15,641 research outputs found

    IEEE 1451 HTTP server implementation for marine data

    Get PDF
    Accessing real time data from a marine sensor network (MSN) can be a challenge. Open access to real time data using interoperable internet technologies is one of the major demands. The IEEE 1451 Smart Transducer Interface Standards [1,2,7] specify a standard API (application processor interface) process to discover and access sensor data by using an HTTP connection. This paper presents an HTTP Server for Marine Data coming from OBSEA[3,5] cabled Observatory at the Western Mediterranean Sea. The implementation was using LabVIEW Web Services.Peer ReviewedPostprint (published version

    Virtual Sensor Test Instrumentation

    Get PDF
    Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of functions. The sensor data is processed in a distributed fashion across the network, providing a large pool of resources in real time to meet stringent latency requirements

    Plug-and-Play Environmental Monitoring Spacecraft Subsystem

    Get PDF
    A Space Environment Monitor (SEM) subsystem architecture has been developed and demonstrated that can benefit future spacecraft by providing (1) real-time knowledge of the spacecraft state in terms of exposure to the environment; (2) critical, instantaneous information for anomaly resolution; and (3) invaluable environmental data for designing future missions. The SEM architecture consists of a network of plug-and- play (PnP) Sensor Interface Units (SIUs), each servicing one or more environmental sensors. The SEM architecture is influenced by the IEEE Smart Transducer Interface Bus standard (IEEE Std 1451) for its PnP functionality. A network of PnP Spacecraft SIUs is enabling technology for gathering continuous real-time information critical to validating spacecraft health in harsh space environments. The demonstrated system that provided a proof-of-concept of the SEM architecture consisted of three SIUs for measurement of total ionizing dose (TID) and single event upset (SEU) radiation effects, electromagnetic interference (EMI), and deep dielectric charging through use of a prototype Internal Electro-Static Discharge Monitor (IESDM). Each SIU consists of two stacked 2X2 in. (approximately 5X5 cm) circuit boards: a Bus Interface Unit (BIU) board that provides data conversion, processing and connection to the SEM power-and-data bus, and a Sensor Interface Electronics (SIE) board that provides sensor interface needs and data path connection to the BIU

    Teaching old sensors New tricks: archetypes of intelligence

    No full text
    In this paper a generic intelligent sensor software architecture is described which builds upon the basic requirements of related industry standards (IEEE 1451 and SEVA BS- 7986). It incorporates specific functionalities such as real-time fault detection, drift compensation, adaptation to environmental changes and autonomous reconfiguration. The modular based structure of the intelligent sensor architecture provides enhanced flexibility in regard to the choice of specific algorithmic realizations. In this context, the particular aspects of fault detection and drift estimation are discussed. A mixed indicative/corrective fault detection approach is proposed while it is demonstrated that reversible/irreversible state dependent drift can be estimated using generic algorithms such as the EKF or on-line density estimators. Finally, a parsimonious density estimator is presented and validated through simulated and real data for use in an operating regime dependent fault detection framework

    Advanced sensors technology survey

    Get PDF
    This project assesses the state-of-the-art in advanced or 'smart' sensors technology for NASA Life Sciences research applications with an emphasis on those sensors with potential applications on the space station freedom (SSF). The objectives are: (1) to conduct literature reviews on relevant advanced sensor technology; (2) to interview various scientists and engineers in industry, academia, and government who are knowledgeable on this topic; (3) to provide viewpoints and opinions regarding the potential applications of this technology on the SSF; and (4) to provide summary charts of relevant technologies and centers where these technologies are being developed

    Smart Embedded Passive Acoustic Devices for Real-Time Hydroacoustic Surveys

    Get PDF
    This paper describes cost-efficient, innovative and interoperable ocean passive acoustics sensors systems, developed within the European FP7 project NeXOS (Next generation Low-Cost Multifunctional Web Enabled Ocean Sensor Systems Empowering Marine, Maritime and Fisheries Management) These passive acoustic sensors consist of two low power, innovative digital hydrophone systems with embedded processing of acoustic data, A1 and A2, enabling real-time measurement of the underwater soundscape. An important part of the effort is focused on achieving greater dynamic range and effortless integration on autonomous platforms, such as gliders and profilers. A1 is a small standalone, compact, low power, low consumption digital hydrophone with embedded pre-processing of acoustic data, suitable for mobile platforms with limited autonomy and communication capability. A2 consists of four A1 digital hydrophones with Ethernet interface and one master unit for data processing, enabling real-time measurement of underwater noise and soundscape sources. In this work the real-time acoustic processing algorithms implemented for A1 and A2 are described, including computational load evaluations of the algorithms. The results obtained from the real time test done with the A2 assembly at OBSEA observatory collected during the verification phase of the project are presented.Postprint (author's final draft
    corecore