
termine the degree of qualitative novelty (arguably emergence) or organization when

12

2. STATE-OF-THE-ART 2.3. Integrated discussion

these systems take such an actions. Yet most current research is pointing in the direction
of developing increasingly distributed and pluggable component-based systems. One
of the main challenges is therefore overcoming the absence of general indications and
guidelines on evaluating the state of the system which renders very difficult its guidance
through a trajectory including the best possible states as opposed to a path that, leading
to the same final result, may hinder the overall response.

2.2.3 Challenges in a mechatronic context

The successful implementation of modern production paradigms is currently less a tech-
nological issue and more a matter of modelling. If the current development trend con-
tinues it is fundamental to define a methodology to design the next generation of pro-
duction systems. Emerging approaches propose a radically different way of building
systems where global models are replaced by open system architectures that emphasize
the generic interactions between the system’s components and how these should influ-
ence it has an whole. These systems are designed for emergence and indeed it can be the
most fruitful way of conceiving and managing complex production systems that result
from the composition of thousands, maybe millions of intelligent components.

It is therefore necessary to understand how the existing notions of emergence and
self-organization may apply to a mechatronic system. Bedau proposes the notion of Weak
Emergence [39, 41], which may be useful for this purpose, that determines that the sys-
tem’s macro-states can be derived from its micro-states and its micro-dynamic. Bedau
also sustains that this link must be supported by a simulation process given the potential
complexity of the causal matrix. Bedau’s definition appears has a reaction to the more
traditional conception of Emergence (Strong Emergence) that is more restrictive in the
two-way link between the whole’s behaviour and the parts. In the context of this work,
the author shall follow Bedau’s notion of Emergence as, to a great extent, the purpose
of the paper is to uncover the inner dynamics that govern a Mechatronic Multi-Agent
system (MMAS) as an whole.

As for the concept of self-organization the author perceive it as a natural property
of the mechatronic systems discussed. These systems make massive use of autonomous
behaviour in an attempt to continuously adjust to changing production conditions while
maintaining a productive organizational state. In this respect the author’ view is aligned
with the characteristic properties of self-organization as defined in [43].

2.3 Integrated discussion

The research in application of multi-agent systems in an industrial context is vast and
multidisciplinary. It goes from technological considerations and development to more
philosophical issues.

13

2. STATE-OF-THE-ART 2.3. Integrated discussion

There has been a wide debate relating with the small implantation of these emerging
production approaches in concrete industrial scenarios. One of the main difficulties is
that most of these concepts are easy to explain and understand but they are difficult
to implement. The EPS/EAS paradigm is an example of such efforts. In particular it
has been undertaking development and refining activities for almost one decade and,
only recently, in the scope of the IDEAS project, the first pre-industrial prototypes have
emerged.

The project has also been voted as an FP7 success story [47], and part of this success
has to do with the focus on concepts but also on the instantiation of those concepts in a
technological framework. As stated before, one of the biggest contributions of this work
lies in the implementation and refinement of part of the IDEAS architecture.

This architecture strongly relies in emergence and self-organization. These concepts
are normally perceived as the sources of disturbances and undesired behaviour. It is
therefore also important to start to formalize and understand the dynamics of such sys-
tems in order to show that, although they create production environments that are very
different from the current ones, there is a considerable added value in adopting them.

In this context, the IDEAS architecture and a metric to study self-organization are
detailed in the next chapter.

14

3
Architecture

This chapter starts by defining two supporting concepts, namely skill and area, which
are required to explain the generic interactions between the IADE agents. The agents and
their interactions are then defined and finally the adaptations considered for the study
on self-organizing as well as the metric are presented.

3.1 IADE

The IDEAS Agent Development Environment (IADE) is a library developed under the
IDEAS project and based on the JADE platform.

The results of this thesis are supported by IADE and, simultaneously, this work con-
tributed to its implementation. The principal contributions consist in the partial develop-
ment of the Mechatronic Agents (MA), tools and Yellow Pages services. The implemen-
tation of the Transport System is out of the scope of this work.

The final results presented on this thesis are an important study in order to support
the system configuration, which also provided feedback to the IADE agent stack.

3.1.1 Skill Definition

The generic and dynamic functionalities provided by the agents in IADE are expressed as
skills. There are three skill types in the architecture. The Atomic Skills (ASk) are the link
between the agent and the implementation of a library for a specific controller (I/O map-
ping and low level functions). In this context, an atomic skill encloses the code required
to interact with the physical world. The Composite Skills (CSk) implement processes

15

3. ARCHITECTURE 3.1. IADE

which can contain any other skills including others CSks. A CSk contains a workflow of
skills that defines the process. Unlike ASks the CSks never directly interact with the hard-
ware. In this context, they simply mediate the execution at agent level. Decision Skills
(DSk) are a special skill type which performs decisions during the process execution and,
according to the result of that decision, the process will take different paths.

The Figure 3.1 depicts a potential composite skill. Important points about the picture
include the fact that, as stated before, a CSk can contain any other skill. In particular,
a CSk can define a sequence, as in the main CSk portrayed in Figure 3.1, or a parallel
execution on the top branch of the DSk. The decision skill is based on the evaluation of
a user defined expression. If the expression evaluates to true, the top branch is executed.
If it evaluates to false the other branch executes. Only ASks can interface the hardware
and each different skill may be controlled by a different agent. A skill can exist even if
there is not an agent to control it. In this sense, skills are just descriptions and only come
to live when associated with specific instances of agents.

Skills are also comparable entities. In this context, two agents can exchange skill
information and verify if the skills are the same even if their instantiation, on the shop-
floor, is different. In this context, agents can allocate and replace comparable skills. This
fact leads to the notion of area defined next.

Figure 3.1: Composite Skill Example

3.1.2 Area Definition

In the proposed architecture, the scope of some particular agents is limited by areas which
are a definition of physical delimitations of the action scope of one agent. In the Figure 3.2

16

3. ARCHITECTURE 3.1. IADE

is exemplified a system with two distinct physical areas, both with similar modules.

Considering the example on Figure 3.2 a MA deployed on area A can only allocate
skills of other agents that are physically located on that area, the same rule is applied for
a MA deployed on area B.

Figure 3.2: Area Example

This definition prevents agents from allocating skills of other agents that may match
the requirements of a CSk, but that are not physically accessible. This restriction is spe-
cially important when dealing with ASks (and hardware manipulation). For this reason,
different agents can belong to areas of different sizes, so that in case we have CSks that
are composed by others CSKs the controlling agents are able to allocate skills in a wider
area of the system boosting self-organization.

3.1.3 IADE Agent Architecture

The IADE architecture (Figure 3.3) is designed to support self-organizing, robust and
reconfigurable systems. The IADE architecture explores and extends JADE’s agent struc-
ture and infrastructure in particular: FIPA compliant communication support, basic agent
architecture, service publishing and subscribing functionalities.

Figure 3.3: IADE Agents

The agents that compose the IADE core are:

• Machine Resource Agent (MRA) is the simplest agent present on IADE core. This
agent controls the hardware modules that can be plugged and unplugged from the

17

3. ARCHITECTURE 3.1. IADE

system. The MRA only contains atomic skills that are indivisible and directly re-
lated with hardware. As a consequence, any reconfiguration attempt of functional-
ities provided by MRA will require some changes at the controller level. Although
these changes are out of the agent control, the MRA provides the required mecha-
nisms to handle them in a generic way.

• Coalition Leader Agent (CLA) is the agent that supports the composition of skills.
This means that it is possible to build and execute process using the skills available
in the system. The CLA is able to react to disturbances in the environment such
as the addition or removal of functionalities and faults under its coalition. Adding
functionalities does not necessarily lead to a reaction by the CLA, since the agent
can choose not to reconfigure itself if everything is stable. In case of removal or
fault, whenever possible, the CLA will negotiate a replacement in order to keep
the system running. The ability of negotiation places the CLA as a pillar of self-
organization in the system.

• Yellow Pages Agent (YPA) is responsible for managing the information provided
by others agents. It provides an infrastructure that allows other MAs to register
their information or query about others, it also offers a subscription service which
notifies the subscribers each time an agent informs the YPA about a change on its
state. The system is composed by several YPAs and each one stores the correspond-
ing information of the agents that belong to a specific area.

• Deploy Agent (DA) is an auxiliary agent and is able to receive a serialized IADE
agent, rebuild it and deploy the agent on the controller where the DA is running.
This agent allows the system to be configured through external tools.

• Transport Entity Agent (TEA) is the agent that abstracts the transport entities (i.e.
conveyors or automates guided vehicles). It is responsible for the computation of
transporting costs between locations in the system.

• Handover Unit Agent (HUA) is the agent responsible for controlling the physical
handover of a product from one TEA to another. This agent processes the transport
cost from TEAs and interacting with other HUAs, computes the transport spanning
tree, that contains the best routes between each pair of HUAs/TEAs on the system.

• Product Source Agent (PSoA) this agent is a special case of HUA and is responsible
for introducing new products in the physical environment.

• Product Sink Agent (PSiA) is the responsible agent for retrieving products from
the environment, similarly to PSoA this agent is a special case of HUA.

• Product Agent (PA) is an extension of the CLA agent. The PA represents a product
and its production process. From an execution point of view the principal difference

18

3. ARCHITECTURE 3.1. IADE

between PAs and CLAs is the interaction with the TEA, the PA should combine the
information given by the TEA, CLA and RA to optimize the production process.

3.1.4 Agent interactions functional view

Table 3.1 [48] details all the possible interactions between the agents described.

Table 3.1: Possible Interaction between the IADE Agents, x denotes interaction
MRA CLA PA TEA HUA PSoA PSiA YPA

MRA - x x x - - - x
CLA x x x x - - - x
PA x x - x - x x x

TEA x x x - x x x x
HUA - - - x x - - x
PSoA - x x x - - - x
PSiA - x x x - - - x

These agents include all the shop-floor entities, although they can be extended to
incorporate new functionalities without changing their internal behaviours and the com-
munication protocols, as is the case of the PA. When launched, the agents have to per-
form some configuration routines which include communicating with other agents for
the purpose of setting up the environment and synchronize the start of some activities.
The Figure 3.4 depicts the interaction flow that occurs when the agents are launched. It
also encovers part of the engineering methodology.

The system setup starts with the deployment of the HUAs. After all HUAs have been
started the TEAs are added to the system. There is one HUA between two or more TEAs
and together they form the transport network. This implies changing transport costs (the
cost of traversing each TEA), and the construction of the routing tables (at HUA level).

Sources and Sinks are added afterwards. From this point, the transport system is fully
operational and is ready to route any product agents. However, without any resources,
the PAs would not have anywhere to go.

The next step is therefore the addiction of resource agents and the bootstrap of their
atomic skills. From this moment on PAs, whose process description only includes the
available skills at the initialized MRAs, can start producing.

Nevertheless, the purpose of the architecture is to enable skill composition, so that
more complex processes can be supported by the system. In this context, these processes
can be supported by defining the adequate CLAs. Simultaneously as these agents are
plugged on the system, they register their skills in the YPA that is associated with the
TEA where the specific MRA or CLA executes its skill.

Finally with the adequate processes defined and their execution locations know by

19

3. ARCHITECTURE 3.1. IADE

the system, the PAs can be launched and start producing. Their entrance on the system
is always mediated by the PSoA and their exit is controlled by the PSiA.

Figure 3.4: IADE - Interaction flow at the start-up

The Figure 3.5 shows the interactions flow between the PAs, CLAs and MRAs during
the process execution. The PAs, unlike CLAs cannot respond to incoming messages,
because the PAs are autonomous from an execution point of view and are a top level
entity, on the other hand, the MRAs only react when they receive an incoming message.
The CLAs have the ability to receive and send execution requests. The PAs, during their
execution, are attached to a TEA, this TEA changes according to the PAs physical location.
When a PA needs to be transported, it performs a transport request to the corresponding
TEA. The TEAs when are transporting a PA they displace it (physically and logically)
to one of its neighbours through a HUA. However the TEAs neighbours are only HUAs
which do not communicate with the PAs. The HUA, when receiving a PA, re-routes it
to the neighbour TEA, that is part of the best path for the PA destination. Finally, when
the PA reaches the destination the target TEA informs the PA and that TEA becomes
responsible to handle the future transport requests from the PA.

Figure 3.5 shows that from a functional point of view the main interactions as well as
the decision process is centered in the product agent.

20

3. ARCHITECTURE 3.1. IADE

Figure 3.5: IADE - Interaction during runtime

In fact the PA is, indeed, the top level decision maker and the ultimate responsible for
the execution of its process plan. Although these interactions appear simple in this high
level architectural view, there is a considerable number of actions happening to support
them.

In particular, before deciding where to execute next, the PA contacts the TEA, that is
currently associated with it, and queries it for all the agents, and transport cost associated
with their location, where the next skill in the process plan can be executed. It then
contacts the corresponding MRAs or CLAs for an estimation of the execution cost. With
both these values it computes a combined cost and commits to an execution location. The
PA then requires the transport (following the logic already described).

When at the execution location, the PA will require the execution to the corresponding
agent. If this agent is a CLA it may, correspondingly, trigger other agents in cascade.

As shown later in the results chapter, performance is the price paid for the liberty
of reconfiguring the system in an had-oc way. The depth of the composition should be
carefully regulated and understood to maintain the desired system response.

3.1.5 Simplified IADE stack and self-organization assessment

3.1.5.1 Reduced Agent Stack

In order to focus on the study of self-organization, during runtime, and to isolate it from
the influence of the transport system, whose dynamics are out of the scope of the present

21

3. ARCHITECTURE 3.1. IADE

work and have been studied in [49], a simplified version of the IADE stack was consid-
ered (Figure 3.6).

Figure 3.6: Simplified IADE Stack agents

As detailed in the picture, the number of classes considered to model the transport
system has been reduced. From an instantiation point of view, there is only one instance
of the transport system agent. This instance controls the entire transport system.

The re-mapping of these interactions is detailed in Table 3.2. In comparison with
Table 3.1 one of the main differences, aside on the type of agents, is that in the reduced
version the CLAs and MRAs interact directly with the area YPAs to inform about their
skills. In the IADE stack this interaction is always mediated by the TEAs.

Table 3.2: Possible Interaction between the Simplified IADE Agents
MRA CLA PA TSA YPA

MRA - x x - x
CLA x x x - x
PA x x - x x

TSA - - x - x

The system is started in a fairly similar way (Figure 3.7). First the transportation agent
is started, then the area YPA is initialized and, finally, the MRAs and CLAs are added to
the system. Upon entrance they register in the corresponding YPA.

Once the entire system is setup, the PAs can be launched. Note that the reference in-
teractions between PAs, CLAs and MRAs remain the same and that the self-organization
assessment will focus on these specifically.

The runtime dynamic is also slightly different (Figure 3.8). In particular, the PAs
request from the single instance of the TSA a list of the locations where the desired skill
can be executed. Instead of replying with the transport cost, and the associated agents,
the TSA returns the addresses of the YPAs.

22

3. ARCHITECTURE 3.1. IADE

Figure 3.7: Simplified IADE Stack - Interactions flow during configuration

The PA will subsequently contact the YPAs to set the execution on the different loca-
tions. A consequence of such set of interactions, is that the transport cost is not considered
in the decision process.

Figure 3.8: Simplified IADE Stack - Interactions flow during execution

With the set of interactions fixed it is now important to define the decision metric that
is involved in the decision of where the execute and frame the whole process under the
scope of emergence and self-organization.

The architecture sections defining IADE and its simplified form, only provide a high
level functional perspective. The more technology-oriented details are provided in the
implementation chapter.

23

3. ARCHITECTURE 3.2. Emergence and Self-Organization in IADE

3.2 Emergence and Self-Organization in IADE

3.2.1 Contextualizing Emergence and Self-Organization

In characterizing the emergent and self-organizing aspects of the system one needs first
to consider it under the framework of the emergence and self-organization. In respect to
emergence the author follows Bedau’s notation [39]: "Macrostate P of S with micrody-
namic D is weakly emergent if P can be derived from D and S’s external conditions but
only by simulation.". In the present case S denotes an IADE system.

Figure 3.9: System Example

A brief example on how to apply the concept of weak emergency shall be provided
now. In this case, Figure 3.9 shows a system S that is composed by a conveyor and a area
with three stations. From an agent point of view, the station would be abstracted and
controlled by a CLA. Under its coalition each one of the robots would be considered as
an MRA with skills A, B and A respectively. The interactions between the IADE agents
that compose this system defines the microdynamic D. The microdynamic has been fully
characterized from a functional point of view in the previous section.

It is important to remind, at this point, that Bedau’s definition of weak emergence is
completely generic and detached from any context.

In the mechatronic example provided, or in any IADE system, the purpose is not to
attain a specif macrostate P but rather ensure, by promoting self-organization, that the
physical system is in a set of desired states.

The size of this set of states depends on the size of the system and the enumeration
of all the elements in the set defeats the purpose of using self-organization as the driving
force to keep the system under control. In fact if the state space of the system can be easily
enumerated then probably the EPS approach is not suitable for that specific system.

The main concept is, therefore, to ensure that the system remains in a productive state
when it faces disturbances even with a performance penalty. At the same time, when the
disturbing elements are removed, the system should try to improve its efficiency, for
instance, by balancing the utilization of resources.

24

3. ARCHITECTURE 3.2. Emergence and Self-Organization in IADE

For instance in Figure 3.9, if one of the MRAs implementing A breaks down the other
may re-parametrize itself to, not only do its job with the native parametrization, but also
do the other agent’s job.

The loss of performance is obvious but the overall system remains operational. This is
fairly different from current shop-floors where the same scenario would crash the entire
process. This is definitely added value that can only be considered in an emergent and
self-organizing perspective.

From a architectural point of view, the process is still controlled by the several PAs
(which are the decision makers). This results in a wide range of decisions that need to
come together as a self-organizing whole.

Choosing the right decision metric can on the one side improve this process and, on
the other side, help explaining the self-organizing dynamics.

3.2.2 A metric to promote and assess self-organization and emergence

As previously stated the PAs dynamically choose the agents that will execute the skills
in their process plan. This feature occurs through negotiation. In the simplified stack
library the negotiation process is slightly different on the way the decision is made. With
or without the transport system, when a PA commits to executing in a specific location/a-
gent that agent can have an estimate of its future workload and can use this knowledge
to attract or repel more PAs. Such kind of look ahead metric can dynamically capture
the joint future intentions of all the PAs on the system. It can also justify and explain
why some resources are more attractive than others. In this context, the proposed metric
follows this philosophy and is focused on the interactions between the PAs and the first
layer of agents that provide a direct match for the PA’s required skills (Figure 3.10).

Figure 3.10: Scope of the decision metric

The individual metric of each CLA is calculated under the probability (Equation 3.1)
of the CLA to be invoked, where this probability is related with the CLAs and PAs that

25

3. ARCHITECTURE 3.2. Emergence and Self-Organization in IADE

have a history or can in the future invoke the given CLA.

The PPi term in Equation 3.1 is related with the mix of PAs in the system, and its
value is reduced when a skill execution of CLA is performed, since the agent knows that
there is one agent less to request the invocation of the skill. The P (CLAx | PPi) term is
related with the history of successful negotiations for the skill. A successful negotiation
will increase the value of P (CLAx | PPi) since the agent considers now that there is a
certain agent that will require the execution of its skill. The purpose is to, as previously
stated, capture what is likely to be the future state of the system.

PCLAx =

Ptypes∑
i=0

PPiP (CLAx | PPi) (3.1)

The Equation 3.2 is the decision metric itself. By using this metric the agent attempts
to minimize the execution cost for a set of skills in its process plan. In fact, what the metric
is computing is the joint cost of executing the process plan over the available resources.
As the dynamic of the system changes the value of P (CLAx) so changes the cost for
subsequent PAs trying to execute in the system.

Dm =

CLArequired∑
i=0

PCLAi (3.2)

The main restriction of this metric is that the computation of P (CLAx) requires some
global knowledge about the system, in particular the current mix of PAs on system. In the
conventional version of IADE this is controlled by the Product Sink and Sources Agents,
and in the reduced version of the stack it is available as shared data.

The expected outcome of this metric is that the system will be able to balance the load
of the PAs on the available CLAs on first tier of resources.

It is also important to stress that the metric is not meant to be an optimized metric for
load balancing. The scope of the present work is not to perform scheduling based on an
agent systems. For this purpose, there are several specialized papers [50].

The focus of the work is clarifying self-organization and emergence in a mechatronic
context. Hence the dual purpose of the metric, showing load balancing and explaining
the dynamics that led to it.

As detailed before implementation is still a significant barrier. The next chapter pro-
vides the main implementation details supporting this work.

26

4
Implementation

This chapter describes the implementation of the concepts used on this thesis as well as
an additional tool used to support testing and validation.

4.1 Mechatronic Agents

4.1.1 IADE Data Model

As it was stressed before the IADE library is composed by six agents, the CLA and MRA
agents are particular cases of the Mechatronic Agent Class (MAC). The MAC is an ab-
stract class (Figure 4.1) that contains the common behavioural logic and communication
protocols for those agents. The most relevant data fields that compose this agent include:

• OMACState: this field is used to fulfil a conventional automation concept and track
the machine status. It is applicable or used when the agent is attached to a physical
resource.

• Skills: is the list of skills provided by an agent. Each skill present on this list con-
tains the required information for the local execution and publishing purposes.

• ExecutorEngine: is the engine responsible for skill execution. This class is abstract,
and each mechatronic agent subclass must have its own implementation.

• NegotiatiorEngine: is the engine responsible for the negotiation of skills to be exe-
cuted by other agents. This class, like the ExecutorEngine, is an abstract class and
each mechatronic agent subclass must provide its own implementation. This engine

27

4. IMPLEMENTATION 4.1. Mechatronic Agents

is in charge of the proposal evaluation during negotiation and to do the proposal
when a negotiation request is received.

• MyType: this field contains information about the agent subtype, such as MRA,
CLA, TSA, PA or any new type defined in a customized solution. It is used to
identify the agent type on the system during the deployment.

• YellowPages: is a library that provides the mechanisms to access the YPA ser-
vices. This library contains the mechanisms that facilitate a parametric querying
for agents and skills.

• ExecutorResponder: this field is a class that enables the server logic for the MAC
agents to be able to receive and reply to execution requests. The protocol supported
is the FIPA Request Protocol [51] (appendix 1).

• NegotiatorResponder: is the server side of negotiator. Provides the mechanisms
that enable mechatronic agents to handle negotiation requests. The protocol sup-
ported is the FIPA Contract Net [52] (appendix 2).

• ExecutorInitiator: is the client side of executor. This class enables the MAC agents
to do execution requests. The protocol supported is the FIPA Request [51] (ap-
pendix 1).

• NegotiatorInitiator: is the client side of negotiator, like the ExecutorInitiator it en-
ables the MAC agents to perform negotiation requests. The protocol supported is
the FIPA Contract Net [52] (appendix 2).

• ExecutionScheduler: is the execution manager. This class manages the execution
queue ensuring that the skills are executed by the correct order (the order in which
they were requested).

As stated before, the CLA and MRA agents are extensions of the MAC. The main
difference between them lies in the execution logic. The CLA execution consists in an
logic of composite skills and the CLA orders other agents to execute the skills present
on its composite skill. The MRA only contains atomic skills. Each skill is related with a
hardware function that is executed by a specific controller.

The PA is a special case of a CLA, since it is autonomous from the execution point
of view. When launched, the PA starts by the execution of its process and is not able to
process other execution or negotiation requests. This agent also includes mechanisms to
interact with TSAs, which are supported by the following fields:

• MoveRequest is a field that provides the mechanisms for PAs to order transporta-
tion requests to TSAs for a given position where the PA desires to execute a skill.

28

4. IMPLEMENTATION 4.1. Mechatronic Agents

Figure 4.1: IADE - Mechatronic Agent Class

• MoveCost: is a field that enables the PA to request the transport costs to various
positions. This cost together with the proposals of agents (MRA or CLA) helps the
PA to decide which are the best agents to execute the skills on its process.

One of the most significant data structures present in the IADE library is the Skill
abstract class (Figure 4.2). The skill is a representation of the functionalities that agents
provide to the system.

The main fields that compose the skill abstract class are:

• Name: this field works from a query point of view as the skill id, however it is not
unique since an agent can have more than one skill with the same name but with a
different parametrization.

• Type: identifies the skill type (CSk, ASk or DSk). It is particularly important for
agents to identify the skills on the execution queue and know how do execute it.

• Owner: this field is mostly used on skills that are to be executed by other agents.
Defines the agents (pre-defined or negotiated) that can execute the skill. When the
list is empty the agent will proceed with a negotiation process to allocate the owner.

• Parameters: is a list of parameters. The parameters behave like I/O lines, where
the values of a parameter on one skill can be affected by the values on another skill.

29

4. IMPLEMENTATION 4.1. Mechatronic Agents

The parameter is composed by the name which is the identifier of the parameter, the
nativeType identifies the data type of the parameter, value is the field that keeps the
parameter’s value, lowerBound and upperBound define the lower and upper values
acceptable for this parameter, the type indicates if it is an input or output parameter,
the field unit stores the unit type (i.e. kilogram, meter, litre, etc) and the enumValues
field is a list of enumerated values. The parameter is an important part of the skill
parametrization.

Figure 4.2: IADE - Skill Class

The skill abstract library is extended by three different skill classes. The Atomic Skill
(ASk) represents an indivisible functionality and is directly related with a hardware re-
source, the Composite Skill (CSk) is a skill that groups others skills. The formed group
of skills can be executed in a sequential or parallel logic, and the Decision Skill (DSk) is
a special skill with an expression where the values of process parameters are evaluated.

In order to link the ASk to a hardware resource it contains two additional fields, the
nativeMethodName that stores the method to be invoked when this skill is to be executed
and the nativeClassName that has the class name where the method is implemented. The
CSk includes a list with subSkills and a field executeAs that indicates which is the execution
logic of this skill (sequential or parallel). The DSk is composed by an expression field that
stores the condition to be evaluated, the node0 and node1 are classes that store the skills to
be executed according to result of the evaluated expression, the node0 is executed when
the expression evaluates to true, and node1 is executed otherwise.

The agents require an infrastructure to expose their skills so that other agents can ac-
cess them and decide if the skills available fit their needs. The YPA is designed to fulfil

30

4. IMPLEMENTATION 4.1. Mechatronic Agents

the desired requirements for information management on IADE. It supports non block-
ing queries, which means that, an agent can perform a request without being blocked
while is waiting for the answer. It contains a subscription service where an agent can
subscribe for events related to others agents and receive notifications when the status of
the subscribed agent changes. Each YPA only stores the information relative to its area,
and consequently it is possible to reduce the load on YPA and improve the response time.

The Yellow Pages is divided in two parts (Figure 4.3), the server side (YPA) and the
client side. The YPA is composed by the following fields:

• DBControl: this class is responsible for the management of the skill database. It
provides the infrastructure to perform the requests from the others agents.

• SubscriptionManager: is responsible to manage the lists of subscriptions. When
an agent changes the internal state, this manager sends a message to all subscribers
notifying them about the changes.

• SubscriptionRegister: this field is a behaviour that receives requests to subscribe
or unsubscribe the subscription service.

• MYAreaName: identifies the area for which that YPA is responsible.

• QueryYPResponder: is a behaviour that responds to query requests. It uses the
protocol FIPA Request to do non blocking queries.

The client side is a class that contains the mechanisms to perform the requests and the
subscriptions:

• MyArea: stores the name of the area where the client is located.

• SubscriptionResponder: is a behaviour that receives and processes notifications
about agent changes.

• SubscribedAgents: this field is a list with the agents for which the notification
service has been subscribed.

• YellowPagesAccess: is the behaviour responsible to perform queries to the server
which includes the operations for registering and de-registering the agent.

The communication between the server and the client uses a special structure. The
Service Template defines which service is being required (query or data change operation).
This is stored on the service field. The AgentInfo field is a class which stores the basic
information about a mechatronic agent (name, type and status) and the SkillTemplate field
is similar to Skill class but only with the relevant information that is used to perform
queries to Yellow Pages.

31

4. IMPLEMENTATION 4.1. Mechatronic Agents

Figure 4.3: IADE - Yellow Pages classes

The AgentInfo and SkillTemplate behave like hybrid fields, they can contain input
information to the YPA or output information returned by the YPA.

The TSA (Figure 4.4) is an abstract class and is the core of the Transport System (TS).
The TS is composed by four agents that are extensions of the TSA. They are the Transport
Entity Agent (TEA), Handover Unit Agent (HUA), Product Source Agent (PSoA) and Product
Sink Agent (PSiA). The PSoA and PSiA are particular cases of the HUA, they allow PAs to
enter or leave the system.

The TSA comprises the most fields that are used by all agents in the TS:

• Area: this field stores the area name where the TSA operates.

• Capacity: this field is a constant related with the physical limitations of the trans-
port system. It stores the amount of products that fit in the part of the system that
is controlled by the TSA.

• Queue: is a list with products, sorted by arrival time, that are present on the TSA.

• MoveRequest: this field is a behaviour that receives requests to move products.
This behaviour can receive the request directly from the product or by an interme-
diary (i.e. the case when the product destination is not located on the same TEA
where the PA currently is).

• TablesReceiver: is a behaviour that is responsible to handle the tables with the costs
sent by its TSA neighbours.

32

4. IMPLEMENTATION 4.1. Mechatronic Agents

The TEA comprises a set of locations that define the docking points where the skills
are executed. It is also responsible for computing the traversing costs between the dock-
ing points and inform its neighbours. Like the MRAs, the TEAs have generic mechanisms
that allow them to control the equipment. The TEA by itself cannot handle the points
where the products enter or leave the system. For that purpose, the system contains two
additional agents. From a data model point of view, the additions of a PSiA and a PSoA
imply that the TEA must have a behaviour that receives a request to put a new prod-
uct (NewProductResponder) on the system and another one to take out a product from the
system (ExitProductResponder).

The TEA has the following fields:

• MoveCost: is a behaviour that responds to requests about the transport cost to a
given skill and replies with the cost for all known agents that are able to perform
the execution of that skill. This cost will be fundamental for the requester agent to
decide where the skill will be executed.

• AgentRegisterResponder: this field is a behaviour that handles requests from agents
that register on docking points.

• YellowPagesClient: is the client of Yellow Pages. After receiving a register request,
the TEA needs to know which skills that agent provides, and that information is
stored on the YPA.

Figure 4.4: IADE - Transport System classes

The HUA is responsible for controlling the points where routing decisions are taken,
that means the HUAs are responsible for doing the transitions of products between TEAs.
The HUAs like the TEAs and MRAs are hardware dependent which means that they
have to be able to handle different physical systems. The generic mechanisms that enable
these agents to manipulate any hardware are out of the scope of this work and have been
documented in [53].

33

4. IMPLEMENTATION 4.1. Mechatronic Agents

4.1.2 IADE Main Interactions

In order to ensure the desired requirements such as, self-organization, emergence, recon-
figurability and robustness, the system demands a refined communication protocol. In
this subsection, the main interactions present on IADE are described. The IADE interac-
tions are designed to minimize the amount of information and messages exchanged, and
therefore reduce their impact in the overall performance of the system. This is funda-
mental since agent-based systems tend to be extremely expensive from a communication
point of view.

Figure 4.5 illustrates the message sequence that occurs during the launch of CLAs and
MRAs. The CLA1, when launched, will perform its registration on the YPA and if nec-
essary will subscribe for notifications about specific agents. When the MRA registers the
CLA1 receives the notification message about a change. Finally the CLA2 starts the reg-
istration process and, like the CLA1, subscribes for notifications about MRA. In this case
the MRA is already registered so the notification message is sent upon agent registration.
All these interactions use the FIPA Request Protocol [51] (appendix 1).

Figure 4.5: IADE - Registering and Subscribing for Agents

The following interaction (Figure 4.6) takes place when a CLA or MRA is plugged
into a docking point associated with a TEA. The first step is to send a message to the TEA
informing which docking point will be used. Once the plugging process is done the TEA
requests to the YPA the information about the skills that the plugged agent provides.
Again, the FIPA Request protocol is used.

34

4. IMPLEMENTATION 4.1. Mechatronic Agents

Figure 4.6: Plugging Agents in docking point

As soon as the agents are registered and plugged they are ready to execute their pro-
cess. At this point, the CLA can directly request the execution of a skill or may need to
negotiate.

It is important to recall from the architecture and data model that, in a composite skill
(and the CLAs always manage composite skills), the owner field defines if negotiation
needs to occur. If the owner has a value then the CLA will immediately choose that
agent for the skill execution. If, otherwise, the value is not defined, the CLA will start the
negotiation procedure to allocate an owner to the open skill description. The negotiation
(Figure 4.7) follows the FIPA Contract Net Protocol [52] (appendix 2).

Figure 4.7: IADE - CLA Negotiation

The CLA negotiation process (Figure 4.7) consists in requesting a proposal from all the
agents that can execute the skill and belong to the same area. As a one-to-many process,
the negotiation implies that the CLA has a list of all the agents in the area that have a skill
with the proper parametrization. The agents receiving the call for proposals message

35

4. IMPLEMENTATION 4.1. Mechatronic Agents

will return a proposal based on their operational condition, which in the present case is
related with their workload. The CLA will finally allocate the agent that has issued the
best offer and reject all the other proposals.

Figure 4.8: IADE - PA Negotiation

The PA negotiation process (Figure 4.8) follows the same logic as the one described
for the CLA, but the PA is able to negotiate with all agents present in system. In order to
find agents that can execute a skill, the PA requests to the TEA that is currently associated
with it a list of all the transport costs and, the associated agents that can implement the
desired skill. The following process is the same as for CLA, however, in the evaluation
process the PA takes in consideration the transport cost as well. The PA will therefore
combine both costs and commit to an execution location.

As soon as the negotiation is successful the PA requests the TEA currently associated
with it (Figure 4.9) to transport it to the desired agent. The transport process triggers a
set of interactions between the agents in the transport system to where those agents will
drive and handover the PA until reaches the desired destination. When the transport
process is done the PA receives an Inform with its location. This location corresponds to
the new TEA that is logically and physically responsible for the PA. The PA is now ready
to request the skill execution.

All these interactions use the FIPA Request Protocol, except for the last Inform mes-
sage, that is sent straightforwardly without following any protocol. It is important to
recall that in JADE, the message exchange never fails and that, delivery is ensured there-
fore the last message can simple be a one way message.

The execution interaction illustrated on Figure 4.10 exemplifies a situation where con-
currency occurs. The first agent to perform the request will receive an agree by the re-
quested agent, if there is a second agent performing a request before the execution is

36

4. IMPLEMENTATION 4.1. Mechatronic Agents

Figure 4.9: IADE - PA Moving

done, that agent receives a refuse and should try again or look for another agent to ex-
ecute the skill. This applies to docking points where the agents executing therein can
buffer PAs.

Figure 4.10: IADE Execution

These interactions and implementation enclose the contribution of this thesis for the
IADE stack and, as later detailed, have been tested in the FP7 IDEAS project prototypes.
The implementation described in the next sub-section relates with the simplified version
of the stack and other supporting tools for the emergence and self-organization assess-
ment.

4.1.3 Reduced Stack - Data Model

The work described in this sub-section relates with the more scientific component of this
work.

The main differences between the IADE stack and the reduced stack reside almost
only at PA, TSA and YPA level. The CLA and MRA remain almost without any changes

37

4. IMPLEMENTATION 4.1. Mechatronic Agents

(Figure 4.11). The main changes at CLA and MRA level have to do with the introduction
of the proposed metric, and subsequent adjustments to the negotiation procedure. To
maintain the integration with IADE, two separate classes CLA* and MRA* were created.
The new PA is also derived from the CLA*. Since the transport agents are out of the
scope of this thesis but they are an important part on physical systems, it was necessary
to adapt them in the form of a unique class called Transport System Agent (TSA).

Figure 4.11: Simplified IADE Stack - Mechatronic Agent Class Diagram

Like in IADE, the TSA is responsible for managing several stations (abstracted as
agents) which execute in specific docking points. Each station is associated with an YPA.
Instead of CLAs and MRAs plugging into TSAs, they register themselves on the associ-
ated YPA. The TSA is responsible for seeking skills on the YPA and to make the PA know
about the stations that can provide the skills required by the PA, however, that informa-
tion is only available when requested. The fields that ensure the main operations by the
TSA are:

• Areas: is a list with the areas (in this particular case, a list of YPAs) that are attached
to the TSA.

• PAQueue: is a list where the products are ordered by entrance, the products are
only allowed to do moving requests when they are the at first position of the queue.

• AgentLocations: this field stores the location of products. It only stores the location
of products that are not on the PAQueue list.

38

4. IMPLEMENTATION 4.1. Mechatronic Agents

• GetAreaInfoResponder: this is a behaviour that returns a list of areas that can
handle a set of skills.

• MoveProductResponder: this field is a behaviour that replies to transport requests
from products.

• NewAreaResponder: this field is a behaviour that handles requests for plugging
new areas and their agents.

• UpdateAreaResponder: is a behaviour that is triggered when the agent receives a
notification about any change on agents. The TSA subscribes for all agents on the
YPA.

One of the main differences in the PA is the negotiation procedure. Instead of nego-
tiating the skills one by one, as occurs in IADE, it negotiates sets of skills to optimize a
wider set of executions. That allows the PA to consider the execution of a set of skills on
the same area without negotiating in between.

The negotiation process is performed for a set of skills, and it only takes into consid-
eration the largest subset of skills that can be ensured by at least one area. The areas that
cannot execute the largest subset are considered, but the execution cost of the missing
skills is replaced by the best computed for the other areas.

To better explain the process used to select the optimal area, the example in Figure 4.12
is considered. The system illustrated in Figure 4.12 is composed by three areas, Area A,
Area B and Area C. Each area has three skills, provided by three top level CLAs. The
Table 4.1 summarizes the system. A PA named PA-1 with the following process plan
Pick and Place, Glue, Screw, Test and Tag is assumed. For this example, it is also assumed
a capacity to handle three PAs simultaneous at area level. Two different cases will be
considered:

• Case 1: All areas have at least one free spot.

• Case 2: Area A is running at full capacity.

The first step to select which agents will execute the PA skills, is to gather all the agents
in the system that provide the required skills. However, at each instant, the system does
not consider agents in an area that is running at full capacity. This process is described in
Algorithm 1.

In case 1, all areas will be returned when the method getFreeAreas() is invoked, in case
2, only B and C areas are returned. The algorithm will then proceed with a search through
the returned areas for skills that match with the PA-1’s requested skills. The Algorithm 1
will return all the matching skills.

39

4. IMPLEMENTATION 4.1. Mechatronic Agents

Figure 4.12: System example

In the case 1, all skills in the pairs, CLA and skill, are returned, since all of them have
a positive match with the requested skills. In case 2, the Area A is not considered, but all
the pairs, CLA and skill, in area B and area C are returned.

Table 4.1: Metric Values Example
CLA Skill Metric Value Area

CLA-A1 Pick and Place 0.5 Area A
CLA-A2 Glue 0.8 Area A
CLA-A3 Screw 0.3 Area A
CLA-B1 Pick and Place 0.5 Area B
CLA-B2 Glue 0.6 Area B
CLA-B3 Tag 0.6 Area B
CLA-C1 Pick and Place 0.8 Area C
CLA-C2 Test 0.3 Area C
CLA-C3 Tag 0.5 Area C

The second step to select the optimal area is processed at PA level, the Algorithm 2
describes this step. It consists in negotiating with all the agents returned by the TSA, and
computing which area offers the best metric. Although the PA requested the agents for all
the remaining skills on its process, not all skills will be taken into consideration when the
metric is computed. For instance, in case 1, only the skills Pick and Place, Glue and Screw

40

4. IMPLEMENTATION 4.1. Mechatronic Agents

Data: requiredSkills
Result: areasInfoList
availableAreas← getFreeAreas();
for skillIndex← 0 to requiredSkills.size() do

for i← 0 to availableAreas.size() do
area← availableAreas[i];
areaInfo← newareaInfo(area.name);
areaSkills← area.getSkills;
for j ← 0 to areaSkills.size() do

skill← areaSkills[j];
if skill == requiredSkills[skillIndex] then

agent← area.getAgentForSkill(skill);
areaInfo.add(skill, agent);

end
else

breakfor;
end

end
areasInfoList.add(areaInfo);

end
end

Algorithm 1: Reduced Stack - Areas Selection at TSA level

can be executed in the same area at once, without the need for the PA to switch to another
area, so only those skills will be considered. In case 2, only Pick and Place and Glue skills
can be sequentially executed in one area. The excluded skills, will be postponed to future
negotiations.

After selecting the skills to be negotiated, the negotiation with the agents that own
that skills is initiated. When the PA receives all the responses, it will proceed with the
evaluation of the metric value for each area regarding the negotiated skills. It is important
to note that even the areas that do not have all the negotiated skills will be included in
the evaluation.

When an area is missing skills, to perform a fair comparison between all the areas, the
value used for the missing skills is the best computed value for the missing skill in the
entirely system. In the given example, in the case 1, the Screw is missing in B and C areas,
and the Glue skill is missing in area C. In the case 2, only the Glue skill is missing in area
C.

To simplify, in the given example, it is assumed that the overall metric value for each
area is a simple arithmetic addition of all individual agent metric values. The Table 4.2
and Table 4.3 illustrate the metric values returned on the negotiation process for each
considered case. These metrics are presented on Table 4.1. The x value is related to a
missing skill.

41

4. IMPLEMENTATION 4.1. Mechatronic Agents

Data: requiredSkills
Result: {CLA1...CLAn}
CLAs← TSA.search(RequiredSkills);
sortedCLAs← sortByArea(CLAs);
skills← slctLargeSetOfSkill(sortedCLAs, requiredSkills);
CLAneg ← slctCLAs(sortedCLAs, skills);
areas← TSA.getAllAreas();
for i← 0 to CLAneg.size() do

CLA← CLAneg[i];
startCNET (CLA);

end
result = asynchWaitForNegotiation();
for i← 0 to areas.size() do

mSkills←MissingSkills(areas[i], skills);
if mSkills.size() > 0 then

addMissingSkills(mSkills, results[i]);
end
results[i]← ComputeDm(areas[i]);

end
{CLA1...CLAn} ← EvaluateBestPerArea(results);

Algorithm 2: Reduced Stack - Decision Process at PA level

As it was previously stated, for the missing skill metric values, the best metric value
in the system regarding the missing skill will be used. In case 1, in Area C, the Glue skill
uses the metric value returned by the CLA-B2, which is the best value in the entirely
system for that skill. For the skill Screw, the best value is provided by the CLA-A3, and
that value is considered to compute the overall metric value in area B and C.

In case 2, only area C has a missing skill. The used value in area C for the Glue is the
one provided by the CLA-B2.

Table 4.2: Metric values - Case 1
Area/Skill Pick and Place Glue Screw

Area A 0.5 0.8 0.3
Area B 0.5 0.6 x
Area C 0.8 x x

Table 4.3: Metric values - Case 2
Area/Skill Pick and Place Glue

Area B 0.5 0.6
Area C 0.8 x

The final computed values for the overall metric and for each area are illustrated at
the Table 4.4 and Table 4.5. In case 1, the area that provides the best metric is the area
B, although this area does not have all the skills, the system considers that is best to

42

4. IMPLEMENTATION 4.1. Mechatronic Agents

execute the Pick and Place and Glue in area B, and then negotiate again the Screw skill.
It is important to note that if the transport cost would have been considered, the results
in this case could be different and the three skills could have been executed in the same
area.

In case 2, the area B offers the best metric value, and it will be chosen to execute the
negotiated skills. As soon as the PA-1 executes these skills, the entirely process will be
repeated for the remaining skills. It is important to note, that each successful or unsuc-
cessful negotiation will affect the individual metric value of the agents.

Table 4.4: Total Metric values - Case 1
Area/Skill Pick and Place Glue Screw Total

Area A 0.5 0.8 0.3 1.6
Area B 0.5 0.6 0.3 1.4
Area C 0.8 0.6 0.3 1.7

Table 4.5: Total Metric values - Case 2
Area/Skill Pick and Place Glue Total

Area B 0.5 0.6 1.1
Area C 0.8 0.6 1.4

To handle the negotiation process described above, some modifications (Figure 4.11)
have been introduced in the PA. The following fields are the main fields that compose the
PA:

• GetAreaInfo: is a behaviour that requests a list of areas that can execute a given
subset of skills.

• MoveRequester: this field is a behaviour that performs the transport requests.

• SearchAreas: is a behaviour that is triggered when the agent is the first of the TSA’s
queue. Is responsible for preparing a list with the remaining skills to be executed
and launch the behaviour that performs the communication.

• AreaEvaluation: this field is responsible for the area evaluation.

• State: this field stores the agent’s state.

The operating logic of the PA follows a finite state machine (Figure 4.13). On the
initial state the agent requests the TSA to introduce it on the system. When the introduc-
tion process is done the agent transits to the IDLE state, on this state the agent is on idle
waiting to reach the first position of TSA’s queue. In the following state, Requesting Areas,
the agent will search for areas that can execute the largest sub skill set.

43

4. IMPLEMENTATION 4.1. Mechatronic Agents

Figure 4.13: Simplified IADE Stack - Product Agent state machine

The Negotiating Skills state is triggered after the agent receives the areas information,
and it is on this state that the agent proceeds to negotiate and evaluate the areas in order
to choose the best solution for executing. As soon as the areas are evaluated and chosen,
the agent transits to Moving to Area where the agent requests to the TSA a transport and
waits until that transport is finished.

The PA state transits to the Execute state when the TSA finishes the transport. On this
state the PA is able to perform the execution requests for the agents that are in that area.
Once the execution is done, the PA triggers the Verifying Process state where the agent
executes a verification if the process contains more skills to execute, in this case the PA
will trigger the Moving to Conveyor state where the agent requests the TSA to transport it
back to conveyor. The agent then returns to IDLE. In case the PA process is finished the
agent transits to Moving to System Exit. On this state the PA requests the TSA to transport
it out of the system.

The YPA (Figure 4.14) inherits the model and functionalities present on IADE and
includes a Capacity and NewArea fields, where the Capacity stands for the number of
products that can fit on that particular area and the NewArea is a behaviour to do the
registration on the TSA.

44

4. IMPLEMENTATION 4.1. Mechatronic Agents

Figure 4.14: Simplified IADE Stack - Yellow Pages Agent Class Diagram

4.1.4 Reduced Stack - Interactions

Unlike IADE where the YPA and the TEA have a one to one relation, in the reduced stack,
as stressed before, the YPA stands for an area and encloses the stations and their agents.
The Mechatronic Agents also have the capacity of handling several PAs. In Figure 4.15 is
illustrated the protocol for YPA registration.

The YPA starts by requesting a registration and informing the TSA about its capacity.
It then receives a inform to confirm the registration. The TSA then subscribes for all the
agents that can be part of an area, in order to receive a notification for all the changes.

As soon as the MAC performs the registration, the TSA receives the subscription no-
tice and proceeds to request the information about the new agent that operates on that
station.

Figure 4.15: Simplified IADE Stack - Interactions between YPA and TSA

Each interaction between PAs and TSAs is established through a simple FIPA request
protocol. There are two different interactions that can occur between those agents. The

45

4. IMPLEMENTATION 4.1. Mechatronic Agents

Figure 4.16 represents the particular case where two PAs attempt to request information
about a station.

Figure 4.16: Simplified IADE Stack - Interactions between PA and TSA

A positive response results in an authorization for a PA to do the negotiation and
order a transport into a station. The case illustrated assumes that PA1 is the first agent on
the queue and PA2 is the next. When PA1 requests the information about the areas, the
TSA replies favourably with the information about the stations.

The PA2 attempts to do a request about the area info, but receives a negative response
since it is not the first in the queue. After receiving a negative response the PA2 waits a
certain time before issuing the same request.

The PA1 then starts to negotiate with all agents of interest. As soon as the negotiation
process is complete the agent requests a transport to a certain station and receives an
inform when the process is done. Afterwards the PA2 jumps to the first position on the
queue and is able to do requests and negotiate.

The Figure 4.17 illustrates the interactions between the PAs and MACs at negotiation
time. It is a simple Contract-Net Protocol, where the PA requests the metric values for
several MACs and waits for each response. As soon as it gets all the responses the PA
proceeds with the metric evaluation as previously described.

46

4. IMPLEMENTATION 4.2. A tool to generate networks of skills

Figure 4.17: Simplified IADE Stack - PA Negotiation Interactions

4.2 A tool to generate networks of skills

In the next chapter a set of tests and results are detailed. One of the tests relates with
the performance degradation when skill composition is considered in a loosely way. It is
therefore important to be able to carry out testing in distinct skill trees with different char-
acteristics. In this context, this subsection details a support tool, that was implemented
as part of this work, that creates random skill trees, and enables their execution on the
reduced IADE stack, for the purpose of improving the analyses of the results.

4.2.1 Concept

The Figure 4.18 examples a potential system implemented through the IADE library. In
this example the system is composed by several entities that are able to interact among
them.

The system exemplified can be decomposed into indivisible entities and a mapping
between skills and agents is possible until the MRA level is reached (i.e. tools, the mag-
azine, manipulater, etc). The relation between an indivisible entity and a MRA will be
exposed as an atomic skill (i.e. moveto, grip, dispense, glue, etc). The pallets in Figure
4.18 represent the PAs. The PA’s process, as already detailed, is a composition of the skills
available in the system. In this particular example the composition could be: dispense
glue, pick and place, glue, welding, etc.

47

4. IMPLEMENTATION 4.2. A tool to generate networks of skills

Figure 4.18: System Example

The link between the PAs and the MRAs is mediated through several layers of CLAs
where gradually the lower level skills are composed as higher compositions, as illustrated
on Figure 4.19. In this example a competition between the PAs to grab the CLAs in order
to execute their skills implies that the PAs will inevitably have to wait for the CLAs to
become free and then complete their process.

This very brief example shows that, if not done properly, composition can have an
enormous effect on performance. Fundamental aspects that affect the execution’s effi-
ciency include:

• depth levels: each dept level considered in the skill tree contributes to encapsulate
the complexity of the underlying process. However, it also means that an instance
of a CLA will be deployed to manage that subskill. This obviously entails a new
communication link being established and the associated computing and message
round trip time (RTT) overheads.

• level degree: level degree is a measure of resource sharing in a the layer immedi-
ately below. If one level’s degree is three, this means that each agent in that level
connects on average to three agents on the layer below. If the layer below does not
have the required number of agents to support a one-to-one relation, this implies
that the agents in the layer above are sharing resources and this resources have to
be managed and used to ensure mutual exclusion. In this context, a lot of resource
sharing entails waiting times.

The design of the skills is therefore fundamental in balancing the trade-off between
performance and the ability of the system to reconfigure itself. That is, from a self-
organization point of view, an implicit definition of the desired macrostates.

48

4. IMPLEMENTATION 4.2. A tool to generate networks of skills

Figure 4.19: Decomposition of the Pick and Place Skill

4.2.2 Network Generator Algorithm

The Algorithm 3 generates random networks which follow the structure of skills com-
position exemplified on Figure 4.19. The proposed algorithm takes as inputs the network
depth which means the number of agent layers. The first layer corresponds to PAs and
the last layer are MRAs. The middle layers stands for CLA. The algorithm also receives
as input data the number of nodes and connection degree for each layer (nodesPerDepth
and degreeDepth).

Data: depth, nodesPerDepth[], degreeDepth[]
Result: Network
nodes[][]← initiliazeNodes(depth, nodesPerDepth);
for i← 0 to depth− 1 do

for j ← 0 to nodesPerDepth[i] do
node← nodes[i][j];
while node.degreeSize() < degreeDepth[i] do

connectingNode← randomNode(node, nodes[i+ 1]);
prob = randomProb(nodes[i+ 1], connectionNode);
chance = random();
if prob > chance then

node.addConnection(connectingNode);
end

end
end

end
Algorithm 3: Random Agents Network Generator

After initializing the nodes the next step is to interconnect the layers. In this case it
is only possible to connect two nodes that are in adjacent layers. The node’s connections
are chosen by a random process. The randomNode method returns a random node that
is in the layer below of the node that is creating the outgoing connections. The method

49

4. IMPLEMENTATION 4.2. A tool to generate networks of skills

ensures that the nodes always receive at least one incoming connection by returning first
the nodes without any connection before returning nodes already with incoming connec-
tions.

As soon as all the nodes have at least an incoming connection, and if is still needed
to create more connections between nodes, all the nodes will be iterated until all the
incoming connections are established. However, if a node already has a connection, it
only receives another connection under a certain probability. The probability is higher
if the number of incoming connections of the current node is lower than the average of
incoming connections of the remaining nodes. This ensures different network topologies
but with homogeneous in degrees.

50

5
Results and Validation

This chapter details the tests considered for the validation of the implementation. The
chapter is divided in two main sections that cover two different aspects of the validation
procedure.

The first subsection describes the pre-industrial demonstrators in which the MAS in-
frastructure was deployed and ran. It details the agents and the skills considered in
the different scenarios. This section shows that the architecture can be efficiently imple-
mented and can be applied to different systems without requiring changes to the agent
stack.

The second subsection studies and shows evidence of the emergent properties and
self-organizing ability of the system. This section is mainly supported by simulation and
provides a quantitative view on the architecture / implementation response.

5.1 Industrial Demonstrators

In the IDEAS project the IADE stack was tested under three demonstrators. In this sub-
section the demonstrators are described.

5.1.1 Festo Cell

The Festo Cell (Figure 5.1) is a physical test system, but is not equipped with a real trans-
port system. From an IADE stack point of view it is only possible to test the interactions
between the PAs and CLAs, PAs and MRAs, and finally between CLAs and MRAs.

This system is composed by a feeder and two cylinders (Figure 5.2). The purpose of

51

5. RESULTS AND VALIDATION 5.1. Industrial Demonstrators

Figure 5.1: Festo Cell

this system is the transportation of a product between the feeding position into positions
A or B. In order to perform the transportation cylinder 1 is equipped with a gripper and
an axis that move vertically along the Z dimension. This cylinder grabs the product from
the feeder and waits for it to change position to release the product into the gravity feeder.
The cylinder 2 is similar to cylinder 1. However, it contains one more axis that allows the
horizontal movement along the Y axis. The system also contains two breaks located on
positions A and B. The feeder has two positions, the position 1 (Figure 5.3(a)) where an
operator or other machine should load a product, and the position 2 (Figure 5.3(b)) for
the pick and place operation.

Figure 5.2: Festo Cell Layout

52

5. RESULTS AND VALIDATION 5.1. Industrial Demonstrators

(a) Position 1 (b) Position 2

Figure 5.3: Festo Cell - Feeder positions

The IADE hierarchy for this system comprises several MRAs, such as:

• Feeder: this agent controls the feeder resource and provides two skills. The load
skill, changes the feeder position to position 1. The unload skill, changes the feeder
position to 2.

• Gripper1, Gripper2: are the agents responsible to control the gripper of both cylin-
ders (cylinder 1 and cylinder 2 respectively). They contain the openGripper skill
and the closeGripper skill. As it is possible to deduct, these skills open or close the
corresponding mechanical grippers.

• AxisZ1, AxisZ2: control the axis of the cylinders (cylinder 1 and cylinder 2 respec-
tively), the skills provided by these agent are the moveUp and moveDown.

• AxisY2: like the AxisZ2 this agent is attached to cylinder 2 and it is responsible to
control the Y axis containing the moveLeft and moveRight skills.

• BreakA, BreakB: these agents are respectively for the breaks on position A and B.
They provide break and releaseBreak skills.

The following configuration step consists in the designing of the processes that make
use of the agents skills described. In this architecture, is not desired that the product
agents access directly to lower order skills, unless in cases where a bigger composition is
not possible. Figures 5.4 and 5.5 illustrate a possible skill composition for this particular
system.

As shown in Figure 5.4 the pick and place skill is placed on the higher CLA layer, this
is the skill that should be part of the process of the PAs. This skill is a composition of two
skills on the layer below. The pick and the place skills are built as a composition of skills
located on the MRA layer. The pick and place also uses directly two skills located on MRA
layer, because those skills are not adequate for a skill composition on the layer above.

The composition of skills from the agents that compose the second parf of the system,
also leads to a pick and place skill at the higher layer. The pick and the place skills have a

53

5. RESULTS AND VALIDATION 5.1. Industrial Demonstrators

Figure 5.4: Festo Cell - Gripper 1 - Pick and Place

similar composition to the considered for cylinder 1. In this case, the pick and place also
requires the skills that perform the movement into the desired position (A or B). These
skills are built through a composition between the skills of the AxisY2 and BreakA(B)
agents.

Figure 5.5: Festo Cell - Gripper 2 - Pick and Place

This system has some limitations, at first it does not have an active transport sys-
tem between the two cylinders making it impossible to test the TSA. It also limits the
redundancy tests and the plug and play of new physical resources that allow to test the
self-organization promoted by the IADE stack. Despite the limitations, this system shows
the correctness of the interactions between PAs, CLAs and MRAs.

The Figure 5.6 illustrates the controllers’s scheme for this systems. The PAs and the
CLAs are deployed on a home PC, and the MRAs are deployed on an ARM controller
running Windows CE. The communication is through an ethernet network.

5.1.2 IDEAS Pre-Demonstrator

The IDEAS Pre-Demonstrator schematized in Figure 5.7 consists of a table with two
Automated Guided Vehicles (AGVs) that ensure the transport of products to the several
working stations. A stacker unit is responsible for placing the products onto each AGV
or store them on the pallet repository. The table is also equipped with five slots. On each
slot is possible to plug modules. In the tested system, three slots were occupied by a

54

5. RESULTS AND VALIDATION 5.1. Industrial Demonstrators

Figure 5.6: Festo Cell - Controllers

glueing unit, a testing unit and a pick and place unit.

Figure 5.7: IADE Pre-Demonstrator Layout

Like the Festo Cell this system is divisible into several MRAs. From an IADE stack
point of view, the only change is in the libraries that interface with the hardware. To
ensure the lower level functionalities, the following MRAs were deployed on the system:

• Dispenser: controls the dispensing of glue, it provides only one skill, dispense.

• Tester: is the agent that controls the module that the provides the test skill that
assesses the state of the product.

• PickAndPlaceGripper, StackerGripper: this agent controls the gripper of the pick
and place and stacker units respectively. It provides the openGripper and the closeG-
ripper skills.

55

5. RESULTS AND VALIDATION 5.1. Industrial Demonstrators

• GlueAxis, TesterAxis, PickAndPlaceAxis: these agents controls the axis of the
glue, test and pick and place units. They provide the axisUp and axisDown skills.

• StackerAxis: is the agent that controls the stacker axis. The main difference in
repesct of the axis units is that this agent also allows motion along the horizontal
axis. It provides three skills, axisUp and axisDown for the vertical motion, and move
for the horizontal motion.

The stacker unit provides two top level skills (Figure 5.8), the retrieve and the store
skills. The retrieve skill brings a new pallet into the system. The store skill, stores a finished
pallet in the repository. Both skills are similar from a network point of view as they
connect to the same MRAs, the difference lies on the parameter values passed by the
higher level skill.

The Figure 5.9 illustrates the three possible horizontal positions of the stacker axis.
In the position A (Figure 5.9(a)) the stacker is positioned to grab a pallet from the AGV,
or put the pallet in the AGV. To retrieve a pallet from the repository the position B, il-
lustrated in Figure 5.9(b) is used. Finally, to store a pallet into the repository, the stacker
should be positioned at position C (Figure 5.9(c)).

Figure 5.8: IADE Pre-Demonstrator - Stacker Skills

(a) Position 1 (b) Position 2 (c) Position 3

Figure 5.9: IADE Pre-Demonstrator - Stacker Axis horizontal positions

56

5. RESULTS AND VALIDATION 5.1. Industrial Demonstrators

The glue unit and the test unit provide one high level skill each, the glue skill (Fig-
ure 5.10) and the test skill (Figure 5.11) respectively. They are both similar from a network
point of view, comprising only two layers.

Figure 5.10: IADE Pre-Demonstrator - Glue Skill

Figure 5.11: IADE Pre-Demonstrator - Test Skill

The pick and place skill (Figure 5.12) is provided by the pick and place unit. This skill is
a three layer skill.

Figure 5.12: IADE Pre-Demonstrator - Pick and Place Skill

One of the biggest particularities of this system, is the possibility of plugging or un-
plugging stations on it. With this characteristic is possible to test the IADE stack’s re-
sponse to disturbances, in this case, a layout modification at run time. The IADE stack
proved to be robust enough to handle this disturbance. In this system two tests to prove
this functionality were performed:

• First test: The system started without the station (Test Unit), which will be plugged
at run time. The PAs executed their process until they reached the missing skill and,
after some time, the missing station was plugged.

57

5. RESULTS AND VALIDATION 5.1. Industrial Demonstrators

• Second test: The system was booted with all stations plugged. During run time
one station was unplugged and plugged in a different location.

In both cases the PA detected the absence of the required skill on the system, and
performed some safe routines. In this case, the safe routines consists on move the PA to
a position where it do not interfere with the other PA. This is important, because the PA
will not give any order to the transport system until it has an agent owner for the next
skill on its process plan.

The same controllers used on Festo Cell, where present on this system, and all the
MRAs are deployed on them (Figure 5.13). The TEAs ran on a home PC with Windows
XP, but the agents in this case do not actuate directly on the hardware. For the transport
system, a software PLC is running on the PC, the agents have an interface where they can
communicate with this PLC. The PAs and the CLAs as it is in Festo Cell are deployed on
a home PC running Windows XP. The communication between agents is made through
an ethernet network.

Figure 5.13: IADE Pre-Demonstrator - Controllers

5.1.3 Masmec Demonstrator

The most important demonstrator in the IDEAS project is illustrated in Figure 5.14. As
opposed to the IDEAS Pre-Demonstrator, the transport system in this demonstrator is
composed by a conveyor system with no limitations regarding the number of products
on the line. An Radio-Frequency Identification (RFID) system is also present in order
to support the actions performed by the transport system. This characteristic allowed a
wider study about the capabilities of the IADE stack.

The initial setup of this system comprises the following stations: Manual Load Station,
two Testing Stations, Labelling Station, Manual Unload Station and Automatic Unload Station.

58

5. RESULTS AND VALIDATION 5.1. Industrial Demonstrators

Figure 5.14: Masmec Demonstrator Layout

The Manual Load Station is in charge of introducing new pallets into the system. This
station is operated manually. At the time the operator introduces a new pallet, it should
inform the system about this new product. This functionality is available to the operator
on a tool specifically designed to support the operation of loading products. Although
this characteristic was not predicted in the original design of the IADE stack, the possi-
bility to introduce it with a very little effort proves how easy is to re-configure a system
based on the IADE stack.

This system offers two alternatives to unload a pallet. The Manual Unload Station, is
similar to the Manual Load Station. An operator is present to take off the products from
the system. The second alternative is the Automatic Unload Station, which is a mechanical
gripper with an axis that allows vertical and horizontal motion. In this system the PA
should always choose the Automatic Unload Station rather than the Manual Unload Station,
if the conditions are similar on both stations.

The Screwer Station is a composition of a pick and place unit and a screwer unit, it is on
this station thtat the assembly operations are performed. The Testing Station is in charge
of testing if the product was correctly assembled. In case of a manufacturing defect that
result is written on the RFID tag of that product. Depending if the product is correctly
assembled or not, the Labelling Station will stamp the product with an Ok or NotOk label.

In comparison with the Festo Cell and the IADE Pre-Demonstrator, this demonstrator
is composed by a wider diversity of skills compositions. The Manual Unload Skill compo-
sition is illustrated in Figure 5.15. In present case, both skills, at MRA level, are supplied

59

5. RESULTS AND VALIDATION 5.1. Industrial Demonstrators

by the same agent. The WriteProductInformation skill registers the pallet on the RFID sys-
tem. The WaitStartingProduct skill works as a signal for the PA to know if it can proceed
with its process plan or not and is dependent of the operator. When the operator finishes
loading the pallet he should press a button. The MRA intercepts the signal and returns it
to the PA agent so that it knows that the execution was successful.

Figure 5.15: Masmec Demonstrator - Manual Load Skill

The Screwer Station, as it previously referred is a composition of two units. The pick
and place unit, is a composition of a robotic arm and a gripper, and they are controlled by
two different MRAs. The top level skill of this station is the Screw skill (Figure 5.16). The
assemblyScrew is an ASk provided by the screwer unit, this unit is only abstracted by one
MRA. The robotic arm provides the moveTo and the gripper provides the openGripper and
closeGripper skills. The composition of these three skills (moveTo, openGripper, closeGripper)
constitute the pick and place skill.

Figure 5.16: Masmec Demonstrator - Screw Skill

The Testing Station is constituted by a vertical cylinder and a test unit. The Test skill
(Figure 5.17) is fairly simple from a network point of view. The cylinderUp and the cylin-
derDown skills are provided by the same MRA agent, while the test and the writeTestResult
skills are provide by another MRA. The writeTestResult writes in the RFID tag the test re-
sult.

60

5. RESULTS AND VALIDATION 5.1. Industrial Demonstrators

Figure 5.17: Masmec Demonstrator - Test Skill

The Labelling Unit is constituted by a vertical cylinder, a horizontal axis, and a vac-
uum gripper. The skill supplied by this unit is illustrated in Figure 5.18. From a network
point of view it is the most complex skill in this system. This station comprises the fol-
lowing skills at MRA level: readProductInfo, moveH, cylinderUp, cylinderDown, suckerOn
and suckerOff.

The skill GetTag is particularly interesting because its process plan includes a decision
skill to support the selection of the label will be grabbed. The layout on Figure 5.20
illustrates the Labelling unit. Since there are two possible positions to grab a label, the
parameter on the moveH skill will be dependent on the result of the decision skill. The
Figure 5.19 depicts a possible process plan for this skill. The first step is to retrieve the
test information from the RFID system, which is possible to be obtained through the
readProductInfo skill, then the test result is evaluated on the decision skill. If the test result
is Ok the moveH is invoked with a parameter Py=Ok, which corresponds to the position
for the Ok label. In case of a NotOk result, the moveH is invoked with a parameter
Py=NotOk.

Figure 5.18: Masmec Demonstrator - Label Skill

Figure 5.19: Masmec Demonstrator - Label Skill

61

5. RESULTS AND VALIDATION 5.1. Industrial Demonstrators

Figure 5.20: Masmec Demonstrator - Labelling Station - Label Unit

The Manual Unload Station and the Automatic Unload Station offer the same skill, how-
ever, they have different compositions. In Figure 5.21 is depicted the network structure of
the Unload skill provided by the Manual Unload Station. Figure 5.22 illustrates the Unload
skill of the Automatic Unload Station.

The Unload skill offered by the Manual Unload Station is fairly simple. The readPro-
ductInfo skill reads the information about the test performed at the Testing Station and
the DisplayProductInformation skill displays the result to the operator. The operator, de-
pending if the product has a manufacturing defect or not, will store the pallet in different
repositories. Finally, the WaitPalletUnload skill is dependent on a signal given by the op-
erator which should occurs as soon as the operator removes the pallet.

Figure 5.21: Masmec Demonstrator - Manual Unload Skill

The Unload skill, provided by the Automatic Unload Station (Figure 5.22), is composed
by a pick skill and a place skill. Similarly to the GetTag skill of the Labelling Station, the
process of this skill has a decision skill since, depending on the result of the test at Testing
Station, the destination repository changes, splitting the pallets with defect from the good
ones. The Unload skill shows that it is possible to have the same top level skill provided
by different stations with different internal compositions.

The pluggability and reconfigurability were tested on this system. One of test cases
included the unplug of the Labelling Station and its re-plug it on the free slot available. An-
other concept, the granularity was also tested with success on this demonstrator, stations
like the Manual Unload Station and the Automatic Unload Station have different internal
processes with different granularity levels, although, from a PA agent point of view, the
provided skill is exactly the same.

The controllers schematic of this system is illustrated on Figure 5.23. Similarly to the

62

5. RESULTS AND VALIDATION 5.2. Simulations

Figure 5.22: Masmec Demonstrator - Automatic Unload Skill

Festo Cell and the IADE Pre-Demonstrator, the PAs and CLAs are deployed on a home
PC running Windows XP. The main difference, on the controllers of this system is the
introduction of a new controller for some MRAs and the transport system. All the agents
of the transport system run on a controller with an embedded version of Linux. Apart
from the transport system agents, the agents from the Screwer Station, Testing Station and
Automatic Unload Station are deployed on these controllers. The remaining MRAs are
deployed on the same controllers used on the other demonstrators, which are running
Windows CE. Regarding the communication channel, similarly to the systems previously
described, is made through an ethernet network.

Figure 5.23: Masmec Demonstrator - Controllers

5.2 Simulations

From a simulation point of view, two tests were considered. In the first test, the impact of
concurrency on the performance of the system was assessed. In this context, several com-
positions of skills where simulated for a virtual system and executed. The performance
of the system was evaluated and analysed.

In the second test the proposed metric was put to the test. The purpose is to eval-
uate emergence and the self-organizing response of the system. It has also the purpose

63

5. RESULTS AND VALIDATION 5.2. Simulations

of showing that self-organizing systems are not necessarily unpredictable but their be-
haviour must be clarified and understood.

5.2.1 Skill Composition Tests

The central focus of these tests is to analyse the time required to execute processes on the
top level entities (products) in concurrent situations.

5.2.1.1 Theoretical Performance Limits

The network structure of the decomposition of a top level skill into several layers enables
the estimation of the execution time of an individual skill as well as for an entire process.

For a composed skill decomposed in n layers with an average number of branches per
node per layer (bln) and a number of nodes per layer (Nn), the number of skills executed
is given by the following equation:

SkillExecuntilN = 1 +
i∑

n=0

Nn ∗ bln (5.1)

Disregarding the communication delay, the total time to execute one skill would be
proportional to the number of skills activated (NSkillResources

) (Equation 5.2) which is
given by the difference between the number of skills executed in the layer n and layer
n− 1. The average execution time of skills (ExectT imer) is give in Equation 5.3.

NSkillResources
= SkillExecuntilN − SkillExecuntil(N−1) (5.2)

ExectT ime = NSkillResources
∗ ExecT imer (5.3)

However, there is some processing time between the higher level skill and the skill
at the resource level that cannot be despised. In the CLA level, actions like marshaling ,
un-marshaling and orchestration have to be computed and should be taken into consid-
eration. The estimation for the global execution time is detailed in Equation 5.4.

In Equation 5.4, the interactions (I) is the number of the connections between the
skills. The multiplier stands for the fact that it is a bidirectional link. The travel time
between agents (TTB) is the estimated time since the message is sent until it reaches
the destination (this time includes the marshaling and un-marshaling operations), and
finally the processing execution time on MRAs (ExecT imeR) and CLAs (ExecT imecla) is
multiplied by the number of the corresponding agents.

ExecT ime = 2 ∗ I ∗ TTB +NSkillResources ∗ ExecT imeR +Nclas ∗ ExecT imecla (5.4)

64

5. RESULTS AND VALIDATION 5.2. Simulations

5.2.1.2 Testing Conditions

For testing the system was ran 103 times. In each run a new network has been generated,
which leads to different topologies regarding the connections between the agents. The
variables that characterize the network are however maintained. The tests run under a
network composed by five layers. The first layer belongs to PAs, the second, third and
fourth layers are for CLAs and the bottom layer is composed by MRAs.

The first layer is populated with five agents where each one will connect to five CLAs.
The second layer, has five CLAs and each one connects to two CLAs on the layer below,
which is populated with ten CLAs. Each of the ten CLAs of the third layer will individ-
ually connect to two of the ten CLAs that compose the fourth layer. The CLAs on fourth
layers connects to four agents on MRA layer.

In these trials, the negotiation is not allowed, so the initial structure of the network
does not suffer any changes during the execution. The PAs start the execution of their
process plan at the same time to promote competition. When the agents (PAs and CLAs)
receive a refuse message, which happens when the requested agent is busy, the agents
enter an idle state for two seconds before trying the execution. The MRAs simulate the
hardware and each MRA take approximately 500 milliseconds to execute a skill.

In each trial, the agents run on the same computer, and there are no significant delays
on communication due to network performance. In these circumstances, the TTB is
negligible since it is less than 1 millisecond.

For each skill requested by a PA a total of 23 skills are executed (16 MRA skills and 7
CLA’s), which leads to the following optimal (no concurrency) execution time:

ExecT ime = 0 + 16 ∗ 500ms+ 7 ∗ 2ms = 8014ms (5.5)

5.2.1.3 Results

The Table 5.1 contains the data produced by the execution of all the PAs. Since the
system runs under a simulated environment, it is not expected the appearance of failure
messages. The number of agree message is exactly the same as the number of skills that
are on the processes. The number of received refuses is a consequence of the competition
in the system. The delay introduced on the agents between a refuse message, and a new
request by a PA, has a high influence on this number. A high number of refuses could
also be an indicator for a bad dimensioned system regarding the number of PAs that are
competing for the skills.

The Tables 5.2 and 5.3 detail the data recorded by the CLAs. The layers 3 and 4
correspond to agents with one input connection (in degree 1) and the first layer stands
for agents with five input connections (in degree 5).

65

5. RESULTS AND VALIDATION 5.2. Simulations

Table 5.1: Messages Processed at PA level
Number PA Total Messages Messages/Agent Standard deviation

Requests Sent 515 9418 18.28 8.79
Refuses received 515 6843 13.28 8.79
Agrees Received 515 2575 5 0

Table 5.2: Requests Received by CLAs
In Degree Number CLA Total Messages Messages/Agent Standard deviation

all 3605 24868 6.9 6.53
1 3090 15450 5 0
5 515 9418 18.29 12.13

As it is expected the results on Tables 5.2 and 5.3 are a consequence of the conditions
at the PA layer. As it is possible to observe, on Table 5.2 the amount of requests received
by the CLAs on layer 3 and 4 is precisely 5, which matches the number of skills present
on PA’s processes, and it is due the fact of the degree (in degree = 1) of these agents. The
agents on the first layer are directly connected PAs so the amount of messages received
by each exceeds the number of skills because they handle competition on this layer.

Table 5.3: Refuses Sent by CLAs
In Degree Number CLA Total Messages Messages/Agent Standard deviation

all 3605 6843 1.9 6.53
1 0 0 0 0
5 515 6843 13.29 12.13

On Table 5.3, it is possible to observe that the competition is almost filtered by the
agents on first layer and does not happen between the layers 1 and 2, and between the
layers 2 and 3.

The Table 5.4 shows that the concurrency is also present at the interactions between
CLAs and MRAs.

The out degree 4 on Table 5.4 corresponds to CLAs on layer 4, and they are directly
connected to MRAs. On this level the concurrency between MRAs leads to CLAs receiv-
ing refuses, but since the average degree (the in average degree is 4) is less than in the
second layer and the competition is almost filtered between the first and second layers,
the number of refuses per agent is low.

The Table 5.5 confirms that the MRAs with a higher degree are the most solicited
agents at this layer.

This results give a clear idea on how the concurrency is handled by skill networks
that follow a semi-hierarchical structure. It was observed that the competition almost
only happens on the first and last layers. It is necessary to note that is possible to change

66

5. RESULTS AND VALIDATION 5.2. Simulations

Table 5.4: Refuses Received by CLAs
Out Degree Number CLA Total Messages Messages/Agent Standard deviation

all 3605 1101 0.31 0.65
2 1545 0 0 0
4 2060 1101 0.53 0.79

Table 5.5: Execution Requests Received by MRAs
In Degree Number MRA Total Messages Messages/Agent Standard deviation

all 4120 42301 10.26 4.40
1 1175 5875 5 0
2 1943 19802 10.19 0.44
3 848 13223 15.59 0.81
4 136 2902 21.33 1.35
5 17 467 27.47 1.81
6 1 32 32 0

the network structure in order to affect where the competition is handled, since this is
related with the in degree of the agents.

Table 5.6: Execution Times for CLAs
CLA1 CLA2 CLA3 CLA4 CLA5

Average 17880 ms 18640 ms 18420 ms 17620 ms 17820 ms
Standard deviation 11110 ms 11460 ms 10880 ms 9580 ms 10210 ms

Worst 83925 ms 81979 ms 81791 ms 61012 ms 66690 ms
Best 8062 ms 8092 ms 8157 ms 8118 ms 8064 ms

The executing times of CLAs on the second layer are detailed on Table 5.6. These
times are measured by the PAs, and correspond to the time that the PAs need to wait for
the execution of the requested CLA. It is possible to observe that at least one of the CLAs
was able to perform their execution on a time very close to the optimal theoretical limit
described in the previous sub-section.

The worst case reached approximately 84 seconds. Considering a scenario where the
competition only occurs at this first layer, the worst case for a PA is when the agent is
the last of the PAs present on the system to pick the CLA. In this case it has to wait for
the others to perform their execution. For this hypothetical situation, the theoretical time
to execute that skill is 8014 ∗ n,where n is the number of PAs including itself. In this
particular case n = 5, and the worst theoretical case time is 40070ms. However, the worst
measured case took more 43855ms than the theoretical, which leads to the conclusion that
the competition on MRA layer had an important contribution for the execution delay.

67

5. RESULTS AND VALIDATION 5.2. Simulations

5.2.2 Assessing Emergence and Self-Organizing tests

For the second test the purpose is to identify two emergent effects, the first is the distri-
bution of the agents workload through the system, and the second emergent effect is an
increased performance on the system.

Those two effects come as a consequence of the metric defined in section 3.2. The
purpose of the metric is to ensure that the PAs choose the best option when there are
multiple options available. It is important to note that the PAs do not have an entire
vision regarding the system, and their view is based on the negotiation process with the
CLAs.

5.2.2.1 Testing Conditions

The Figure 5.24 illustrates the system (S) designed for this test. This system comprises
two generic areas and three different tasks, namely "A", "B" and "C". The system also
contains a conveyor system that is in charge of transporting the pallets. The transport
system also allows a product to choose between leaving the system or returning to a
station.

Figure 5.24: Simulated System

The areas are not equal. The Area 1 provides the three tasks, and the Atation 2 only
provides "A" and "B". In this simulation, there are three different products, P1, P2 and P3,
each one with different processes. P1 executes "A","B" and "C". P2 executes "A" and "B".
Finally P3 only executes "A". For this simulation the amount of products in the system
is fixed and its value is 20 products of each type. There is a total of 10 MRAs in S and 5
CLAs (each one managing 2 MRAs).

In order to measure the emergent effects, the following tests were performed:

68

5. RESULTS AND VALIDATION 5.2. Simulations

• Negotiation with increased processing capacity (T1) - the products have the free-
dom to choose the stations where to perform the tasks and each area has a capacity
for three simultaneous products.

• Negotiation with decreased processing capacity (T2) - the products have the free-
dom to choose the stations where to perform the tasks and each area has a capacity
to handle only one product.

• No Negotiation and increased process capacity (T3) - the products are pre allocated
to the stations and should execute their skills there. The negotiation is disabled. In
this case each area has a capacity for three simultaneous products.

• No Negotiation and decreased process capacity (T4) - the products are pre allocated
to the stations and should execute their skills there. The negotiation is disabled. In
this case each area handles only one product.

The tests T3 and T4 have the purpose of setting the base values for the assessment of
the self-organization metric. On these simulations each test was performed 100 times.

5.2.2.2 T1 Results

The results of the work balance emergent are depicted in Figure 5.25. This figure clearly
details that the system takes some time to stabilize the value of the metric which denotes
the convergence of S to a steady state. In this first moment the behaviour of S is clear.
Since all the PAs, regardless of their type, start by executing the skill A there is an increase
in the demand of B and C as the value of A drops after being executed. This effect
is more evident on Area 1 since the largest skill set that can be allocated to this area is
{A,B,C} which is directly implemented by the CLAs therein. As Area 1 becomes more
heavily solicited the PAs requiring {A,B,C}will tend to choose Area 2 and postpone the
execution of C. S then reaches a steady state with the values of the metric for each CLA
tending to increase.

This shows two distinct self-organization periods. The first one, until Time = 1×105,
that shows the start of the system and its effort to improve its organization in respect
to the location where PAs are processed and the second one, from Time = 1 × 105 to
Time = 2.7 × 105 , that shows only minor adjustments as the systems stabilizes into an
organizational state that meets its design purposes.

It is noteworthy the fact that the values of the metric for the second station are slightly
higher. This is a clear indication that the station is being more heavily requested probably
due to the fact that it implements a reduced number of skills and therefore is faster in
processing PAs. The only exception to this trend is the CLA implementing C in Area 1.
This can be explained with the start up of the system where P1s have opted for Area 2
and need to loop around the system before executing C in Area 1. This behaviour clearly

69

5. RESULTS AND VALIDATION 5.2. Simulations

Figure 5.25: Average Metric Evolution and Product Number Evolution for T1

justifies the final section of the graphic that depicts an increase in demand for C in Area
1. This observation is consistent with the number of PAs per type (Figure 5.25) as it can
be verified that PAs of type P2 and P1 leave the system earlier causing the cost for the
execution of A and B to drop as C rises.

This third organizational period, after Time = 2.7× 105, shows the system struggling
has the PAs systemically require the same skill. The system is processing at its maximum
speed to meet all the product requests in station one as station two cannot offer C.

The analysis of the Table 5.7 complements the behaviour observed in the Figure 5.25.
In fact, Table 5.7 shows that the self-organization metric was successful in distributing
the load between both areas. Area 2 has processed roughly 9 P1’s. This means that in
balancing the system at a specific time it became convenient to re-route P1s (this was
attained by improving the organization of the system). This behaviour is also an indica-
tion that the negotiation strategy that allocates the largest subset of skills performed by a
station tends to privilege areas, with acceptable performance, that implement that subset
since most of the P1s have been processed by Area 1. This can be clarified by evaluating
the contribution of P1s, P2s and P3s to the overall metric of the CLAs implementing the
skill A in areas 1 and 2 (Figures 5.26 and 5.27 respectively). Both figures clearly depict a
preference of P1 for Area 1 in the initial phase where P2 and P3 were mainly processed at
Area 2.

These results show how the proposed metric can influence the organization of the sys-
tem without any centralized point of control and using mainly negotiation. One can spec-
ulate out of these results that the runtime introduction of a new CLA which would bring
redundancy could lead the system yet to a new organizational level. In the specific case
of this system the simulation shows that it would benefit from the addition of another

70

5. RESULTS AND VALIDATION 5.2. Simulations

Table 5.7: Average PAs requests processed by CLAs (T1)
Station 1 Station 2

PA/CLA A B C A B
avg stdev avg sdev avg sdev avg sdev avg sdev

P1 10.69 1.78 10.69 1.78 20 0 9.31 1.78 9.31 1.78
P2 8.94 1.78 8.94 1.78 0 0 11.06 1.78 11.06 1.78
P3 9.13 2.36 0 0 0 0 10.87 2.36 0 0

CLA supporting the execution of C to decrease the demand peak after Time = 2.7× 105.

Figure 5.26: Contribution of PA types for the CLA implementing A in Area 1 (T1)

Figure 5.27: Contribution of PA types for the CLA implementing A in Area 2 (T1)

Another important result that uncovers the inner dynamics driving the system is the

71

5. RESULTS AND VALIDATION 5.2. Simulations

evolution of the average of the metric computed by each CLA and seen by the PAs when
negotiation takes place (Figures 5.28 and 5.29). Each point on the graphic denotes de
average value on time. This reinforces the importance of simulation in studying emergent
phenomena since in a system with a deterministic dynamic the metric would evolve in
steps and would remain constant for longer periods of time. However, Figure 5.28 shows
that the value seen by the PA and used in negotiation is always lower than the value
computed by the CLA. This difference can be explained since upon negotiation the PA
is positively contributing to the cost increase in the metric computed by the CLA. In
addition the metrics seen from the PA retain the latest value considered for negotiation
until the PA leaves the system. The metrics computed from the CLA point of view are
much more dynamic in this respect as they react to the number of PA’s on system and
their types as explained in section 3.2.2.

Figure 5.28: Comparison of the metric values computed by the CLAs and seen by PAs
over time in both areas for A (T1)

5.2.2.3 T2 Results

The second test restricts the capacity of each station to one PA. Although the micro-
dynamic of the system produces similar results (illustrated on appendix 3) when com-
pared to the results already detailed it is worth analysing the impact of this change in the
variation of the metric Figure 5.30. It is important to mention that the main difference
induced by this change is in the variation of the metric. In this context, since only one
execution at a time is allowed, given that a finished execution affects the value of PPi de-
creasing it and successful negotiations increase the value of P (CLAx | PPi) the evolution
of the metric smooths with the increase in station capacity.

It is also interesting to compare the number of average requests. The T2 conditions

72

5. RESULTS AND VALIDATION 5.2. Simulations

Figure 5.29: Comparison of the metric values computed by the CLAs and seen by PAs
over time in both areas for B (T1)

have not significantly impacted the overall behaviour of the system (Table 5.8) when com-
pared to T1 (Table 5.7). The main difference lies in the number of P2 requests processed
by each station. In comparison to T1 more P2 requests have been processed in Area 2
than in the T2. However, as previously noted for the variation of the metric, there is also
an increase in the standard deviation of P2 which confirms the less stable behaviour of S
as the capacity per station decreases.

Figure 5.30: Average Metric Evolution and Product Number Evolution for T2

73

5. RESULTS AND VALIDATION 5.2. Simulations

Table 5.8: Average PAs requests processed by CLAs (T2)
Station 1 Station 2

P/CLA A B C A B
avg stdev avg sdev avg sdev avg sdev avg sdev

P1 10.86 1.98 10.86 1.98 20 0 9.14 1.98 9.14 1.98
P2 7.17 2.09 7.17 2.09 0 0 12.83 2.09 12.83 2.09
P3 8.09 2.29 0 0 0 0 11.91 2.29 0 0

5.2.2.4 T3 and T4 Results

As control tests the same systems under similar conditions were ran without negotiation.
In this context all the PAs instantiated as P1 will be solely processed by Area 1, the P2

and P3 will be handled in Area 2. This scenario corresponds to a system with fixed job
allocation.

Figure 5.31: Comparasion of the Speed of the System with negotiation and without ne-
gotiation

The analysis will focus on the control tests with increased capacity since T4 produced
similar results. As can be seen by Figure 5.31 negotiation stimulates the system’s per-
formance and yet maintains the organization of the system. It is interesting to observe
that for the worst testing conditions (tests 2 and 4), where each area can only process one
product at a time, the impact of negotiation is more noticeable than in the tests where
each area can process more products (T1 and T3). However, even if the gain in time is
not substantially in T1 and T3 the workload distribution is confirmed, Table 5.7 shows
that the requests to each area are much more even in test 1 than in test 3.More importantly
these emergents have been attained by the system through continuous adjustments to its
organizational state.

74

6
Conclusion and Future Work

6.1 Conclusions

This thesis meets several purposes. Firstly it attempts to investigate the execution per-
formance of a production system considering the impact of the network structure. The
obtained results intend to point out that a proper design of the system can be crucial to
achieve a considerable level of performance. The results also illustrate that the competi-
tion in self-organized systems has a significant contribution to the performance.

In this context, the performance of the network of agents was discussed in respect to
execution times and compared with the maximum theoretical values. In the calculation
of the theoretical values, the message transport cost has been neglected since the simula-
tion ran on a single machine. The execution time at MRA level has been arbitrarily chosen
and the processing time at the CLA has been measured and includes all the orchestration
and message processing operations per skill execution. The results are necessarily influ-
enced by the performance of the pc, the implementation details and the quality of the
agent’s code. However the important aspect to retain is that they reflect consistently the
operation in a network of agents that constitutes a system.

The results also attempted to provide some quantitative meaning to the concept of
Emergence in the context of a mechatronic system. The analysis is restricted to a special
case of Emergence denoted as Weak Emergence which by definition assumes that the
whole can be derived by simulation from the causal interactions between its parts and
that, as in the Strong Emergence concept the whole exerts influence on the parts. The
results detail all these effects. In particular, it was shown that a coherent metric can be
used to promote different stages of organization that contribute to the emergence of some

75

6. CONCLUSION AND FUTURE WORK 6.2. Future Work and Scientific Contributions

measurable aspects of the whole.

In the present case, it has been shown that a metric capturing the degree of usage of
the components can improve the system performance and its workload distribution if
the main decision-makers (the product agents in the present case) attempt to minimize
the value of the metric when making a decision. In this context all the results reflect
the bottom up approach of a system based on an architecture designed to promote self-
organization and emergence. The system is driven by a set of autonomous components
and its micro-dynamic is responsible along with the external conditions for the inner
self-organizing processes that result in the emergent qualities under study.

The work hereby detailed also reinforces the importance of simulation in assessing
new control systems and methodologies. As modern control approaches and produc-
tion paradigms increasingly evolve in the direction of system design for emergence it is
fundamental to understand and model the principles that may guide these systems. It
is worth recalling that the advantages frequently attributed to modern production ap-
proaches, namely plug-ability, reconfigurability, robustness, sustainability; are only true
if the underlying system, its micro-dynamic and context are understood and tamed. Un-
like most computational systems, that were the origin of resource distribution, mecha-
tronic systems have specific constraints that influence its behaviour.

This work stands therefore as a first step toward the development of a methodology
to assess systems that are designed for emergence. Given that most of the technological
barriers that haunted modern production approaches for years have been removed by
recent advances in IT it is the author belief that the analysis and modelling of the inner
dynamics of these system is the necessary next step if they are to become a reality other
than elusive prototypes.

6.2 Future Work and Scientific Contributions

One of the main challenges to be tackled as future work is the assessment of the system
dynamics when the effects of the transport system are not neglected as well as the study
of the system behaviour when is affected by faults and layout re-designs.

As the technology that can support such systems is starting to consolidate it becomes
increasingly important to explore their organizational aspects. Approaching this prob-
lem from a network point of view is extremely important since the domain of complex
networks, has a wide set of theoretical results that can improve the behaviour of self-
organizing mechatronic systems.

Furthermore these systems can be envisioned from multiple perspectives. In the
present context the approach was to explore the networks of skills yet, it would be equally

76

6. CONCLUSION AND FUTURE WORK

important to explore the network of devices themselves as well as the network of con-
trol interactions. Finally, the work documented in this thesis has produced the following
scientific publications.

• Self-organization in automation - the IDEAS pre-demonstrator [54]

• IADE – IDEAS Agent Development Environment: Lessons Learned and Research
Directions [55]

• A Structural Analysis of Emerging Production Systems [56]

77

6. CONCLUSION AND FUTURE WORK

78

Bibliography

[1] Y.Y. Yusuf, M. Sarhadi, and A. Gunasekaran. Agile manufacturing:: The drivers,
concepts and attributes. International Journal of Production Economics, 62(1):33–43,
1999.

[2] Hendrik Van Brussel, Jo Wyns, Paul Valckenaers, Luc Bongaerts, and Patrick Peeters.
Reference architecture for holonic manufacturing systems: Prosa. Computers in In-
dustry, 37(3):255 – 274, 1998.

[3] A. Koestler. The ghost in the machine. 1968.

[4] K. Ueda. A concept for bionic manufacturing systems based on dna-type informa-
tion. In Proceedings of the IFIP TC5/WG5. 3 Eight International PROLAMAT Confer-
ence on Human Aspects in Computer Integrated Manufacturing, pages 853–863. North-
Holland Publishing Co., 1992.

[5] N. Okino. Bionic manufacturing systems. In Conference on Flexible Manufacturing Sys-
tems, Past, Present-Future (Ed: J. Peklenik), Ljubljana: Faculty of Mechanical Engineering,
1993.

[6] Y. Koren, G. De Gersem, U. Heisel, H. Van Brussel, F. Jovane, T. Moriwaki,
G. Pritschow, and G. Ulsoy. Reconfigurable manufacturing systems. Manufactur-
ing Technologies for Machines in the Future, pages 627–665, 2003.

[7] M. Onori. Evolvable assembly systems-a new paradigm? In 33rd Int. Symposium on
Robotics (ISR), pages 617–621, 2002.

[8] L. Ribeiro, J. Barata, G. Cândido, and M. Onori. Evolvable production systems: an
integrated view on recent developments. In Proceedings of the 6th CIRP-Sponsored In-
ternational Conference on Digital Enterprise Technology, pages 841–854. Springer, 2010.

[9] Danny Weyns, Alexander Helleboogh, and Tom Holvoet. How to get multi-agent
systems accepted in industry? International Journal of Agent-Oriented Software Engi-
neering, 3(4):383–390, 2009.

79

BIBLIOGRAPHY

[10] Vladimir Marik and Jiri Laznsky. Industrial applications of agent technologies. Con-
trol Engineering Practice, 15(11):1364 – 1380, 2007.

[11] IDEAS 2013. Instantly deployable evolvable assembly sys. From http://www.ideas-
project.eu/, 2013.

[12] PT Bolwijn and T. Kumpe. Manufacturing in the 1990s -productivity, flexibility and
innovation. Long Range Planning, 23(4):44–57, 1990.

[13] Andrea Krasa Sethi and Suresh Pal Sethi. Flexibility in manufacturing: A
survey. International Journal of Flexible Manufacturing Systems, 2:289–328, 1990.
10.1007/BF00186471.

[14] R.N. Nagel and R. Dove. 21st century manufacturing enterprise strategy: An Industry-
Led View, volume 1. Lehigh University Press, 1991.

[15] SL Goldman, RN Nagel, and K. Preiss. Agile competitors and virtual organizations:
strategies for enriching the customer. 1995.

[16] H. Van Brussel, P.H. Hannover Germany, and V. Brussel. Holonic manufacturing
systems, the vision matching the problem. In First European Conference on Holonic
Manufacturing Systems. Citeseer, 1994.

[17] S. Bussmann and D.C. McFarlane. Rationales for holonic manufacturing control.
In Proc. of Second Int. Workshop on Intelligent Manufacturing Systems, pages 177–184,
1999.

[18] Radu Babiceanu and F. Chen. Development and applications of holonic manu-
facturing systems: A survey. Journal of Intelligent Manufacturing, 17:111–131, 2006.
10.1007/s10845-005-5516-y.

[19] K. Ueda, I. Hatono, N. Fujii, and J. Vaario. Reinforcement learning approaches to bi-
ological manufacturing systems. CIRP Annals-Manufacturing Technology, 49(1):343–
346, 2000.

[20] M.G. Mehrabi, A.G. Ulsoy, and Y. Koren. Reconfigurable manufacturing systems
and their enabling technologies. International Journal of Manufacturing Technology and
Management, 1(1):114–131, 2000.

[21] Hoda A ElMaraghy. Flexible and reconfigurable manufacturing systems paradigms.
International journal of flexible manufacturing systems, 17(4):261–276, 2005.

[22] Luis Ribeiro and Jose Barata. Self-organizing multiagent mechatronic systems in
perspective. In Proceeding of the 11th IEEE International Conference on Industrial Infor-
matics (INDIN 2013), 2013.

80

BIBLIOGRAPHY

[23] D. Semere, J. Barata, and M. Onori. Evolvable assembly systems: Developments and
advances. In Assembly and Manufacturing, 2007. ISAM’07. IEEE International Sympo-
sium on, pages 282–287. IEEE, 2007.

[24] M. Onori, D. Semere, and J. Barata. Evolvable assembly systems: From evaluation
to application. Innovation in Manufacturing Networks, pages 205–214, 2008.

[25] L.D.F. Ribeiro. Diagnosis in evolvable production systems. 2012.

[26] Luis Ribeiro and Jose Barata. Re-thinking diagnosis for future automation systems:
An analysis of current diagnostic practices and their applicability in emerging it
based production paradigms. Computers in Industry, 62(7):639 – 659, 2011.

[27] J. Barata and M. Onori. Evolvable assembly and exploiting emergent behaviour. In
Industrial Electronics, 2006 IEEE International Symposium on, volume 4, pages 3353–
3360, 2006.

[28] Mauro Onori, Jose Barata, and Regina Frei. Evolvable assembly systems basic prin-
ciples. In Information Technology For Balanced Manufacturing Systems, volume 220
of IFIP International Federation for Information Processing, pages 317–328. Springer
Boston, 2006.

[29] Michael Wooldridge, Nicholas R Jennings, et al. Intelligent agents: Theory and prac-
tice. Knowledge engineering review, 10(2):115–152, 1995.

[30] Michael Wooldridge and Nicholas R Jennings. Agent theories, architectures, and
languages: a survey. In Intelligent agents, pages 1–39. Springer, 1995.

[31] Michael Wooldridge. An introduction to multiagent systems. Wiley. com, 2008.

[32] J.A.B. de Oliveira. Coalition based approach for shop floor agility–a multiagent approach.
PhD thesis, Universidade Nova de Lisboa, 2003.

[33] Luis M Camarinha-Matos and Walter Vieira. Intelligent mobile agents in elderly
care. Robotics and Autonomous Systems, 27(1):59–75, 1999.

[34] Luís Ribeiro, José Barata, Bruno Ferreira, and Jorge Pires. An architecture for a fault
tolerant highly reconfigurable shop floor. In Industrial Informatics, 2008. INDIN 2008.
6th IEEE International Conference on, pages 1194–1199. IEEE, 2008.

[35] José Barata, Luís Camarinha-Matos, and Gonçalo Cândido. A multiagent-based con-
trol system applied to an educational shop floor. Robotics and Computer-Integrated
Manufacturing, 24(5):597–605, 2008.

[36] Luis Ribeiro, Jose Barata, and Armando Colombo. Supporting agile supply chains
using a service-oriented shop floor. Engineering Applications of Artificial Intelligence,
22(6):950–960, 2009.

81

BIBLIOGRAPHY

[37] J. Goldstein. Emergence as a construct: History and issues. Emergence, 1(1):49–72,
1999.

[38] J. Holland. Holland, Emergence: from chaos to order. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, 1998.

[39] Mark A. Bedau. Weak emergence. Nous, 31:375–399, 1997.

[40] E. Bonabeau and J.L. Dessalles. Detection and emergence. Intellectica, 25(2):85–94,
1997.

[41] M.A. Bedau. Is weak emergence just in the mind? Minds and Machines, 18(4):443–
459, 2008.

[42] Peter A. Corning. The re-emergence of emergence: A venerable concept in search of
a theory. Complexity, 7(6):18–30, 2002.

[43] Tom De Wolf and Tom Holvoet. Emergence versus self-organisation: Different con-
cepts but promising when combined. In Sven Brueckner, Giovanna Di Marzo Seru-
gendo, Anthony Karageorgos, and Radhika Nagpal, editors, Engineering Self-
Organising Systems, volume 3464 of Lecture Notes in Computer Science, pages 77–91.
Springer Berlin, Heidelberg, 2005.

[44] C. Castelfranchi. The theory of social functions: challenges for computational social
science and multi-agent learning. Cognitive Systems Research, 2(1):5–38, 2001.

[45] H. Haken. Information and self-organization: A macroscopic approach to complex systems,
volume 40. Springer Verlag, 2006.

[46] P. Bak, C. Tang, K. Wiesenfeld, et al. Self-organized criticality. Physical review A,
38(1):364–374, 1988.

[47] IDEAS 2013. Modular production system boosts in-house assembly. From
http://ec.europa.eu/research/industrial_technologies/success-stories_en.html, 2013.

[48] L. Ribeiro, A Rocha, and J. Barata. A product handling techincal architecture for
multiagent-based mechatronic systems. 2012.

[49] Andre Rocha. An agent based architecture for material handling systems. 2013.

[50] Weiming Shen. Distributed manufacturing scheduling using intelligent agents. In-
telligent Systems, IEEE, 17(1):88–94, jan/feb 2002.

[51] FIPA. Fipa request interaction protocol specification, 2002.

[52] FIPA. Fipa contract net interaction protocol specification, 2002.

82

BIBLIOGRAPHY

[53] Luis Ribeiro and José Barata. Deployment of multiagent mechatronic systems. In In-
dustrial Applications of Holonic and Multi-Agent Systems, pages 71–82. Springer Berlin
Heidelberg, 2013.

[54] L. Ribeiro, J. Barata, M. Onori, C. Hanisch, J. Hoos, and R. Rosa. Self-organization
in automation - the ideas pre-demonstrator. In IECON 2011 - 37th Annual Conference
on IEEE Industrial Electronics Society, pages 2752 –2757, nov. 2011.

[55] Luis Ribeiro, Rogerio Rosa, Andre Cavalcante, and Jose Barata. Iade - ideas agent
development environment: Lessons learned and research directions. In Proceedings
of the 4th CIRP Conference on Assembly Technologies and Systems, 2012.

[56] L. Ribeiro, R. Rosa, and J. Barata. A structural analysis of emerging production
systems. In Industrial Informatics (INDIN), 2012 10th IEEE International Conference on,
pages 223 –228, july 2012.

83

BIBLIOGRAPHY

84

7
Appendix 1 - FIPA Request

The FIPA Request, is a protocol that allows an agent to request to other agent to perform
an action. The Figure 7.1 illustrates the protocol. In this protocol, the Initiator agent starts
to do a request to the Participant agent. The Participant can accept that request or refuse
it. In case of a refusal, it sends a refuse message and the conversation ends. If it agrees it
sends an agree message. The agree or refuse message are optional so the Participant can
choose to bypass those messages and send an inform or failure.

Figure 7.1: Protocol FIPA Request

85

7. APPENDIX 1 - FIPA REQUEST

In case of an agree, the Participant proceeds with the processing of the requested task.
As soon as the task is processed, the Participant sends an inform message in case of suc-
cess, or a failure message in case of a fault.

86

8
Appendix 2 - FIPA Contract Net

Protocol

The Contract Net protocol (Figure 8.1), allows an agent to start a negotiation with several
other agents. This protocol begins with the Initiator agent sending a message requesting
a proposal to m Participant agents. Each one of the Participants will respond with a refusal
(e.g. if the Participant cannot handle the requested task), or with a proposal.

Figure 8.1: Protocol Contract Net

87

8. APPENDIX 2 - FIPA CONTRACT NET PROTOCOL

As soon as the Initiator receives all the responses (proposals and refusals) it will pro-
ceed with an evaluation of all the proposals. In case of rejected proposals, the Initiator
will send a refuse-proposal to the corresponding Participants, and the interaction between
those agents ends here.

To all the Participants that have been evaluated with success, the Initiator will send
an accept-proposal. After receiving an accept-proposal, the Participants will internally
process the requested action by the Initiator. As soon as the action is done, the Partici-
pants should respond with an inform message in case of success, otherwise with a failure
message.

88

9
Appendix 3 - T2 Results

t

Figure 9.1: Contribution of PA types for the CLA implementing A in Area 1 (T2)

89

9. APPENDIX 3 - T2 RESULTS

Figure 9.2: Contribution of PA types for the CLA implementing A in Area 2 (T2)

Figure 9.3: Comparison of the metric values computed by the CLAs and seen by PAs over
time in both areas for A (T2)

90

9. APPENDIX 3 - T2 RESULTS

Figure 9.4: Comparison of the metric values computed by the CLAs and seen by PAs over
time in both areas for B (T2)

91

	Introduction
	Background
	Research Problem and Contributions
	Thesis Outline

	State-Of-The-Art
	Manufacturing Paradigms
	Evolvable Production Systems
	Multi-Agent systems

	On Emergence, Self-Organization and Mechatronic Systems
	Emergence
	Self-Organization
	Challenges in a mechatronic context

	Integrated discussion

	Architecture
	IADE
	Skill Definition
	Area Definition
	IADE Agent Architecture
	Agent interactions functional view
	Simplified IADE stack and self-organization assessment

	Emergence and Self-Organization in IADE
	Contextualizing Emergence and Self-Organization
	A metric to promote and assess self-organization and emergence

	Implementation
	Mechatronic Agents
	IADE Data Model
	IADE Main Interactions
	Reduced Stack - Data Model
	Reduced Stack - Interactions

	A tool to generate networks of skills
	Concept
	Network Generator Algorithm

	Results and Validation
	Industrial Demonstrators
	Festo Cell
	IDEAS Pre-Demonstrator
	Masmec Demonstrator

	Simulations
	Skill Composition Tests
	Assessing Emergence and Self-Organizing tests

	Conclusion and Future Work
	Conclusions
	Future Work and Scientific Contributions

	Appendix 1 - FIPA Request
	Appendix 2 - FIPA Contract Net Protocol
	Appendix 3 - T2 Results

