164,880 research outputs found

    Parallel Algorithms for Isolated and Connected Word Recognition

    Get PDF
    For years researchers have worked toward finding a way to allow people to talk to machines in the same manner a person communicates to another person. This verbal man to machine interface, called speech recognition, can be grouped into three types: isolated word recognition, connected word recognition, and continuous speech recognition. Isolated word recognizers recognize single words with distinctive pauses before and after them. Continuous speech recognizers recognize speech spoken as one person speaks to another, continuously without pauses. Connected word recognition is an extension of isolated word recognition which recognizes groups of words spoken continuously. A group of words must have distinctive pauses before and after it, and the number of words in a group is limited to some small value (typically less than six). If these types of recognition systems are to be successful in the real world, they must be speaker independent and support a large vocabulary. They also must be able to recognize the speech input accurately and in real time. Currently there is no system which can meet all of these criteria because a vast amount of computations are needed. This report examines the use of parallel processing to reduce the computation time for speech recognition. Two different types of parallel architectures are considered here, the Single Instruction stream - Multiple Data (S1MD) machine and the VLSI processor array. The SIMD machine is chosen for its flexibility, which makes it a good candidate for testing new speech recognition algorithms. The VLSI processor array is selected as being good for a dedicated recognition system because of its simple processors and fixed interconnections. This report involves designing SIMD systems and VLSI processor arrays for both isolated and connected word recognition systems. These architectures are evaluated and contrasted in terms of the number of processors needed, the interprocessor connections required, and the “power” each processor needs to achieve real time recognition. The results show that an SIMD machine using 100 processors, each with an MC68000 processor, can recognize isolated words in real time using a 20 KHz sampling rate and a 1,000 word vocabulary

    Design and implementation of a user-oriented speech recognition interface: the synergy of technology and human factors

    Get PDF
    The design and implementation of a user-oriented speech recognition interface are described. The interface enables the use of speech recognition in so-called interactive voice response systems which can be accessed via a telephone connection. In the design of the interface a synergy of technology and human factors is achieved. This synergy is very important for making speech interfaces a natural and acceptable form of human-machine interaction. Important concepts such as interfaces, human factors and speech recognition are discussed. Additionally, an indication is given as to how the synergy of human factors and technology can be realised by a sketch of the interface's implementation. An explanation is also provided of how the interface might be integrated in different applications fruitfully

    How Can Speech Recognisers Help Applied Research in the Civil Engineering, Transport and Related Industries

    Get PDF
    BACKGROUND Speech recognition technology is rapidly advancing to the point here it can be usefully applied in a wide range of mtexts. For applications within the SERC Environment Committee's area of interest -civil engineering; construction; building; transport; water resources there are a number of kinds of recording situation in which one needs to keep one's eyes on the situation being studied; or in which the recording conditions (eg moving around with instruments) are unfavourable. The limitations of conventional pen and paper recording for these situations are obvious; and the limitations of hand-held data capture devices are also becoming apparent. Speech is therefore an easier medium to use; and a tape recorder a convenient means of recording the observations. For well defined recording tasks; speech recognisers might be a helpful way of transcribing the record. This seminar was convened to enable those who are potentially interested in such an application of information technology to hear of the latest developnents and assessments of the suitability of the technology

    SERKET: An Architecture for Connecting Stochastic Models to Realize a Large-Scale Cognitive Model

    Full text link
    To realize human-like robot intelligence, a large-scale cognitive architecture is required for robots to understand the environment through a variety of sensors with which they are equipped. In this paper, we propose a novel framework named Serket that enables the construction of a large-scale generative model and its inference easily by connecting sub-modules to allow the robots to acquire various capabilities through interaction with their environments and others. We consider that large-scale cognitive models can be constructed by connecting smaller fundamental models hierarchically while maintaining their programmatic independence. Moreover, connected modules are dependent on each other, and parameters are required to be optimized as a whole. Conventionally, the equations for parameter estimation have to be derived and implemented depending on the models. However, it becomes harder to derive and implement those of a larger scale model. To solve these problems, in this paper, we propose a method for parameter estimation by communicating the minimal parameters between various modules while maintaining their programmatic independence. Therefore, Serket makes it easy to construct large-scale models and estimate their parameters via the connection of modules. Experimental results demonstrated that the model can be constructed by connecting modules, the parameters can be optimized as a whole, and they are comparable with the original models that we have proposed
    • 

    corecore