1,628 research outputs found

    A Finite Element Splitting Extrapolation for Second Order Hyperbolic Equations

    Get PDF
    Splitting extrapolation is an efficient technique for solving large scale scientific and engineering problems in parallel. This article discusses a finite element splitting extrapolation for second order hyperbolic equations with time-dependent coefficients. This method possesses a higher degree of parallelism, less computational complexity, and more flexibility than Richardson extrapolation while achieving the same accuracy. By means of domain decomposition and isoparametric mapping, some grid parameters are chosen according to the problem. The multiparameter asymptotic expansion of the d-quadratic finite element error is also established. The splitting extrapolation formulas are developed from this expansion. An approximation with higher accuracy on a globally fine grid can be computed by solving a set of smaller discrete subproblems on different coarser grids in parallel. Some a posteriori error estimates are also provided. Numerical examples show that this method is efficient for solving discontinuous problems and nonlinear hyperbolic equations

    Relativistic MHD and black hole excision: Formulation and initial tests

    Full text link
    A new algorithm for solving the general relativistic MHD equations is described in this paper. We design our scheme to incorporate black hole excision with smooth boundaries, and to simplify solving the combined Einstein and MHD equations with AMR. The fluid equations are solved using a finite difference Convex ENO method. Excision is implemented using overlapping grids. Elliptic and hyperbolic divergence cleaning techniques allow for maximum flexibility in choosing coordinate systems, and we compare both methods for a standard problem. Numerical results of standard test problems are presented in two-dimensional flat space using excision, overlapping grids, and elliptic and hyperbolic divergence cleaning.Comment: 22 pages, 8 figure

    Bilinear Immersed Finite Elements for Interface Problems

    Get PDF
    In this dissertation we discuss bilinear immersed finite elements (IFE) for solving interface problems. The related research works can be categorized into three aspects: (1) the construction of the bilinear immersed finite element spaces; (2) numerical methods based on these IFE spaces for solving interface problems; and (3) the corresponding error analysis. All of these together form a solid foundation for the bilinear IFEs. The research on immersed finite elements is motivated by many real world applications, in which a simulation domain is often formed by several materials separated from each other by curves or surfaces while a mesh independent of interface instead of a body-fitting mesh is preferred. The bilinear IFE spaces are nonconforming finite element spaces and the mesh can be independent of interface. The error estimates for the interpolation of a Sobolev function in a bilinear IFE space indicate that this space has the usual approximation capability expected from bilinear polynomials, which is O(h2) in L2 norm and O(h) in H1 norm. Then the immersed spaces are applied in Galerkin, finite volume element (FVE) and discontinuous Galerkin (DG) methods for solving interface problems. Numerical examples show that these methods based on the bilinear IFE spaces have the same optimal convergence rates as those based on the standard bilinear finite element for solutions with certain smoothness. For the symmetric selective immersed discontinuous Galerkin method based on bilinear IFE, we have established its optimal convergence rate. For the Galerkin method based on bilinear IFE, we have also established its convergence. One of the important advantages of the discontinuous Galerkin method is its flexibility for both p and h mesh refinement. Because IFEs can use a mesh independent of interface, such as a structured mesh, the combination of a DG method and IFEs allows a flexible adaptive mesh independent of interface to be used for solving interface problems. That is, a mesh independent of interface can be refined wherever needed, such as around the interface and the singular source. We also develop an efficient selective immersed discontinuous Galerkin method. It uses the sophisticated discontinuous Galerkin formulation only around the locations needed, but uses the simpler Galerkin formulation everywhere else. This selective formulation leads to an algebraic system with far less unknowns than the immersed DG method without scarifying the accuracy; hence it is far more efficient than the conventional discontinuous Galerkin formulations

    Lectures on Computational Numerical Analysis of Partial Differential Equations

    Get PDF
    From Chapter 1: The purpose of these lectures is to present a set of straightforward numerical methods with applicability to essentially any problem associated with a partial differential equation (PDE) or system of PDEs independent of type, spatial dimension or form of nonlinearity.https://uknowledge.uky.edu/me_textbooks/1002/thumbnail.jp

    Cumulative reports and publications through 31 December 1983

    Get PDF
    All reports for the calendar years 1975 through December 1983 are listed by author. Since ICASE reports are intended to be preprints of articles for journals and conference proceedings, the published reference is included when available. Thirteen older journal and conference proceedings references are included as well as five additional reports by ICASE personnel. Major categories of research covered include: (1) numerical methods, with particular emphasis on the development and analysis of basic algorithms; (2) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, structural analysis, and chemistry; and (3) computer systems and software, especially vector and parallel computers, microcomputers, and data management
    corecore