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" ABSTRACT

- Mark Alan Yoder, Ph.D., Purdue University.- December 1081 Parallel /\lgo- :

- rithms for Isolated and Connected Word Recognltron Major Prol'cssor Leah S

HJ amleson ‘

bj‘ For years researchers have worked toward ﬁndlng a way to allow people to _
talk to machlnes 1n the same manner a person communlcates to another per-'
| son Th1s verbal man to machlne interface, called speech recognltlon can. be.’
ngrouped lnto three types 1solated word recognltlon connected word recogm— §
tion, and contlnuous speech recogmtlon Isolated word recogm'fers recogmze_
- ‘s1ngle words- w1th drstrnctlve pauses before and after them ‘Continuous speech'

: recogmzers recogmze speech spoken as one person speaks to ‘another, “continu- ’
ously w1thout pauses. Connected word recogmt:on is an extensron of 1solated
word recognltlon ‘which recogmzes g'roups of words spoken contlnuously ‘A
group- -of words must have drstrnctlve pauses before and after 1t and the:
number of words ina group is hmlted to 'some small value (typlcally less than

six).

If these types of recognition systems are to be successful in the real world o

o they must be speaker lndependent and support a large vocabulary They also

must be able to recogmze the speech lnput accurately and in ‘real tlme
Currently there is no system whrch can meet all of these crlterla because a vast
- amount of computatlons are need-ed. __ . |

3 Thi'srepiort ‘ekamines the use of ‘pa‘_raIIveI processino to reducethe‘ computa-
tion- time forvspeech recognition.’ ‘Two d'iﬁerent types of parallel architectures

are considered here, the Single Instruction stream - Multiple Data (SIMD)
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‘machine and the VLSI processor array. The SIMD machine is chosen for- its

o ﬂexrbrhty, whrch makes it a good candldate for testmg new speech recognition

_algorrthms The VLSI processor array is selected as belng good for a dedicated

K recogmtron system because of its srmple processors and ﬁxed mterconnectlons

‘ Thls report mvolves desrgnlng SIMD svstems and VLSI processor arrays |
: 'for both 1solated and connected word recognltlon systems These architectures
. are evaluated and contrasted m terms of the number of processors needed the
lnterproce‘ssor connectrons requlred, and the v power ' each processor needs to

'_ achleve real trme recognltlon
The results show that an. SIMD machme ‘using 100 processors each with
an’ M(_768000. processor, can recognlze_lsolated words in real time using a 20

| . KHz :sampling' rate and a 1,000 word 'vo-ca,bular-y.



1. INTRODUCTION

~Voice input to machines is one of the most nat’ural'forms of r‘nans-m'achine -
'communlcatlon For years researchers have worked toward ﬁndlng a ‘way to
allow a person to talk to machines in the same manner a person communicates
to another’ person. . This verbal man to ‘machine interface, called speech recog-
nition, can be grouped into two major types, contlnuous speech recognltlon and

o isolated word recognition. The followrng describes what each type entalls

, ‘The computer s role in . contmuous speech recogmtzon 1s analogous to the
role of a secretary taking dictation. in that" the machlne would take the vorce
1nput and transeribe it into the words that were spoken. .

“In isolated word recogmtzon there is a dlstlnctlve pause of about 100 ms),

between each utterance Isolated word recognition is the more likely of the two ‘

types of recognition to be found on an assembly line taking orders" to do a

. given task. Here srngle words or short phrases are given to control a machme

‘The dlstmctlve pauses before and after the utterance make it easier to ﬁnd
where the utterance begins and ends. ‘Continuous speech may not have pauses :
“around each utterance which makes finding word boundaries w1th1n contmuous '
' 'speech more drfﬁcult than isolated - speech This is one’ ‘reason ‘why 1solated '

‘word recognltlon is easier to perform than continuous speech recogmtlon

- A third type of recogmtron is connected word recogmt:on Connected word
| recognition is :an -extension -of 1solated word recogmtlon whrch allows recogm-
tion of groups of words spoken continuously. A group of words must have dis-
tinctive pauses before and after it, and the number of words in a group is lim- "
‘ited to some :sma'll value (typically .’l_es's than six). The presence of distinctive
' jpa‘u;ses:_,, and _-the'.knowledge that there is only a small ‘number of words in a
fgroup makes connected speech recognition easier to perform than cbntinuous
'speech recognltlon Since connected word recogmtlon is an extensjon of iso-

?lated word recognltlon 1t is not con31dered a major type.



For any of the types of speech recogmtlon “to be successful in general

o usage, they must meet the following criteria.

1) Speal.er Independence Many recognition systems are trained to a small
group of speakers. A system is called speaker 1ndependent if it can
recognize speakers not in the training group To do this it must be able

" to handle different dlalects,. accents, speaking rates, and pltches.

' 2) Large Vocabu»l'ary.’" The typical adult may know 100,000 words or more .

[LeL18l] Although an isolated word recognizer c0ntrolling -a machine

‘may only need to recognize a few command ‘words, the use of contmuous'

e speech recognition to take dictation requires a large vocabulary

- 3) Accurate Recognition: Recognltlon aceuracy is a common standard used to

compare different recognltlon systems. Certainly the machine should

_ 1 accurately recognlze all utterances in order to. av01d having the user

repeat WOrds or worse yet have the machme mlsrecogmze words.

. 4) Real- sze Response The response time is the time needed to decide whatv |

| - was spoken Real-tlme response 1s needed so that the speaker does not

- grow tired ‘Wwaiting - for an answer. In a. contlnuous speech recognltlon

’ system rea.l time response is needed So. processmg does not accumulate.

ThlS has not - been achleved by a system which also met the other three
characterlstlcs : '

' An example of a contlnuous speech recognltlon system in. the hterature is
-:the HWIM [BBN76]. system. that is able to understand continuous speech from

_three cooperative. male. general Amerlcan speakers It can recognize a 1,097

~ word vocabulary with a 56% error rate whlle operatlng at 1 ,350 times real time -
5 onaPDP-lO L e : ' :
" The level bu1ld1ng dynamlc tlme warplng algorlthm by Myers and Rablner;
: [MyRaSlb] is an’ example of a connected word recognltlon system. The system
" can recognize: up ‘to ﬁve words in a connected utterance. -‘The basic operation

- performed by the system is a form of dynamxc ‘programming, known as a time

warp, to- compare’ the mput utterance to stored templates representing the
vocabulary. ‘(Time warping will be dlscussed in detall in later chapters. For
" now, it is the complexity of the time warp process which is of interest.) With a
'vocabulary size of 10, words it requ1res 50 basw time warps On a Data Gen- -
eral Eclipse 5230 _.m_mlcompnter,;. Myers et al. [MPRSO] states that a basic time



warp r.equ-iires'289 to 454 milliseconds.* This means a vocabulary of 10 words
requires 14.45 to 22.7 seconds, while a vocabulary of 1, ,000 words needs 24 to 38
minutes . Just for the dynamic tlme warpmg Therefore the ‘level building
method cannot run in real time with a large vocabulary on a conventlonal pro-

¢essor.

Nexther of the above two systems is, speaker’ mdependent nor could ‘they
meet the real time response constraint. - Currently these two constralnts are
‘met by usmg a simpler type of recogmtron i.e., isolated word recognition. Sys-
tems are commercxally available which - recognlze isolated words in real time
[Dodd8l). Generally these systems are speaker dependent with small (10-20
: word) vocabularies. Even though the real-time response is possible, 1t is at the

expense of a small vocabulary and small speaker populatlon

ThlS report investigates the use. of parallel processing to reduce the compu-"
~ tation time for speech’ recognition. ~This will be done by wrltmg parallel pro-
-cesstng algorzthms for the component algorithms- that make up the speech
recogmtlon systems. o ' ’ ' e
, Two (_hﬁ’erent parallel architectures” are 'cOnsiaered h“ere the 3iugle
¢ nstructiou stream "'multip’le data”stream (SIMD) [Flyu66] computer and the
VLSI processor array. In the SIMD machme many processors execute the same
| instructions- s1multaneously on dliferent data The instructions. are broadecast
from} a control unit, and the processors are able to pass data between each
other by a general interconnection network. The VLSI processor array, on the
other hand, is a multidimensional plpehne consrstmg of many cells, with the
- output(s) of one cell connected to the input(s) of other cell(s). Although most
cells will be executlng the same instructions on different data, it is possible
sorne ‘special”’ cells will be executing different instructions. The VLSI proces-
 sor array can be thought of as a super systolic array [Kung&’O] Both arrays are.
the same in that they both use a fixed interconnection network They differ
since each cell of the systolic array performs simple instructions like addition
- and multlpllcatlon and has a small fixed number of regrsters (as few as three),
- while each cell of the VLSI processor ‘array can be  as powerful as a

* The figures Myers gives are 57. 8 t0 90.8 ms for combmatoncs with lm al distance meas- k
_ ures requiring 80% of the computatlou tlme



microprocessor with xts own addressable memory. The systems examined are
, 'programmable parallel systems. Since speech recogmtlon is a research area in
‘ ‘.whlch new methods are likely to be proposed special purpose hardware devices
(e.g. [LMMB84]) are not con51dered '

- Chapter 2 presents the SIMD machine model and a- language for writing
- 'parallel algorlthms for it. Chapter 3 discusses the VLSI processor array model

~and gives examples of how it works. Chapter 4 describes the word template
matching approach to isolated word recognition. Chapter 5 is a survey of
parallel ‘speech proces‘sing"algorithms.' Chapterﬁ describes the new parallel
speech proces;sing'algorithms"developed for this report. Chapter 7 presents the

results of simulating the SIMD algorithms and Chapter 8 presents the VLSI
| Processor array simulation results. Chapter 9 discusses connected word recog-
nition and presents a parallel algorithm for a level building dyhamic time warp.
And finally, Chapter 10 gives the conclusions of this research effort.



2. ‘THE SIMD MACHINE MODEL

P

With the advent of VLSI technology, large-scale processrng systems wrth
as many as 914 processors have become feasible [Ba79 Pe77 SBK77] One
approach to using a large- number of processors is the 31ngle fnstruction stream ‘
- multlple data stream (SIMD}) ‘machine. An SIMD machine typrcally consists
of a control unit (CU), a set of N = 2" processing elements (PEs), and an inter-
.connect1on network as shown in Figure 2.1 [Sieg8la]. A PE cons1sts of a pro-
“cessor with its own. memory, fast access general purpose registers, an address
register (ADDR), and two data fransfer registers (DTRin and DTRout) a
shown in Figure 2.2. The PEs are addressed (numbered) from 0 to N-1in a
machine of size N. The register ADDR in PE i contains the integer i, for
0 <i<N. The two data transfer registers allow each PE to access the mter- _
connection network which in - turn allow each PE to send and receive data from
. the other PEs [Si79]. The CU broadeasts instructions to all PEs, and ‘each _..

‘active PE executes each of these instructions on the data in its own memory .

All active PEs execute each instruction simultaneously. It is pos31ble to enable
and disable PEs so all N PEs may not be active. '

2.1. Flock Algol — Introductlon v
A tool called Flock Algol has been developed by Slegel et a,l [S1eg8lb] to

aid in writing and describing parallel algorlthms Flock Algol is used here

because it incorporates ways to express SIMD processing in an algorlthm
descrlptlon language. The followmg summarizes Flock Algol and focuses on
the constructs it uses to express and control parallel executlon._ Finally an

example of a Flock Algol algorithm is given.
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2.2. Summary of Flock Algol

Flock Algol uses traditional mathematical and programmlng language con-
structs, after Pidgin Algol [AHU74]. It also contains parallel-specific constructs
extendlng its Pidgin Algol .origin to accommodate parallel algorithms. As in

Pidgin Algol, any statement with a clear meaning is allowed.:

A Backus-Naur form (BNF) speciﬁcation is used here to describe Flock
Algol. A BNF statement ‘has the form '

<non-—'ter,minal> :::-‘ sequence of terminals and/or non-—terminals.

Termlnals are elements of the set of language symbols. For Flock Algol the
'keywords include IF, THEN, ELSE, FOR, STEP, BEGIN, END, PRO-
CEDURE, ENABLE, DISABLE, TRANSFER, BROADCAST, USE, etc. To
aid the reader, Flock Algol keywords are shown in all capital letters. However,
case IS unlmportant when expressing algorithms in Flock Algol. ‘Nonterminals
are symbols delimited by < > such as <program> <statement>, <vari-
able>, <expressron> < condition>, <initial value>, <step 81ze> <final

value>; < procedure name>>, <parameter list>, etc.

7

 The BNF specrﬁcatlon consrsts of a set of “rewrltrng rules,” where each
rewriting rule specrﬁes the ways in which a given non-terminal can be rewrit-
ten. In the BNF specnﬁcatron, a vertical bar ( | ) separates alternative ways of
: rewrltlng a given: non-terminal. Braces ({ } ) denote optional replication, and
are used to indicate that the contents between the braces may be employed

zero or more times. .

- Flock Algol includes .a- core of constructs drawn from Pidgin Algol
[AHU74), Pascal [JeWi74], and C [KeRi78| which is shown in Figure 2.3. Fig-
ure 2.4 shows the BNF specrﬁcatlon of the. extensmns to Pidgin Algol incor-
porate SIMD. parallehsm The statements are of- three general types:

" 1) mask statements, to allow subsets of PEs to. be enabled (active) for execu-
tion of a statement or set. of statements (and implicitly, to disable other
- PEs); . |
2) transfer statements, to speclfy the transfer of data between PEs; and
-3) broadcast statements, to allow the dissemination of a smgle data item to a
: specrﬁed set of PEs. . ,
The followmg gives a synops;s of each of these statement types



<program> 1= <procedu're definition>

< procedure definition> ::= PROCEDURE <proceduré name> (<parameter list>)
{<procedure definition>} <block>
<block> = <statement>| <declaration part> <statement>

<statement> ::=

1. <variable> « <expression> |

2a. IF <condition> THEN <statement> l ,
b. IF <condition> THEN <statement> ELSE <statement> |

3. FOR <variable> + <initial value> TO <final value>

DO <statement> |

4. BREAKI

5. BEGIN <statement> { <statement> } END |

6a. <procedure name> ( <argument list> )l
b. <variable> + <procedure name> ( <argument list>)
c. RETURN| RETURN <expression> I

7. miscellaneous statements l

8. <null statement>

Figure 2.3. Pidgin Algol core for Flock Algol.
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<statement> : <mask statement> | < transfer statement> I \
<broadcast statement> ] <set network >
1. <mask statement> = [<mask specification>] <statement> |

<data conditional mask>
a. <mask specification> ::= ENABLE <well defined set of PEs> i
. o DISABLE <well defined set of PEs>
b. <data conditional mask> ::= S :
WHERE <condition> DO <statement> ENDWHEREI
WHERE <cond1t|on> DO <statement> ELSEWHERE <statement> ENDWHERE
2. <transfer statement> ::= TRANSFER {<source specification>
{TO <destmatlon specification>}}
< source specification> 1= <variable>
< destination specnﬁcatnon) = <Lvariable>
3.  <broadcast statement> ::= BROADCAST <broadcast specification> I
<broadcast specification> ::= <source specification>
FROM PE <PE source>
TO <destination specification>
<PE source> ::= <constant with value between 0 and N-1> I
<variable with value between 0 and N-1>
4.  <set network> ::= USE <interconnection function>

Figure 2.4. Flock Algol statements to express parallelism.
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: 2.3. Mask Statements - ‘
A mask statement will have the effect of specifying a subset of the N PEs

in the SIMD system. Masks provide‘ :thef"'system user with a method to control
the active/ipactive status of the PEs of the system. Siegel [Si77] gives details |
of the various typés; of masking schemes. Flock Algol includes two mask for-- '

mats.

2.3.1. ENABLE and DISABLE

In the - ﬁrst format, the statement of type 1a consists of the keyword
ENABLE or DISABLE, followed by an unambiguous specification of a set of
PEs. The PEs enabled as a result of the mask specification execute the state-
ment following the mask spemﬁcatlon If no mask accompames a statement, all
PEs are assumed to be active. The speech processing algorlthms presented here
use PE address masks [Si77] to specify which PEs to- enable or disable. The PE
address masks are n-posntlon (where n= log2N) masks that specify which of the
N PEs are active for each instruction. Each mask position contains a 0, 1, o__r X
(“don’t care”) and only those active PEs whose address i(in binary representa-
tion) matches the mask are enabled (or disabled). ‘An “X" matches either a 1
or a 0. Superscripts are repetition factors i.e., [X°] = [XXXXX]. Square brack-
ets denote a mask. For example ENABLE [X" 1] activates all odd numbered
PEs and DISABLE [x" 0] disables all even PEs. If no mask accompanies an

instruction, all PEs are active.

2.3.2. WHERE ... ELSEWHERE

The second format for mask statements is a data conditional statem.ent, .
defined in statement type 1b. Data conditional masks are the implicit result of
performing a conditional branch dependent on local data in an SIMD machine
env1ronment where the result of different PEs’ evaluations may dlﬂer As a
result of a condltlonal WHERE statement of the form
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WHERE <cond1tlon> DO
<statement>
ELSEWHERE -
<statement>
_ ENDWHERE ' ‘
each PE will be active for the statement following for either the DO or the
—' ELSEWHERE but not both. The execution of the: ELSEWHERE statement _
must follow the DO statement; i.e., the DO and ELSEWHERE statements can-

"ot be ‘executed SImultaneously For example as a result of executing the

o statement

WHERE A > B DO
- C+~—A
- ELSEWHERE

C+~B

ENDWHERE
each PE will aésign tovC the maximum of its A and B values, ie., some PEs
will execute “C «- A,” and then the rest will execute “C +« B.” Machines such
as the Illiac v [Barn68] and PEPE [Cran72] use this type of masking. Nesting
da,ta conditional mask statements is p0551ble the implementation can be

accomplished usmg a run-tlme control stack, as dlscussed in [SiMu78].

From an 1mplementatlon pomt of view, data conditional masks. allow the
speclﬁcatlon of the mask condition to depend on PE data. The subset of PEs
to enable is determlned at executlon time. The time to execute a “WHERE ..
ELSEWHERE" statement will be the sum of the times to execute the state-
ments following the DO and the ELSEWHERE.

The “IF- THEN-ELSE” and “WHERE—DO-ELSEWHERE” statements
correspvohfd' to two different actions on an SIMD machine. An “IF-THEN-
ELSE" is a control flow statement executed by the CU to determine which of
two sets of code should be 'executed. The expression Specifying, the condition in
an IF:-‘THEN-ELSE STATEMENT will contain only constants and CU vari-
ables.  If the code to be executed includes PE instructions, all active PEs will
execute that code: A “WHERE-DO-ELSEWHERE” statement divides the PEs
in the system into two sets, and. instructs the two sets to execute different code.
In t_hls case, both sets of code are executed one after the other, but by different
PEs. An “IF-THEN-ELSE” format could be used to specify data conditional
* mask statements. However, since the basic function of the two types of



_ statements is different, it seems clearer to use dlﬁerent keywords to 1dent1fy the o

two types of actlons

2.4, TRANSFER and USE Statements

The purpose of the TRANSFER statement (type 2 in Figure 2. 4) is to .
allow inter-PE communications. The USE statement (type 4 in figure 24)'
speCIﬁes the type of interconnection function to use, and the lnterconnectlon.
functions specﬁ'y the: type of transfer to perform. Formally, an 1nterconnect10n
function is a bijection on the set of PE addresses.  When an interconnection
function, f, is executed, the .contents of the source variable in PE ;j are
- transferred to the destination variable of PE f(). )This occurs for all j simul-
taneously, for 0 < j '< N and PE j active. SR B

The PEs interface to the interconnection network via the DTRin and
DTRout registers, If the DTRin and DTRout register names are used in the
algorithm, the “ < source specification> TO <destination speciﬁcation>"’.~-_in
the transfer statement syntax can be omitted. In this case, the"so:urce.is
| ass‘umed to be the DTRin, and the destination is the DTRout. The.DTRin
acts as the standard input to the network, and the DTRout acts as the stan-
dard output from the network. If the ‘““<source specification>" is glven
without the “<destination specification>"" the destination is th’e: same as the
source. | | -
" The following are interconnection functions used in the speech proce_ssing""'

algorithms presented in Sections 5 and 6.

2.4. 1. The Cube Interconnection Function
The Cube [SiMc81b] interconnection function is defined by lettmg .
‘P =p,-1 " PiPo be the binary representation of the address of an arbltrary

- PE. The n cube mterconnectlon functlons are:
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Cube( pay Pt Pol = Pao1 Pi- - Po

' where 0 < i<mnO0 < P < N, and pl is the cornplement of p;. This means the
cube( ) mterconnectlon function connects PE P to cube( ) [P] where cube(i) [P]
~ is the same address as P w1th the §th bit complemented.

2 4, 2 The Permutatlon Interconnectlon Functlon

The Perm utation [8181] interconnection function is deﬁned as:
oo} wherel<j<i
Permi(J) T | elsewhere
Perm;(j) would switch data between PEs 0 and 5, PEs 1 and 4 and, PEs 2 and

2.4.3. The Shift'lntercOnﬁection Function -
The Shzft 1nterconnect10n function is defined as:

7 Shlft +n() —j+nmodN v
~ Shift —n (j) =j-n mod N

where N is the sn‘ur'nb‘er of PEs. Therefore Shlft +1 (4) woula send dafa from
PE O to PE I, PEltoPE2 andsoon '

2. 5 Broadcast Statements

‘The purpose of broadcast statements (type 3 in Figure 2. 4) is to allow the
dissemination of a value from one PE to all PEs. The <PE source> is the PE
containing the value to be broadcast. If the PE source is not glven, the value
is broadcast from the CU. ‘The value is broadcast to all PEs.
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2.8. An Example ofa Flock Algol Algorlthm core

- The following is an example of a Flock Algol algorithm. It performs a
computatlon 51mllar to that given in [Ston80]. ‘Suppose the vector a[].is given,
and the vector ¥[] is to be found such that |

ylol =afo] 3 L -

vlil =yli-1] +af]  1<i<N @y
therefore y[i] is the sum of a[0] + a[1] + L+ ali]. On a serial machine y|[] is
rfound by: | o : o

y[0] aL[0]

"FOR i~ 1TO N-1DO
¥l = ylil) + af | |

This algorithm appears to be serial since y[i—1] is computed before y[i]. Since
“the last statement is executed N~1 times, the time complexity is O(N). An
SIMD machine with N PEs can find y]] in O(log N) time by using the method
- diagrammed -in Figure 2,5. The figure is for N=8 PEs, where the nodes with
an open circle do nothing, while the nodes with ﬁlled in circles form the sum of
the two operands The followrng SIMD algorithm to find y[], assumes element i
of vector a[] is stored in PE ifor0<i< N. After the algorlthm y[1] is stored
in PEi. : : :
'y —a
FOR j« 0TO loggp N-1Do : : :

TRANSFER y TO DTRout USING Shift +2i (2. 2)

DISABLE [0™X]]

y «—y + DTRout

SANNN SN VUR R

Each step does the following;: .

1) Store ali] i in y[i] for 0 < i < N. This is done i in all PEs sunultaneously

'2) Execute statements [3]-[5] logy N times. | ’ 2 :

: 3) 3) Transfer the data in y in PE i to DTRout in PE (1+2J) mod N. On the first

loop, the data in y in PE 1 will transfer to DTRout in PE 2, and PE 2's

data will transfer to PE 3, and so on. PE N-1 will transfer its- y value
to PE 0. When j=1, the data in y in PE 1 will transfer to DTRout in

PE 3 etc. , :
4) Turn off some PEs. The first ti'me'through, the mask will be [0"] (where
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~afo]

al2] ~

ald]

3[5]\ < .

7] ——

- Figure ‘2._5.‘ ‘Par_allel'calculation"o,f._y[i] = y[i—i] + al[i].
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n=log,N) which matches only PE 0, so PE 0 will be disabled. This is
indicated by a circle at node‘(') in Figure 2.5. The second time through
the loop, j=1, so the mask is [0°7'X] which -mat,ches PEs 0 and 1, so
they are disabled. The DISABLE instruction only disables the PEs dur-
ing the indented instructioﬂ(s) below it, therefore on subsequent times
through the loop, all PEs will execute steps [2] [4]- '
5) The new data transferred into DTRout is added to y[] only in.the enabled
~ Figure 2.6 shows the intermediate »val'ues for. this algorithm. Kogge and
Stone[KoSt73] call_this technique of shifting and summing recursive doubling."
The time complexity is clearly O(log N) since the body of the. loop in lines. [2]
~[5] of algorlthm (2. 2) is executed: logyN times.-

2.7. Summary -
Real-time recognition of speaker. independent isolated -or :connected;'s.p‘eech'
using a large vocabulary requires more processor throughput than current sei'ial |
machines can deliver. The SIMD machine is one possible’way to organize a
large number of processors to do the recogmtlon in real time.
 Flock Algol provides a high level algorithm description language for SIMD
algorithms. It is based. on a general model of an SIMD machine, and is
intended to separate the structure of the parallel algorithm from architecture-‘
specific issues such as the physical interconnection network or the actual
mechanisms used to implement data V_br(')adcastsand the enabling/disabling of
The time complexity in the example algerithiﬁs abo'vevv is 'redilleed' from
O(N) on the serial :machine to O(’log ‘N) on the SIMD machine. This shows
_that the parallelism ef the SIMD machine can reduce the execution time of
some algorithms. The following chapters will show how the SIMD machine can

reduce the time comp'lexity of various speech processing algorithms.
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Shift +1

Mask

Shift- +2 Mask

TRANSFER [000] Sum TRANSFER [00X] Sum TRANSFER [0XX] Sum
y a  DTRout y DTRout ' y DTRout y
0 y(0,0)=alo] ~ y(7.7) 0 y(00) y(56) 0 y(0,0 y(1,9) 0 y(0,0)
1 y()=al]  ye0) 1 y(01) ¥e7) o yo1)  y@8) 0 y(o1)
-~ 2 y(2,2)=al2]  y(L1) 1 y(12) - y(00) 1 y(02) y(36) 0 y(0,2)
3 y(33)=af3]  y(22) 1 y(23) y(01) 1 y(03) y(47) 0 y(0,3)
1 y(4,49)=alq] y(33) - 1 y(34) y(1,2) 1 y(14)  y(0,0) 1 y(04)
5 yBs)=all  y(4) 1 y(45) y(23) 1 y(25)  y(0.1) 1 y(0,5)
6 y(6,6)=al6] - y(55) 1 y(56) . y(34) 1 y(36) ¥(0.2) 1 y(06)
7 y(6,6) 1 y(67)  y(459) 1 y47)  y(03) 1 y(0,7)

y(7,7)=a[7]

Figliré 2.6. Intermediate values for recursive-doubling algorithm.

Where: y(i,j) denotes

-

Y a(k),

k=1
and a 0 mask means the PE is disabled,
and a 1 mask means it is enabled. .
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3. VLSI PROCESSOR ARRAY MODEL

Very large scale integration technology has shown that slmple r-‘egul_ar‘
1nterconnectrons are easy to 1mplement and give hlgh densrtles ‘The VL‘Sl
processor arrays are so named because they are desrgned to have simple regular
interconnections which exp101t the capabilities of VLSI technology A VLSI
processor array is a network of specialized processing elements (cells ) that cir-
culate data in a regular fashion. The network configuration for a VLSI proces-
sor ‘array is partlcular to the algorithm (or class of algorithms) ‘being 1mple-
mented. In general, the data flow can be viewed as a multrdlmensronal plpe-
line. The" VLSI processor array is a generalrzatlon of the ‘systolic array
[Kung80] Both a,rrays have fixed 1nterconnectlon networks. They differ in
that systolic cells are assumed to be very simple, whereas VLSI processor array
cells may be complex ~ For example, Figure 3.1 shows a systolic array
presented by Kung[KuLe] for matrix rnu-ltiplication.' ‘Without going into the
details of how it works, notice each cell has only three registers (a,b,c) and the
cell only does the operations shown in the lower right corner of Figure 3.1.
Figure 3.2 shows a VLSI array for dynamic time warping. (Details of the array
~ will be discussed in Section 6.4.2.1. ) All the cells are connected by a fixed inter-
connection network -as with the systolic array, but each cell has several regis-
ters, some of which contain vectors. Each cell does all the instructions shown
in the lower right side. Figures 3.1 and 3.2 are only examples ol' one. systolic

array-and one VLSI processor array. Both arrays can have different intercon-

nections and perform different operations. This example shows that the cells in

the VLSI processor array are more complex than those in the systohc array.

. * Since the processing elements in the SIMD machine are different from those in the VLSI
processor array, they will be called “PEs’’ in the SIMD machine and “cells” in the VLSI
processor array.
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out

out’ |
- a'ou_t; - a5,
boutif bin

Cout Cin +a’in' bin

Figure 3.1. An éxample of a syst,olic ‘array,._
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- {0 Cell k+3 .

by+i
to Cell k-2

a vector down

b vector up

compute d

- DTtop «— d

DTbot +— d -
g.bot.old+ 2d.bot

g «— d+ min g+d
g.top.old+ 2d.top

g.top.old+—g.top .
g.bot.old «— g.bot
g.top «— DTtop
g.bot « DThot -
d.bot +— DTbot
d.top «+- DTtop
DTtop «— g
DTbot « g

Figure 3.2. An example of a VLSI processor array.
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- Both VLSI processor arrays and SIMD machines are forms of synchronous
" large scale parallel processing systems. VLSI processor arrays represent
algorithm-speciﬁc systems with fixed interconnections between cells, specialized
processors and a small set of registers for memory. SIMD machines are more
complek having a large memory in each cell and a general interconnection net-
work between cells, making the system more flexible. The VLSI processor
array algorlthms are specified by giving the fixed interconnections between

cells, and the instructions executed by each cell.

3.1. A Sample VLSI Processor Array Algorithm — Filtering
o An example of a linear VLSI processor array is the finite impulse response
(FIR) filter presented by Kung[Kungg0]. The output y,, of a FIR filter is given
“by: ‘ ' .

Ym = f_‘, bXpk - qSm<M : (3.1)

where x_ is the input to the filter, the by's are the filter coefficients, and M is
the number of samples in the signal to be ﬁltered

Kung s FIR filter algorlthm computes a (q+1)tap FIR ﬁlter using a linear
: array of q+1 systolic cells. It solves the equation in which y, is computed
~ using the summation in equation (3.1). The output y,, can be computed by the
following recurrence rela,tron where y(k) is the partra,l result in the computatron

-of ym after k steps in the recurrence

Y,(,E“) = y§)+bq-kxm4q+k 0<k<gq (3.2)
y = y(q+l) ‘

- The. above recurrences can be evaluated by pipelining the X, and y(k) values
through q+1 hnearly connected processors as shown in Figure 3.3. Each pro-
cessor has three reglsters R,,R,, and Ry, whlch hold b, x, and y values
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0
b2
Cell "0 |
Ym “m-2 Yin “out
" — : R X
\ 1 T X n
Y , : Ry © Vin
b R ~ 2
] ‘ : 1 b» RY < RY + Rb RX
' R R x X
y X out tn
A N | , Yout * RY
] .
bo yout *in
2 3 )
Yim-1 mfl

bl

output input

Figure 3.3. VLSI processor array to compute FIR filter for q—‘—?.
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“respectively. Initially, all R, and Ry registers contain zeros, and the R regis-
ter in 'processdr i contains b, ;. Each cycle of the array consists of the steps
shown in Figure 3.3. v is computed in cell k-1, and the output is produced
in cell q.. The data ﬂowing up (the x, values) must be synchronized with the
data ﬂowing. down (the y &+ values) so that they meet in the correct cell with
~ the correct coefficient. Therefore during odd numbered cycles, only even num-
bered cells contain valid data, and during even numbered cycles only the odd
cells contain valid data. Thus only half of the cells are active during a given '
" cycle. One output value is therefore computed every two cycles of the systolic
array, where during each cycle, the operations performed are the simultaneous
transfer of data in the two pipes, plus the one addition, one multiplication, and

_one assignment shown in equation (3.2).

- Figure 3.4 is  the data flow diagram for the linear array. Each column of
" the data flow diagram represents the contents of each register in each cell after
a given 'cycle. Moving from left to vright shows how the data changes from one
cyéle to the next. The arrows show where R, and Ry will be transferred on the
next cycle. - ‘ :

, “This linear array uses q+1 cells and produces a new y value every two -
~cycles. Ignoring the startup and stop time (i.e., the time required to pipe y,
from cell 0 to cell q and to pipe yj-y from cell 0 to cell q) the VLSI processor
afray is (q+1)/2 times faster than a serial machine. This is because there are .

q+1 cells, half of w.hic'h are doing computations on valid data at a given time.

'  3.2. Summary

"Altho'ugh ‘the SIMD machine may have the computing power needed to
recognize speech in real time, its general nature (a general purpose processor in
each PE and a genefal interconnection network) may make it too expensive for
a dedicated application. The VLSI processor array, on the other hand, with its
~ fixed interconnection network and independently operating cells may be able to.
perform the task with less hardware. ' ; '
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This chapter pr_eéenfed a VLSI processor array model along with an exam-
- ple of how a linear array of q+1 cells could achieve a speed up of (q+1)/2 over
a serial algorithm. The VLSI processor array is a generalization of Kung's sys- -
tolic array. The generalization adds a more powerful processor in each cell
along with more memory and broadcast capability. Chapters 5 and 6 present

some parallel speech processing 'algorithms which use the VLSI processor array
" and Chapter 8 presents the results of sir_nulating the algorithms.
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4. AN ISOLATED WORD RECOGNITION SYSTEM

of the many commermally avallable speech recogmtlon systems “most. per-
form isolated word recognition [Dodd81] since it is ‘easier’ than connected word
._ recognltlon ‘In isolated. speech each utterance is separated from the next by a
’short pause (>100 ms) These pauses help the system in locating- the begln- _
ning and end of each utterance. After the unknown utterance is located ‘many
speech recognltron systems rely on pattern matchmg techniques: to match the

features of ‘an unknown 1nput utterance to prev10usly stored features of known

utterances. Flgure 4.1 is a block dragram of a typlcal template matchlng sys— '
tem for lsolated word recognition [RLRW79]

v A template matchmg based system has two modes of operatlon, tralnlng
f and recogmzrng During . training, the speech srgnal is bandpass “filtered (to B
- prevent ahasmg) and then sampled. After sampling, the speech signal is bro-vv
ken into fixed sized frames that generally contain between 100 and 400 sam-
ples. Each frame passes through a preemphasis filter followed by autocorrela-
- tion analys15 Next- ‘Tinear predictive coding (LPC) [Makh75 MaGy76] analysis
is ns.ed' to take the autocorrelation coefficients and produce LPC coefficients.
The LPC analysis ,redzu.ces each frame from N samples (100 < N < 400) to-'p :
A LPC coefficients where p is typically between 6 and 25. N’ext,. endpoint detec-
tion finds the first and last frames ‘of the utterance and discards the silent
frames before the first frame and after the last frame. The discarded'frames
are not used in the rest of the. processrng At this pornt an utterance will be
' represented by approx1mately 40 frames of 8-14 coefficients each. If the utter- v
~ance has-more or less than 40 frames a hnear time warp (LTW) normallzes in
"~ time, the utterance to 40 frames. ’

The process above is repeated for each utterance in the vocabulary, and
the 40 sets of LPC .coefficients for each word are stored for later -use. To

‘achieve ‘speaker independence, the same ‘word is spoken ';‘by. several different
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speakers and all sets of coefﬁclents are stored or clusters are used as dlscussedi
in [RLRW79] , :

During ‘the recognition- mode the same steps as in the training are 'n'sed,"
except after the linear time warp a dyv-nam'lc time ‘warp (DTW) .compares the
word to be recognized (the test template) to the training set (the reference tem-
plates). -The distance from the input utterance to all the stored utterances is
found, and the stored utterance ‘with the shortest distanee from the input
utterance is picked as the utterance that was spoken - o '

The followmg isa detalled descrlptlon of each block in’ Flgure 4, l

. 4 1. Flltermg and Sampling of Input Slgnal

The first step i recogmzmg a word is to ﬁlter and sample the input signal.

The choice of ﬁltenng frequencies and sampllng rate depends on the quality of
speech available.  The input is low pass (or possrbly bandpass) filtered at‘10
KHz (100 - 10 KHz) and sampled atll_5-20 KHz when using “high vquality’:’b
speeeh If the systeml is to work over the phone lines (telephone quality speech)
‘the input is band pass filtered around 300-3200 Hz and sampled at 6 67 KHz.
‘Systems using both 6.67 KHz. samphng [RLRW79] and 20 KHz sampling
[BBGI80] have appeared in the literature, along with varrous other samphng

rates in between

a2 P'reemphasis Filtering |

' Each frame passes through a digital preem_phasis filter with a z transform ’
of ” ‘ : ' ‘
| H(z) 1—az”

where typlcally an). 95 Experlmental ev1dence shows that preemphasxs serves
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te‘l"revdu'ce-th:e variance of the distance calculation in an LPC based template

B ~ matching system[RLRW79].

4 3. Autocorrelatlon Analysns

- Next, the sampled SIgnal is broken into frames for autocorrelatlon

e ah‘alysi's. ‘The LPC processing- ‘that is done later dictates the number of sam-

ples per frame. The frame length should be short enough so the vocal tract

- configuration is constant during the _frame,‘ but long enough so the initial condi-

tion assumptions (i.e., the values the signal is assumed to have outside of the

frame) have a small effect on the coefficients. Frame lengths are usually fixed

‘ and contain between 100 and 400 samples, vwhich' correspond‘ to 1_0-20'ms of

~speech depending on the sampling rate. One common method uses 300 jsa}m_pl(e

frames that begin' every 100 samples. This leaves a 200 sample overlap

" between frames. = This overlap tends to reduee, the variance in the LPC
coefficients between frames containing the same speech So_und.

The. short : ter_m:v autoéorrelation coefficients are found by using:
(l) = .2' fmsfm+) 0<i<p (4
m=0" : ‘ : :
where M is.the frame length and p is determmed by the LPC processing and is
_- between 6 and 25. The first autocorrelation coefficient, R(0), is the energy for |

. each. frame while all the coefficients are used 1n the LPC analysis which fol-

' lows
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} . 4.4, Lmear Prednctwe Codlng . '
Followmg the autocorrelatlon analys1s is. llnear predictive. codlng analys1s
- LPC. models the speech sounds as an all pole filter and an excrtatlon source

'[MaGy76] The filter represents the: conﬁguratlon of the vocal tract, i.e., the

posrtlon of the mouth, nose and throat. If the sound is voiced, the excitation =

represents the pitch pulses from the vocal chords. If the sound is unvorced the
excrtatlon represents the “noise:like” sound of the air being forced past some
constrlctlon The constnctron may be the: tongue and the . avleolar rldge

~ (behind the upper front teeth) as in the sound “s.”

LPC assumes that the mth sample of the speech SIgnal {s} can be
represented by two components
1) a linear comblnatlon of the P previous speech samples and
2) the excltatlon 6(m) Wthh may differ for each sample s(m)

© The sample s(m) is modeled as follows [AtHa?l Makh75 RaSc78]

s(m) = ia(k)s(m—k) + 6(m) p <m < M " (42)
- k=t T

' A common method used' to ﬁ‘nd’ the LPC coefﬁcient's ‘a(k) for .1 ‘< vk"< p, is to

define §(m) as the predlcted signal (i.e., ‘the hnear comblnatlon of the p prevr- »
’ous samples) and mmrmrze the squared prediction error- whlch is: .

p= T m)S(m)? = i) - kil i

'.:To ﬁnd the a(k)’s, ﬁnd the k partlal derlvatwes of E2 w1th respect to a.(k) a.nd

' set them to zero:

- =0 1<k<p

| ~ This will result in p equatlons w1th p unknowns By assuming the speech sig-
nal is zero. before and after the frame (ie., s(m)=0 m <0 and s(m) =
‘m 2‘M), equ,,atlon_ (4.2) can be solved by defining the short—_term autocorrela_- ’

~ tion functions as in equation (4.1) and rewriting equation (4.3) as
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LalR(|ik|)=R@) 1<i<p (4.4)
Eqnatipn‘(b4,4) can be written in matrix form as:
ks=R (45)
whei'e R and 3 are p elementlvectors of elements R(i) and ai) respectively for |
1<i<p, and Kis ap by p matrix with K =R(|ik[)0<ik <p. Kisa
' Toe‘plitzﬁ matrix, i.e., it is symmetric with all elements on each diagonal being
equal | o : .
Flndlng the coefficients a(k) takes two steps,
1) 1) Find the p autocorrelation coefficients R(i), and
2) solve equation (4.5) for 3. L

could be found from. equatlon (4 5) by ﬁndmg the matnx inverse of K, but
ssince K is Toeplitz, more efficient methods are available. Figure 4.2 is the
serial algorlthm for Durbin’s method whlch is one of the most efficient
- methods avallable '

4.5. Endponnt Detectlon

After LPC analysns the endpomts are located The endpomts of an utter-
ance are the frames where the word begins and-ends.

o Rabmer [RaSa75] presents a 51mple but robust method to detect endpomts
has,ed.,_on using an upper (UE)-and a ‘lower (LE) energyv * threshold, and a zero
crossing th‘reshold (ZC). The following are definitions of the terms used in
describing the method to find the beglnmng pomt (Reverse _all directions when
ﬁndlng the endmg pomt ) R ’ ' -
 energy: The ‘“energy” for each frame is the ﬁrst autocorrelatlon coefﬁcxent
o R(O) (See equatlon (4.1).) - ' ’ |
Zero crossmg The zero crossmg rate is deﬁned as the number of tlmes the nor- -
_ mahzed SIgnal changes sign 1n one frame ' |
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1 E© = R(0);
2 FOR i+~ 1TO p DO
3 ’ ; ’ /* compute k(i) */
4 k(i) < 0;
5 FOR j —~ 1TO i1 DO
6 k(i) « k(i) + 2™ * R(i-);
7 k(i) « [R(i) - k( 1)] /E
8  E0— (1k(i)? ) < E (’"'),
. /* compute a;’s for stage i */
9 , .(i) — k(i);
10 , FOR j < 1TOi1DO
11 , (‘) — a(‘ D—k(i) * ai(_igl);
12 FOR]<—1TOpDO
13 a, — a(p)

Figure 4. 2 Durbin’s Algorlthm to compute LPC coefficients a; from autocorre-
lation coefficients R(i), 0 < i < p. ;
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frame pointer: The frame pointer points to the frame that is currently being
-considered as the first (or last) frame of the word. ' ' _

frame after: If the frame pointer is at frame n, the frame after is frame n+1.

back up: When the frame pointer is backed up, it moves from frame n to n—1

to n—2, etc. until the criterion is met.

Rabiner’s method works as follows: ,

1) The energy and zero crossings are measured for all frames in the utterance.

2) After the thresholds are set (to be discussed later), the frame pointer is used

~ to find the first (or last) frame in the utterance by setting the frame

pointer to the first frame to exceed the upper energy threshold.

3) Next the fremepointer is backed up to the frame after the first frame that
does not exceed the lower energy threshold. | |

' 4) If three frames before this frame exceed the zero crossing rate threshold the

| frame pointer is backed up until the frame after the first frame that does
not exceed the zero crossing rate threshold.

After step 4, the frame pointer is pointing to the ﬁrst frame of the utter-
ance. The same procedure (and thresholds) are used to locate the ending pomt.
- Figure 4.3 is an ‘example of how the thresholds are used to find the endpoints.

- The circled. numbers reprment the location of the frame pointer after the given
step number _ R ” I

The three thresholds are'set by finding the mean (g,.) and standard devia-
tion (a ;) -of the zero ‘ crossings for the first 10 frames. ‘These frames are
assumed to be silent (background noise only) ‘The zero crossmg threshold (ZC)

is found by

ZC = MIN(FIXED, i, +20,,)

where FIXED is a fixed threshold. A typical value for FIXED is 25 crossings

per 10 ms if -the samplmg rate is 10 KHz. The UE and LE thresholds are

found by : S . ’
LE = mrn(O 03*(PEAK-—SILENT)+SILENT 4*S]LENT)

UE = 5+LE
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Flgure 4.3. An example of how the zero crossings and energy thresholds are
used to find the end-points of a word (from [RaSa75])
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where PEAK is the largest energy over all frames, and SILENT is the largest |
energy of the silent frames (silent frames are assumed to be the first 10 frames).

The double energy threshold is used so that mouth noises (breathing, lip
smacking, etc.) that commonly occur before an utterance are not included as
- part of the utterance. “These noises will tend to exceed the lower energy thres-
hold, but not the upper energy threshold. The zero crossing rate is used to
detect the begihnings of words starting with a fricative. The energy of a frica-
tive is generally not enough to exceed the upper energy threshold, so the zero
crossing rate is used to detect the high frequencies which are commonly present
‘in fricatives. Lamel [LRRWS81] states that the use of zero crossing rate is not
effective in detecting words starting with a fricative for telephone quality recog-
nition since telephbne speech is band limited to 3200 Hz.

4.8. Time Warping

- Dynamic time warping (D'VT‘W) is widely used in word and speech recogni-
tion to eliminate the effects of nonlinear time fluctuations: in speech patterns.
The function of DTW is to find the minimum time-normalized distance

| betivgen‘ two templates A and B where A and B are sequences of features vec-
tors a;.and by for1<i<]1<j< J. Each ‘ﬁi and b; is a vector of features
for a segment of speech. In the template matching system discussed here, the
feature vector contains the p LPC coefficients. It is generally easier to com-
pare two templates of equal length with dynamic time warping, so linear time
' warping" is used before dynamic time warping to normalize the length (i.e., the
number of frames) of the templates. The following two sections describe the

linear and dynamic time warping.
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4. 6 .1 Linear Time Warpmg
The followmg linearly warps a template of speech of length M to length N.

T(n) = (l-s)*R(m) _ s*R(m-’rl) n=1,.,N (4.6)

where R( ) for 1<m< M are the M frames of the input templates -and T(n) |
for 1 <n < N are the N frames of the output template and:

I(J 1)%NT)1+1

’_n_ My L
( 1)(N_)+1

where{ Ix] is the greatest integer less than or equal to x. For a time ‘signal',f’the
simple linear interpolation used in equation (4.6) is adequate as long as M and
N do not differ greatly [Myer80]. Words are typically 40 frames long, so N =

4.8.2 Dynamic Time Warping

Following the hnear time warp is a dynamic time warp. This is done, as
shown in Figure 4.4, by ﬁndmg a path connecting (1,1) to (I,J) such that the
accumulated dlstance is a minimum. Figure 4.5 is an example of how an
input signal is warped to match a reference signal. The accumulated distance
‘is a weighted sum of the local distances d(i,j) be_tween the feature vectors g
and b;. An exhaustive search of all possible paths is computationally infeasible, -
so dynamic- programming (DP) theory is used to reduce the number of paths
searched. DP theory states that if the point (i,j) is on the optimum path, then
the path from (1,1) to (i,j) is 10cally op‘timum. One method to ﬁnd: the accu-
mulated distance, g(i,j), restricts the possible paths leading to a given point to
| _those shown in Figure 4.6. Using these restrictions*', g(i,j) is recursively defined

as,

_ Myers [MRR80] would descnbe these restrictions as Type I local constralnts w1th an

© unsmoothed Type d weighting functlon
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_Fi-gure 4.5. An example of 'timé warping (from [MyerSO]).
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g(1—1,1—2) +2d(l,] 1)] -
(4.7)

g(i;j) = d(i;j) +-Ihin[ g(i-L,j—1) +d(1,j)
| g(i-2,j— 1)+2d(1— J)

g(1,1) = 24(1,)

Once g(I,v'..I)v is found, the normalized distance .D(A,B)- can be found by dividing
g(L,J) by 1+1J. ' | | |
Two methods ‘that can be used to reduce the ‘computation time are an
adjustment ‘window and pruning. Thé adjustment window[SaCh71], r; reduces
the number of local distance calculatibns by restricting the domain of the time
warp to those g(i;j) for which Ii-—jl <'r, as shown by the twodiag’onal lines in
Figure 4.7. Pruning compares the g(i,j) values at each-point in the time warp
to a thresho'ld and if the threshold is exceeded, the DTW is stopped and DTW
on the next reference template is started. This reduces the DTW time by

aborting comparlsons that will deﬁnltely not yield the minimum distance.

The steps need‘ed to compute one g( ,J) are:
1) computing the local distance d(i,j); |
2) the two multiplications and four additions in equation (4.7); and
3) two comparisons to find the minimum of three values.
These three steps are defined as one loop and will be used as a basis to com-
pare the time complex1t1es of different dynamic time warping algorithms. The
serial algorlthm in Figure 4.8 must execute one loop for every (i,j) pair in Fig-
ure 4.4. Usi‘ng‘ no adjustment window, the total time is I? loops*. However, if

the  adjustment window s used, the numbér “of loops is
I-r . ’
-2V i=2r-1-1+r

i=1

A lmear tlme warp is commonly used on both the test and reference patterns to make
them the same length allowing the assumption that I=1J.
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/* _ , .
Serial program for dynamic time warping.
I “number of test vectors
J number of refence vectors
r , .- adjustment window
known|x][i] contains coefficient i of
: h _vector x of the known utterance,
unknownl[y]|i] contains coefficient i of
' vector y of the unkngwn,utterance.
d|x][y] . contains the local distance between - ;
, ' the x known vector and the y unknown vector.
gixlly] - contains the accumulated distance up to
' the x known vector and the y unknown vector.
+/ :
Line Time in ps
1 PROCEDURE DTW S
2 9 FORy < 0TO -1 /* For each frame in the
o - unknown utterance*/ :
3 4 FOR X + -rTOr. /* For each frame in the
: : _ _ warping path+/
4 5 IF (y+x > 0) AND (y+x > 2I-2)
5 /* . | o
6 ' o ~ Compute the local distance.
T */ o : : '
8 5 S sum .+ 0;
9 2.75 T FOR i «~ 0 TO p-1 :
- 10 1125 ' _ sum +- sum-l-(known[x][l]-unknown[y][1])2
1n 2 : . djx]ly] + sum;
12 f~ , :
13 ' : ' Checkllnltlal conditions .
14 +/ o
155 S IF Y = 0 AND X=0
16 8.25 ' glx]ly] « 2 = d[x]ly};
17 : . " ELSE | | |
18 - ' IFY=0 /* Check left edge*/
19 325 , . ~ min « 2+ dixlly-1};
20 ‘ o : ELSE IF X = 0 /* Check bottom edge*/
21 .. 375 min + 2 * d[x-1][y];
22 ELSE - |
23 - . [* : ‘
24 : ' Compute possible paths.
25 . - S B
2 4 A « g[x-1][y-2] + 2d[x][y-1];
27 3 | - Beglx-2ly-1] + 2d[x-1][y];
28 2 S C + g[x-1j[y-1] + 2d[x]ly};
29 L : ' :

‘Figure 48, Senal DTW program. Executlon times assume an 8 MHz
M068000 (See Section 7.6) -
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Find mihimum path.

min + A
WHEREB < A
min «~ B;"
ENDHWERE
WHERE C < min
, min + C;
ENDWHERE

glx]ly] « dx]ly] + min;
: ka1' g[x]ly] is > oo set of oo, otherwise
repeated doubling might cause it to wrap around
to —oo . v ’
" WHERE g[x|ly] > o
o glx]ly] « o0;
| ENDWHERE
RETURN gll][1]; |

Figure 4.8. (Continued)
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4.7. Summary

This section has described an isolated word recognition system that uses
template matching. This system was chosen to be implemented on an SIMD
machine and VLSI processor array for the following reasons:

1) It has speaker independent accuracies as high as 98.2% [RLRW79].
2) It and systems like it have appeared many time in the literature, therefore
there is interest in such a system.

3) The system currently cannot run in real time on a serial processor.

As the vocabulary size increases, this system will take more time to do the
pattern matching. If a vocabulary of 1,000 words is used, a conventional pro-
cessor cannot compare the input templates to all the test templates in real
time. The following chapters present algorithms for SIMD machine and VLSI
processor arrays to do each step in the recognition system. When the SIMD
and VLSI processor array speech algorithms are combined into one system,
(either as all SIMD or all VLSI processor array) it should be able to run in real
time with a large vocabulary. If so, this system will meet three of the four cri-
teria given in Section 1; namely, real time response, large vocabulary, and
- speaker indepéndent. The only criterion not met will be continuous speech

recognition, which is a topic of future research.



5. SURVEY OF PARALLEL SPEECH PROCESSING ALGORITHMS

The followmg is a survey of some of the highly parallel speech processmg
‘algorlthms in the literature. The algorlthms examined are those needed for the
~ recognition systems considered here. The major topics are LPC codlng (includ-
1ng autocorrelation algonthms) dynamlc time warping, and digital filtering.
Each section presents an algorlthm and then dlscusses the machme require-

ments and speed up obtalned by the algorlthm

5.1. Autocorrelation

¢

‘ Autocorrelation has many uses in speech processing. The template match—
lng recognition system often uses it as an intermediate step to finding LPC
coefficients (See Section . 44) The short term autocorrelation function, R, is

deﬁned as:
R() = 3 s(ms(m+i) 0<i<p
m=0
Three methods to find the autocorrelation coefficients are dlscussed here. The
first method (AUTOI) uses M PEs to multiply the M—i—1 s(m)s(m+1) terms in
parallel. The second method (AUTOZ2) uses M PEs to compute R(i) for
0 <i< M using two FFTs. The third method (AUTO3) uses p+1 PEs to

‘Sum the terms in each R( ) in parallel.
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5.1.1. Autocorrelation Using M PEs - AUTO1

‘Siegel [Si80a] gives a-SIMD algorithm to compute the autocorrelation
coefficients R(i), 0 < i < p for an M-point signal s(m), 0 < m < M. Her algo-
* rithm, listed in Figure '5.1,bis referred to here as AUTOL. It uses N PEs where

2n"1 « M < 2® = N.  The signal s(m) is initially distributed among the PEs so
that s(j) is stored in. variable s in PE j for 0 < j < M, and 0 is stored in vari-
able s in PE j for M < j < N. Each element R(i) is computed simultaneously
by transferring s(m +1i) in PE m+i to PE m, and then computing s(m)s(m +i)
in PE m for OS‘m < M-i. These products are summed up using a recursive
doubling technique (see Section 2.6). Figure 5.2 shows the pattern of data
“transfers used to compute the productv terms. Figure 5.3 shows the data
transfers used in recursive doubling with a Cube transfer function. Using the
~ Cube transfer function allows the sum of the products to appear in the first L
PEs, i.e., on completion of the algorithm PEs 0 through L will contain R(i),
0<i < p. This is done so that the data is in place for the LPC algorithrh
which follows autocorrelation. The LPC algorlthm needs R{i), 0 < i < p to be
storedeE10<1<p |

Assume that M—p <L and M is a power of two then the total number of
parallel multiplications performed in the algorithm is p+1. For each R(i), the
" recursive doubling requires at most [logM] parallel additions, so the total
number- of addition steps is (p+1) [logM]. The number of Shift —1 transfers

performed is p, and the number of Cube transfer functions is at most
" (p+l)[logMI. The total number of transfer steps is at most p+(p+1)[logM].
The asymptotic complexity is reduced from. O(Mp) for the serial algorithm to
O(p log M} for the SIMD_algorithm;

| 5.1.2. Autocorrelatlon Usmg Two FFTs — AUTO2 .

Another parallel method to ﬁnd the autocorrelation coefficients presented
by Siegel[Si80a) is- to take the fast Fourier transform (FFT) of the magnitude
squared of the FFT of the signal s(m) padded with zeros to a length of 2M.
- This method, referred to as AUTOZ is not practical on a serial machine, espe-
cially when only small _number of coefficients are needed, since it requires so
much eomputa_tion time. HoWever, on a.parallel machine, certain values of M

and p make this method_practiéal.
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/* Algorithm Name: ~ auto
Section: 5.1.1
Machine: SIMD -
‘Function: This program finds the autocorrelatlon
» ‘coeﬂicwnts of input speech data.
Number of PEs: N
Transfers:, ‘Shift(=1), Cube
Masking: Data Conditional
Parameters: autocoef, The number of coefs. ‘to find.
B N, The number of PEs in use.
NetD, The interconnection network
delay time in cycles.
Input: The input data is stored in PEs 0 through N-1
N .. with PE i containing sample i for 0 < i <N.
Output: ' The autocorrelation coefficients, R(l)
for 0 < i <autocoef-1 appear in PE i
for 0 < i <N (i.e. each PE contains
, every coeﬂiclent)
Cycles: ‘autocoef[136+NetD + (54+2NetD)logN] — 12 — NetD
Typical Time: 1,757 ps for autocoefs=9, NetD= 18 and logN 7.
Variable Usage: (* means set by calling routine)
ADDR:  Address of PE (e.g. ADDR = 0 in PE 0)
L: . on completion, PEs 0-L will contains R(i). -
partsum: temporary variable holding a partial sum.
R(): = autocorrelatin coefficients.
sig: .input signal
slast: = after stage i; “slast” in PE m holds sng(m+l)
xf :
Line  Time in ps » A
1 1.5 slast «— sig - [+ After stage I, "slast” in
PE m holds sig(m +i) */
2 S '
3 5 FORi«~ 0 TOpDO
4 1.5 ' IF i #0 THEN
5 3 USE Shift(—1)
6 1.5 ‘ DTRin «+ slast
7 4.5 TRANSFER ‘
8 15 S slast +— DTRout
9 0.5 - partsum + 0 :
10 6.5 - 'WHERE ADDR < M-iDO
11 - 9.25 5 . - partsum +— slast: * sig.
12 2 ‘ENDWHERE
13 2.25 , FOR j + 0 TO max( [log(M—l)l—l log(L-1)) DO
14 3 ' USE Cube(j)
15 12.5 » ) TRANSFER partsum TO tmp
16 0.75 : ' partsum «— tmp + partsum
17 15 . : R(i) « partsum

ﬁFlgure 5.1, Algorlthm for autocorrelation using N PEs The »ex.e.cutiqn times

assume an 8 MHz MC68000 (See Section 7.3)
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 PE iz 1 2 3
5(0) 5(1) 5(2) )

et
s(3)— _ si4) — _s(5)—_ s(6)
s(4)— _s(5)— _s(6)—_ s(7)

s(5) — _s(6) —_ s(7)-
s(6)—__s(n—
/

s(7) |
Shift ~1  Shift=1  Shift ~1

N U WD O

Figure 5.2. Data transfers to move s(m+i) to PE m to compute s(m)xs(m +i)
terms for R(i), 0 < i < p. shown for N=M=8, p=3. '
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Figure 5.3. Performing sum of elements in N PEs using recursive doubling for

N=8. ‘
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_ Siegel et al. [Si81,SMS79,MSS80], present an algorithm to compute the
- FFT using the decimation-in-ffreqﬁency approach on an SIMD machine. This
algorithm uses M PEs to compute the FFT of a 2M point signal where PE i
" initially contains S(l) and s(i+M), 0 <i <M. Using this SIMD algorithm,
each 2M-point. DF'T, M a power of 2, is computed in M PEs at a cost of log
M +1 parallel complex multiplications, 2(log M+1) parallel complex additions,
and log M parallel data transfers. Finding the magnitude sqii_ared of each of
“the 2M-points that are distributed over M PEs requires 2 complex additions
and 2 complex multiplications. After the second FFT, p+1 broadcasts are
needed to move the R(i)’s from the M PEs so that all R(i)’s appear in each of
the first L PEs. Table 5.1 is a summary comparing the two methods.

5.1.3. Autocorrelation Using p+1 PEs — AUTO3 _

- Ashajayanthi [ASV79] also. presents an algorithm to find autocorrelation
coefficients, It is rewritten in Flock Algol and is listed in Figure 5.4 and
referred to as AUTO3. AUTO3 uses p+1 PEs and the signal s(m),
0<m<M,is stored in PE 0 (or PE 0 reads s(m) from some input device).
Lines 1-10 input each new s(m) and shift it from PE i to PE i+1 until PE i
contains s(p=i) for 0 < i < p.. Figure 5.5a shows the data allocation after line
14 for p=3 and M=4. Lines 17-19 broadcast Q ,from,PE p which is the oldest
of the p+1 stored samples to all other PEs. Each PE multiplies this value
times its current Q value and adds 1t to its own variable sum. Then lines 19-21
read in a new s(m) and shift the old samples from PE i to PE i+1 as shown in
~ Figure 5.5b. After M loops, R(i) will be in PE p—i, 0 < i < p. Lines 24-26 use
p+1 broadcasts to send all R(i) values to all PEs. The computation times
| listed in Table 5.1 do not count hnes 1-14 since the other SIMD algorithms all

assumed the data was already in each PE.

Table 5. 2 shows the time complex1ty for each method w1th M 128 and
_p 8 There is no clear best method If p is small compared to M stralght
'computatlon w1th M PEs (AUTOI) will requlre the least time. 1If p is close to
_ M in value, FFT (AUTO2) is the fastest approach '
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Table 5.1. Summary of the methods to compute autocorrelation coefficients.

PEs additions .multipiications transfers broadcasts |.
Serial | 1 M(p+1}p(p+1)/2 M(p+1)p(p+1)/2
AUTO1 | M (p+1)log M p+1 p+(p+1)log M
AUTO2 4‘log‘M-_+6 2log M+4 2log M pH1 '
(complex) (complex) _
AUTO3 | p+1 M M M M+p+1
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sum: sum of all coefficients in each PE.

p : address of last PE.

Q : register used to hold values being shifted between PEs.

- R(i): autocorrelation coefficients. (output)
- s(i) : input signal, enters in PE 0.
N » '
1 sum« 0 . /* Initialize autocorrelation functions sum to 0 */
2 --USE Shift +1 v ' '
3 FORl«—OTOp—lDO
4 ~ WHERE ADDR =0 DO . [* Shift in first p+1 samples into */
5 DTRin + sfi) - /* PEs 0 through p +/
6 ELSEWHERE
7 , DTRin «+ Q
8 ENDWHERE
9 : "TRANSFER
10 o Q-+~ DTRout'
11 - : .
12 WHERE ADDR =0DO_ N /* Shift in new input sample */
13 ' Qe+ S(p) |
14 ENDWHERE ‘
15 R '
16 FOR i« p TO M-1DO " [+ Broadcast Q from PE p to all PEs ¥/
17 BROADCAST Q FROM PE p , :
18 sum + sum + Q ¥ DTRout /* Muliply Q times value from PE p */
19 ] TRANSFER Q _ _ _
20 . WHERE ADDR = 0 po /* Input new sample into PE 0 */
21 . - Q +sfi) -
22 ' ' ENDWHERE
23 SR
S 24 FORi+~ 0TOpDO. o /* Store all coefﬁcxents in all PEs +/

25 BROADCAST sum FROMPEi
26 ' R( )~ DTRout

Flgure 5.4. SIMD algonthm (AUTO3) to compute autocorrelation coefficients
R(i),0<i<p, for an M-pomt s1gnal using p +1 PEs. ,
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Table 5.2. Time complexities for co

M=128 and p=8.
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mputing autocorrelation coefficients for

PEs additions multiplications transfers  broadcasts
Serial 1 1116 1116
AUTO1 M 54 9 62
‘AUTO2 | M 30 (complex) 16 (complex) 12 9
AUTO3 | pt1 128 128 128 137
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| 5.2. Linear Prediction of Speech
- Linear predictio‘ni is a popular method used in speech recognition and
speech compression.  Parallel algorithms for bo_th coding i'speech’infto linear -
- prediction éoeﬁicients ‘and reconstructing speech from LPC coefficients are
presented in the literature. The following sections discuss parallel algorithms
- for computing LPC coefficients using both autocorrelation and . covariance
methods. It also discusses a parallel algorithm for synthesis using LPC

coefficients.

5.2.1. Parallel LPC Using the Autocorrelation Method
Siegel [Si80a,Si80b,Si81] presents an SIMD algorithm for linear predictive
coding .using Durbin’s  method [Makh75,RaSc78]. The serial algorithm . is in
Figur_é 4.2. The SIMD algori»t'hmb achieves its speedup over the sérial algorithm
by computing the k(i)’s in line 6 in parallel and the a;'s in line 11 in parallel.
The SIMD-algofithm uses P PEs to solve the ‘p,pole lin’ear.;predictor,»where
2™l <« p <2m =P, Initially, each PE contains all R(i)’s for 0 <i < p.
After stage i in the iteration, the predictor coefficient, .aj(i); is m the variable a
‘of‘.PE j mod N, for _I'Sj <i (ie, if p'<v N, PE j will contains a; for
1 <j < p; if p=N, PE j will contain a; for 1 < j < p, and PE 0 will contain
ap). At the completion of the algorithm, logical PE j will congtain"a'j for
1gj<y | |
= The two parts of Durbin’s method are:
1) computation of the k(i)’s from the R(i)’s and,
2) the iterative computation of the predictor coefficients (aj(i)’s) for an order i

predictor from the k(i)’s and the predictor coefficients from the previous
iteration. . i o e oy

The SIMD compuvtation of the k(i)'s uses recursive doubling.” For each
iteration i, the aj(i)’s are computed by transferring data so that. aj(i”l) and ai(_ijfl)
are in the same PE, and then executing the operations of line 11 in the serial
algorithm in parallel for all values of j, 0 < j < i Figure 5.6 shows the
transfers needed for a 4-th order predictor computed in 4 PEs. No transfers
are needed for i=1 and i=2. Stage i of Durbin’s algorithm requires pairing ele-
ments aj(i“l) and ‘ai(_ij‘l), for 1<j<i, which is done with the Perm,



a7

LADDR # i=3 i=4

31><32 251 3
27 T2 K-
ag ay

ag— 323

ISVUN

34.._. 34

Figure 5.6. Data transfers for computation of a;'s for p=4 in four PEs.
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intefconnecﬁion function. See Section 2.4.2 for more details on the Perm func- -
tion. _ | | :

" The serial algOrithm're‘cjuires p2+p additions and multiplications, and P
divisions to:éompute the a;’s. Siegel’s algorithm, shown in Figure 5.7, requires
p multiplication steps to compute the k’s (lines 4-7) ahd (pt+1)log N additions |
and (p+1)log N data transfers (lines 11-15). Computing E (in lines 17-18)
requires 2p multlphcatlons and additions, and p divisions. Computing the 'aj"s
requires p—1 multlphcatlons and divisions with p—1 data transfers. Table 5.3
summarizes these results. The parallel algorithm reduces the asymptdtic time

complexity from O(p?) to O(p log N).

5.2.2. Parallel LPC Coding Using the Covariance Method
The covariance method [RaSc78] is another method used to find the LPC,
coefficients of a speech waveform. This method mvolves solving:

Y adik) = ¢(,0) 1<i<p
k‘=vl : . ’ '
where a, 1 < k < p, are the 'LPC»'_coefﬁcients ‘and the covariance ‘matrix,
#(i,k), is defined as: ’ |
k) = Y s(ms(m+k-i) 1<i<p,0<k<p  (53)
- " m=-k ' : : o .
This equation looks something like equation (4.1) which was used for the auto-
correlation method, but the samples s(m), =p < m < M, are used where equa- -
tion (4.1) used only s(m), 0 < m < M. Equation (5.3) can be written as:
Ka=R

where R and & are p element vectors of elements: #(i,0) and a(i) respectively for

‘ '1<1<pandKlsapbypmatrIXWIthK ¢(1k) 1<ik<p. This is the

same as the autocorrelation analysis equation (4.1) except K is symmetrlc and
~not Toeplitz. Durbin’s method cannot be used to solve for a; instead the
Cholesky decomposition [RaSc78] can be used. ' '

‘Siegel et al. [Si80b], presents a parallel SIMD algorithm to computé the
~covariance coefficients. This algorithm uses M PEs and requires p+1
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LADDR: | , logical address of PE {e.g. LADDR =

a LPC coefficients (output)

E: prediction error

k: ‘ temporary variable

R(): Autocorrelation coefficients (input)

E < R(0)

a+—0

FORi+ 1TOp DO , /* Compute k(i)*/
k—0 ‘ .

WHERE LADDR < i DO
"k « a * R(-LADDR)
ENDWHERE

/* Sum k’s in all PEs so all PEs have E */

FOR] +«~ 0TO logN-—lDO
USE Cube(j)
DTRin « k
"TRANSFER

k k + DTRout

k « [R(i)-k] JE
E+«(1-kK)+E

_/* “Compute ay’s for stége-'i *[

USE PermLADDR(l)
WHERE LADDR = i DO
7 aek fralek(i)

ELSEWHERE -

' WHERE LADDR <i1DO
DTRin +a
TRANSFER ,

- ‘a+a-k*DTRout
~ ENDWHERE
ENDWHERE

i+1in PE i).

Fxgure 5.7. SIMD algorithm using Durbms method to solve for p predictor

coefficients using p PEs.

'(See Section 7.4.)

Executlons tlmes are based on an 8 MHz MC68000.
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Table 5.3. Summary of parallel and serial LPC analysis algorithms.

___Additions Multiplications  Divisions Data Transfers
k's  p(p+1)/2 pp+1)/2
Serial E p : p p

ajs __ p(p-1)/2 p(p—1)/2

Total  p?+p p2+p p

ks (p+1)log N p (p+1)log N

Parallel E 2p 2p p »

ay's p—1 p—1 p—2

Total (p+1)log N 1p-1 - p - (p+1)logN +p-1 |




61

- multlphcatlons (p + 1)(log M+1) additions, and log M(p +1) +3p +1 transfers.

| - A serial covariance algorithm requires Mp +p?—p additions and multlpllcatlons

The parallel algonthm ha,s reduced the time compleXIty from O(pM) to O(p log
- M) ‘ R
’ Safranek [Saf82] presents a pvarallel. SIMD algorithm to solve equation (5.3)
B for ‘. This algorithm uses p PEs and consists of three parts: decompose, tran-
- spose, and solve The decomposmon part assumes ¢(i.k), 1 <1,k < P will be
 stored in #lj] in PE i. Table 5. 4 shows the computatlon requlrements for the
decomposmon “The decomposition ‘results in a matrix which must be tran-
sposed. - The transposmon requires p+1 addltlons and p transfers. Followmg
the transp031t10n, the predlctor ‘coefficients are then computed. Table 5.4
- shows the operations used for solv1ng for the predlctor coefficients. Table 5.4
~ also. shows the number of operatlons used by a serial algorithm for each of the

:'three parts of the Cholesky decomposmon The time complex1ty of the serial
algorithm is O(p®). - The parallel algorithm, on the other hand, uses p PEs and
~ has a time complex1ty of O(p?). Thus this method prov1des an 1deal asymp-

| totlc speed up.. S '

\ . _ 5 3» Dlgltal Flltermg '
Dlgltal ﬁltermg is frequently used in speech and SIgnal processmg The |

following dlscusses four parallel algorlthms for recursive digital ﬁltermg The
basic operatxons in recursive filters are the computatlon of the sum of product
'-terms, with output Ym- glven by:. '
. '.‘/m»:.i a;kYm—k o o ' | '; , (5.5)
k=1 s o
v .where p is the order of the ﬁlter and a;,1 < < k < p, are the filter coefficients
~ and y,——O for i <O. All four parallel algorithms solve equatlon (5 5) by break-

'1ng lt down mto the followmg recurrence relations.
Ww=o 6o

oy =y Otayn . S 0<k<pl,n=pk (5.6b)
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Table 5.4. Operations needed for Choleksy decomposition.

Decomposition Transpose Solve
Parallel Serial Parallel  Serial | Parallel  Serial
| Add/Sub. | 2p(p+1) 2p%p+1) | p+1 0 4p 4p?
Multiply | p(pt1) pip+1) 0 ] 2p 2p?
Divide pi+1 pi+1 0 0 p+1 pi+1]
Transfer p(p+1) 0 p 0 p+2 0
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| Ym =V | . (56e)
Kung's method (FIL1) is for a VLSI processor array, while Kogge’s (FIL2) and
Kuck’s (FIL3, FIL4) methods are for SIMD machines.

5.3.1. ‘Recursive Filtering for the VLSI Processor Array (FIL1)

- Kung [Kule,Kung80] has gi_v'e?n systolic arrays to do both recursive and
non-recursive filtering and has shown that these arrays are useful for both

» vtyp“es of digital ﬁltering.' (In digital signal proceSsing terminology, ‘‘recursive’

filter typically refers to any filter that includes a recursive dependence of the
output on previous outputs. A non-recursive filter is a filter whose output does
not depend on previous outputs.) The 'non-recilrsive array was given as an
example of a VLSI array in Section 3. The following is a descrlptlon of a VLSI
array to do recursive filtering. ’ :

Kung's recursive filter algorlthm computes Y by using one cell for each of _
the p recurrence equations of equation (5.6b). Figure 5.8 shows the linear array
of p+1 cells used to perform the computations. Each PE is the same as in the
non-recursive. filter algorithm, except that PE p is a dummy PE that reads the
R, data from PE p-1 and routes this same data to R, in PE p—1. Figure 59
shows the data flow for the array in Figure 5.8.

- Each cycle of the array consists of multlplylng R times R, and adding the
product to R This array can produce one y_ every two cycles for a‘total of

2M cycles to produce all 3 ym s for p <m<M

5.3.2.. SIMD Digital Recurrence Filter — Kogge (FIL2)

Kogge and Stone [KoSt73] have formulated é,n_ SIMD method for solving
recurrence relations using”recursive doubling. In this approalch‘ the computa-
tion of M terms of equatlon (5. 5) are found by rewriting the p equations of
(5 6b) as: ‘ | ‘

V=AY,

where
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Cell 0

\

0 : ,yout vxin
9 (dummy) § | S

_ Ym-1
.“

- output

R Figure 5.8. Systolic array to compute récursivé ﬁ‘lterbfor ‘p =2



'(dummy')_‘ | ‘(dutmmy) B ;(dumnjy)‘ B (dummy)

- Yp=2 1 N| i,FY

- Figure 5.9. Data flow for array in Figure 5.8.

- ¢9
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Ay A . 2y,
Y, = A=]o 0
Yim | 0 . .01 0]

Therefore, A is a p by p matrix, and Yisap by 1 vector. This approach uses
M/p PEs and requires an  initialization process plus: [log M/p)] steps Each
step, however, consists of multiplication of a p by p matrix by a p by 1 matrix
and ‘the transfer of the resulting p by p matrix to a different PE.  This method
is efficient when p is small and when M/ p PEs are available. ‘ ‘

5.3.3. SIMD Digital Recurrence Filter — Kuck

5.8.8.1. C_olitmn Sweep _Method.(FIL.?) }

‘ Kuck [Kuck77] presents two algorithms to solve equation (5.5). The first
is the column sweep method. It requires M—-1 PEs; one for each
- ¥l €1 < M-1 that is to be computed. Initially, y, is known. In step 1, y, is
broadcast to-all PEs. Each PE multiplies Yo by the:-correct a, and adds it to
SUM. SUM is a variable in each PE which contains the intermediate v {8 terms
from equation (5.6b) and a,, 0 < k < p, are the filter coefficients which have
been precomputed and stored in each PE. After sfep 1, SUM in PE 0 contains
y;- Then Y1 is broadcast and the same is done for Y1 as was done with Yo
This continues until Y is found. "This method ‘requires M—1 steps. Each step
consists of an addition, a multiplication, and a broadcast This method is
efficient when p~M and M PEs are avallable |

5.8.9.2. Product-Form Recurrence Method (FIL4)

Kuck’s second method [Kuck77] to solve equation (5.5) is the fastest
method known for computing recurrences. The method requires at most

(2+1log p)log M - i(lng p + log p):‘s‘t_eps. Each step consists of an addition
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and .multiplicatidn. The number of PEs used is at most p’M/2 + O(pM) for
p<<M. For large p, the number of PEs used is quite large. The following sec-
tion compares the four parallel recursive filtering algorithms.

5.3.4. Summary of Parallel Recursive Filtering Algorithms

Table 5.51is a summary of the four algorithms. Consider the problem of a
signal with M=128 samples and a p= =16 pole filter. Table 5.6 shows how many
“PEs (cells) and steps are needed by each algorithm. FIL3 and FIL4 are
.d,esi'gned for recurrences where p ~ M. For digital filtering, p<<M, which
makes FIL3 and FIL4 impractical for filtering applications. The number of
PEs per steps required by FIL4 are both upper bounds, therefore these
- numbers could be much smaller.. FIL2 uses the least number of PEs and steps,
 but each step requires a 16 by 16 matrix multiply, and a 16 by 16 matrix
“transfer. The matrix multlphcatl_on\ alone uses 256 _:scalar multiplications and
240 scalar additions. Therefore, FIL2V'm'ay be the slowest of the four.

FIL1 >is the only algorithm whose number of PEs does not depend on M.
It is also the only algorithm that can filter an arbitrary length signal. This is a
desirable property for real time processing.

5.4. Dynamic Time Warping

~ As discussed in Section 4.6.2, dynamic time warping (DTW) is a common
but time consuming method used in speech recognition.. Its purpose is to-com-
pare each known utterance in the vocabulary to the unknown input utterance.
The result of each comparlqon is a distance score, the lower the score, the
| better»the match. Myers et al. [Myer80], reports that dynamic time warping
uses from 50 to 90% of the computation time in word recognition on a serial
cbmputer. ~ About 80% of the dynamic_ time warp calculation time is spent
computing the 'lbcal distances béfween feature vectors. This makes dynamic
time warping a prirﬁe target ;when' tfy-ing to reduce the total recognition time.

‘One system mentioned in the literature to do dynamic time warping on a
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Table 5.5. Summary of parallel recu_fsive ﬁltéring algorithms.

PEs Operations Cycles to Compute

{cells) . Per Cycle Y P<m<M
B 1 scalar-add -
FIL1 p+l 1 scalar mult 2M
... 2 shifts _
_ 1 p by p matrix _ ‘
FIL2 ‘ M/p - mult. , [logZ(M/p)l
’ ' 1 p by p matrix + overhead
_transfer

1 scalar add
FIL3 M-1 1 scalar mult M-1
. 1 broadcast :
- |FIL 4 | <p*M/2+ O(pM) 1 scalar add < (2+log p)log M-
: p<<M 1 scalar mult (log?p + logp)/2




Table 5 6. PEs and cycles needed to filter a M= 128 sample signal with a p=8

pole recursive ﬁlter

69

1 + 0(2,048)

"PEs . Operations - ~Cycles to Compute"
(cells) -~ - Per Cycle Yo P <m<M
, “+ 7 1scalar add
FIL1 T ~ -1 scalar mult 256
' , 2 shifts -
| . ~1.p by p matrix- -
FIL2 8 mult. 3 + overhead
' 1 p by p matrix :
transfer .
- . o 1 scalar add ; o
"FIL3 127 .1 scalar mult 127
N ‘ 1 broadcast -
FIL. 4 | < 16,384 1 scalar add < 32
- -1 scalar mult- o
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VLSI processor array is the high speed array computer (HSAC) By ‘Burr et al.
[BAW81 WBAS83,BAW84]. The following section discusses the HSAC which
uses a full I by I grid of cells where I is the number of frames in: each utterance.
The section after that presents a reduced array which requires fewer cells but
still exp101ts the parallelism of the DTW task. ’

5.4.1. ngh Speed Array Computer — Full Array ‘ 7
 The HSAC presented in [BAW81] uses an I by I grid of cells to compare -

several vocabulary templates to the input template 51multaneously. Figure
* 5.10 shows a typical cell which has two serial input lines and two s}erial output
lines. The reference feature vector a; enters the cell_from the “bottom’ in a bit
serial manner as the test feature vector b; enters from the “left’” side. The cell
calculates the local distance d between them,'and outputs a; bit serially out of
the top of the cell to the cell “above’ it, while 1t outputs b; to,the cell to the
right. The calculation of ‘the accumulated distance, g, overlaps with the
 transfer of a a; “and b;. Following the calculation of g, g and d are moved bit
serially to both the cells above and to the nght over the same lines that
transferred the feature vectors. Overlapping the transfers with the calculations
helps reduce the overhead of the bit serial transfers. All cells on an x+y=k
(for k equal to some constant) diagonal execute the same instructions at the
same time, for example, cells (3,1), (2,2), and (1,3) perform the same instruc-
tions simultaneously; at the same time cells (4,1), (3,2), (2,3), and (1,4) execute
the same instructions, which are possibly different from the (3,1), (2,2), (1,’3)
instructions. This allows one diagonal of cells to compute their accumulated
distances, while an adjacent diagonal is receiving new feature vectors, thus
overlapping transfers and calculations. Figure 5.11 shows an example of how
sixteen of the HSAC cells are connected in a four by four grld The unknown
feature vectors enter the grid on the left, pass from cell to cell unchanged and
emerge on the right. The reference vectors enter from the bottom and pass to
the top. |
“To compare reference template A={a,a,,....ay} to test template
B={by,by,....b;}, a; enters cell (1,1) via R, while b, enters via U;. While
finding the local distance, a; Is shifted to cell (1,2) while b, is shifted to cell
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Figure 5.10. One cell in HSAC.
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Figure 5.11. High Speed Array Computer used to compute dynamic time warp.



73

(2,1). 2, is enters into cell (2,1) via Ry and by enters into cell (1,2) via U, at
the same time. All cells on this diagonal find the local distance between a,,b,
and a,,b, in paiallel while shifting a, and a, to cells (1,3) and (2,2) respectively
and shifting b, and by to cells (3,1) and (2,2). This continues until cell (LI)
computes g(LI) from vectors 2 and b;. g(LI) is the optimal distance for the
templates A and B. Flgure 5.12 shows the data flow for I=4. In general a; (b))
" enters at R; (U;) one loop” after a;, (b;_;) enters at R;_; (Up;). Cell (i,j) com-
putes d(i,j) and g(i,j), with cOmphtat;on progressing on a diagonal wave from
the lower left to the upper right of the array. For a W-word vocabulary, the
comparison of words X and Y can start one loop after words X—1 and Y-1 are
started by entering a (b;Y) in R; (U;) one loop after aX 1 bY! enters R, (U)).
For a W word vocabulary with 1 frames per word, the HSAC requires 2I-1
loops to compute the first companson and one loop for each subsequent com-
- parison, for a total time of 2I+W=2 loops. HSAC needs I2 cells if an adjust-
ment wmdow is not used. If an adjustment window is used, the cells in the
upper’ left and lower right corners can be omitted leaving an r cell wide “warp-
ing path” from cell (1,1) to cell (II). Only 2Ir-T-r2+r cells are needed, but the
same number of loops are required. For 1=40, the HSAC requires 1600 cells if
" no Adjustment w_i,n‘dow 'is. used; lf an adjustm'ent:ivihdow of r=8 is» used, 544
cells o o , ' ‘ '. |
504 is a large number of cells ‘The next section discusses reduced arrays,

which can use fewer cells. -

5.4.2. High Speech Array Computer — Reduced Arrays

- Implementing the HSAC with a full array of cells require a large number
(>500) of cells and is dependent on the problem size since the array must have
as many rows and columns as unknown frames in the utterance. West, Ack-
land, and Burr [WBA83,BAW&4] present the “reduced” array which overcomes
these problems. ‘The reduced array uses enough cells to compute an integral

number of diagonals in parallel. Figure 5.13 shows a reduced array with three

*A loop, as used here, is defined as the time al‘ter vector a enters the grid and before
: _vector a, 4 enters. . . ' :
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Figure 5.12. Data flow for HSAC.
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_-diagonals.' The large square‘ represents the I by I grid of a full array. Three
- pairs of vectors are being ’compared simultaneously The diagonals labeled A,
"B, and C are the three dlagonals of the reduced array which are doing the com-
parison. When the computatrons for the current diagonal are complete, the A
diagonal will move to the B dlagonal ‘and the B diagonal will move to the C
dlagonal The C diagonal. would move to the D dlagonal in -a full array, but
there is no D dlagonal in the reduced array. Instead the C diagonal moves to :

the A dlagonal in the reduced array.

“The reduced array is therefore sweeplng the matrix space of the I by I grid
‘as shown in Frgure 5.14. The advantages of the reduced array are:

1) Fewer cells are used. ‘ ,
| 2) The number of dragonals used is independent of the problem size.

3) 3) The number of cells can be traded off for performance
- The dlsadvantages are: ‘ o : . |
1) Some cells are idle durmg the computatlon as shown in Figure 5. 14. ,
2) Shghtly more. complex hardware is needed to recrrculate the data from the
' rlght edge of the reduced array to the left..

3) Fewer pairs of utterances can be compared at a time.

The smallest size a reduced array can be 1 is one dlagonal 'If no adJustment
Wmdow is- used, the dlagonal wrll have I cells. -If an adJustment window is
“used,- 1 cells are needed - The-one. dlagonal reduced array can compute one
comparison in 21 loops. B o

' 'Thls:HSAC» can not use pruning since pruning aborts a comparison if at
some’ time during the comparison it-is ‘apparent the current comparison will not
be thbe closest. match. Once ‘this. array starts a'comp‘ariSOn it is difficult to
vabort it without aﬁectrng the other comparlsons that are occurrlng in parallel R

- [WBA83]
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Figure 5.14. Virtual propagation of diagonal reduced array (from [BAW84]).
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5.5. Sumimary

This section - presented parallel algorithms for autocorrelation, LPC
analysis, dynamic time warping, and digital filtering. One of the filtering algo-
rithms, the three autocorrelation algorithms, and the LPC algorithm are for
the SIMD machine. Three of the dynamic time warping algorithms and the
rest of the digital filtering algorithms are for VLSI arrays. Several new algo-
rithms for speech processing for both SIMD machines and VLSI processor

arrays are presented in the next chapter.
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6. NEW PARALLEL ALGORITHMS FOR SPEECH PROCESSING

The following are several new algorithms for speech processing on SIMD
-machines and VLSI processor arrays. This chapter presents four parallel algo-
rithms for digital filtering, one for autocorrelation analysis, two for linear time
- warping, along with three algorithms for dynamic time warping. Each section
presents an- algorithm and then discusses the machine requirements and speed

up obtained by the algorithm.

6.1. Digital Filterlng

The basw operations in dlgltal filtering are the computatlon of sum of pro-

ducts terms, with output y - glven by

Ym = fj Y m-k +- i: bxpxk P<m<M - (8.1)

k=1 k=0 A
where x, is the input to the filter at sample m, the ek_’s and b,’s are the filter
coefficients, ‘and M is the number of samples in the signal to be filtered. The
first sum in (6.1) represents a recursive filter. (In digital signal processmg ter-

minology, ‘“‘recursive’’ filter typically refers to any filter that includes a recur-

“sive dependence of the output on previous outputs SO the filter in (6. l) is a
recursive filter. To make a distinction between the recursive and non-recursive
_portions of the computation, we ‘will refer to (6.1) as a “generalized” recursive
filter, and will use the term "re‘cursive filter to refer to a filter having only a
recursive dependence.) In the recursive filter, the dependence of output ¥ OD
the previous y, . values, 1 < k < p, takes the form of a linear recurrence rela-

tion. The second sum in (6.1) represents a non-recursive filter, in whic_h the
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current output value d'epends' only on the current and q previous input values.
In digital filtering applications, non-recursive filters are used to realize ﬁnite
impulse response (FIR) filters, and it is common for q to be as large as 250
[RaGo75). In digital filtering apphcatlons generalized recursive filters are used
to realize infinite impulse response (IR} filters (e.g., Butterworth or Chebyshev
" filters, or filters for linear prediction [Makh75,5i80b}), with p < 20 [RaGo75].

~ Real-time applications often use dlgltal filtering as a single processing step

’m tasks requmng ~other extensive computations. It is therefore desirable to

consider fast lmplementatlons The computations required for digital filtering
are also characteristic of the general class of problems involving linear systems

and linear recurrences. Some work in the use of parallel systems for solution of
such problems has been reported. Kung [KungSO] presents systolic array algo-

rithms to implement the two basic types of filters, non-recursive and recursive,

‘that were described in Sections 3 and 5.3. Because of the recursive nature of
‘the computation, the systolic array appears to be a natural structure for imple-
menting the digital filter. Kog'ge and Stone [KoSt73] have formulated an SIMD

method for solving recurrence relations 'using recursive doubling. - Kuck

[Kuck77] presented two SIMD algorithms for solving recurrence relations.- The-
~ first used the column sweep method, ' and the second used a product-form

recurrence method All these approaches were dlscussed in Section 5.3. |

Thls sectlon ‘presents five parallel algorithms to perform dlgltal filtering.
Four of these aigorithms originally appeared in [YoSi81]. The first (VLSI1) is a
ksrmple extensron of Kung's systolic array algorithms, showing how the non-
recursive and recursive systohc arrays can be comblned in a stralghtforwardr
way. The second (SIMDI1) is an SIMD algorithm derived from the VLSI1
approach. The third (VLSI2) is an VLSI processor array algonthm derived
from the SIMDI1 algorlthm The fourth (SIMD2) is an SIMD algorithm that
assumes more powerful processors and more flexible inter-PE communlcatlons
than the VLSI-ba.sed algorithms. The fifth algorithm presented (SIMD3) is an
extension of the fourth algorlthm to allow problems of varying sizes (number of
coefﬁcrents) to be run on a fixed number of PEs. Together, the fourth and fifth
algorithms provide a general method for dealing with recurrence relations in an
SIMD system. - o o | '
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6.1.1. VLSI ProceSsor Array Al‘goiithm VLSIl‘

: The first VLSI processor algorithm presented here combines the non-
recursive (FIR) and recursive filter systolic algorlthms covered in Sections 3
and 5.3.1 into a generalized recursive filter algorithm. It is based on a hnear
array of cells, w1th each cell holding one filter coefficient and data flowing in
opposite directions in two pipelines. One pipe. circulates the input data (x,
‘values) while the other passes partlal results in the y computations The gen-
eralized digital filter of equation (6.1) can be. computed by combining the two
algorlthms discussed in Sections 3 and 5.3.1. The recurrence relatlons used for

the generallzed digital filter are:

Ig))_ =0 | ,

yr(r¥_+l) S bq;k‘xm_;ﬂ' o 0< k <q e
=y tay, gl Sk P+q o2
¥ = ylptaty) ’

Figure 6.1a shows that the recurrences can be evaluated by plpelmmg the x,
-and y,(n) values’ through p+q+2 linearly connected cells. Input x,, feeds into
R, in cell q and output Ym appearsin R, in cell p+q. Figure 6.1b is the data
flow diagram for the linear array. Each column of the data flow diagram
represents the contents of each register in each cell after a given cycle. Moving
from left to right shows how the data changes from one cycle to the next. The
arrows show where R, and R, are transferred on the next cycle. ‘As in the
component  algorithms, only half of the cells are active during a glven cycle.

Before the first cycle, the correct coefficient is loaded into each cell, and the R,

~and R, reglsters are set to zero. The first q cycles shift x, from the input line
- in cell g to R, in cell 0, x; from cell q to R, in cell 2, ..., and X q2) to R, in cell
2[q/2] (ie., 1n1tlahzmg the array by placmg the first [q/2]+1 input values in
every other cell, starting with X In cell 0). After ptq+1 more cycles, every‘
two cycles of the VLSI array compute one output value, where during each
cycle, the operations performed are the.51multa_neous transfer of data in the

two pipes, one addition, one multiplication, and one assignment.
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6.1.2. An Improved Parallel Filtering Algorithui — SIMD# and VLSI2:
A major drawback to the VLSI processor array algorithm. is thatt only halff
of the cells are active during a given cycle, so that a new y, value is computed
everyvtwo cycles of’ the VLSI array. This problem can be overcome on the
SIMD machine by using a- data broadcast. A broadcast- sends- a-data item: in:
one PE to a speCIﬁed set of PEs A broadcast may be 1mplemented elther by
having the. control unit broadcast the data item to all the desired PEs. (e:g
- Illiac IV [Barn68 Bouk72] or by using the interconnection network to transl'er_
the data 1tem to the desired PEs (e.g., Cube [SiMc81b] or ADM [SlMCSla] nct-

works) See Section 2.5 for more information on broadcasts.

In the first SIMD ‘algorithm (SIMD), each PE holds one ﬁlter coefﬁcrent
as in the generalized VLSI array algorithm. The upward flowing pl_pehne from
the VLSI processor array structure, which was used to disseminate‘the inbu_t 'x
values and the completely computed y values, is replaCed by twobroad-castS of
data. One broadcasts the current x value, and ’the:other the newly computed’_
y value. By makmg this replacement every PE is active durmg every cycle
Figure 6.2 shows the data flow dlagram using this technique. As each partlal y
shifts into a given PE, the correct coefficient and x - (in PEs 0 through p) ory
(in PEs p+1 through p+q+ 1) are there to meet it. Moreover, if a given PE
receives an x as a result of the broadecast, it will not receive a y as a result of
the broadcast, and vice versa. If the interconnection netWOrk,(rath‘er'than the
control unit) performs the broadcasts, it may be possible to do. the two broad-
casts to disjoint sets of PEs simultaneously [Sil\/lcS_la,SiMcSlb]f Whether this
is poss'ible will depend on factors such as the type of interconnection network
used, the actual sets to which the data items are being broadcast, and the way'
in which the x values enter the system. The data flow of the partial results
(the y,g‘+1) values) and _the .placement of one coefficient per PE is the same as
the VLSI processor array algorithm. The replacement of the upward pipe by
two broadcasts simplifies the synchronization problems, and allows all PEs to
be active at every step. Every cycle of the SIMD1 algorithm produces one out-
put value; the operations performed in one cycle are the two possibly simul-
_taneo_usbbroadcasts, one data transfer of partial results (the remaining pipe),
one addition, one multiplication, and one assignmeht’ This cycle is clearly
longer than the cycle in the VLSI array; however an output is produced every

cycle instead of every two cycles
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The pr1nc1pal attributes of the SIMDI algorlthm above are that ‘
1) each PE holds one filter coeﬂiclent and always computes the same term (i.e.
* superseript. k) of the recurrence for the Ym values , ’
; 2) a ‘pipeline srmllar to the VLSI array plpelme passes partlal results from one _
PE to the next, and - ' o '
3). broadcasts are used to dlssemmate new X ‘tnd y values to- the PEs i in whlch _

they are needed

The use of broadcasts is the only archltectural dlﬁ'erence between the'

- SIMD1 algorlthm and the VLSII algorlthm If the VLSI processor array can
~ broadecast data, it can execute the same SIMD1 ﬁltermg algorithm as the SIMD
-~ machine. Therefore the second VLSI algorlthm (VLSI2) is the same as the
_ SIMDI algorithm. The major differences are: R SR '
| 1) The broadcasts in. the VLSI2 algorlthm will occur 51multaneously w1th the

_shifts, whlle the SIMDl broadcasts and shlfts must be’ performed sequen-
_ . tially. > : SRR L
2) The broadcast time in the VLSI2 algorlthm should be much shorter than the

- SIMD1 algorlthm since the VLSI2 algorlthm uses a ﬁxed 1nterconnectlon :
‘ ‘network. ‘ - i
Section 6.1.5 wrll-compare these algo‘r'ithms.

- 6. l 3. An Improved SIMD Algorlthm SIMD2 |

The SIMD1 algorithm can be improved by arranglng the data SO that par-
tial results (y,(,l‘“) values) do not have to be shifted from one PE to another.
In the SIMD2 algorlthm, the same PE performs all the steps needed to compute
a glven Ym, 2s shown in- Flgure 6. 3 Each PE holds all of the filter coefficients,

" and uses an lndexmg operation to select whlch coefﬁc1ent to use at a glven ‘step o

of the algorithm. Partial results accumulate within the PEs, rather_than being
'~ pipelined through them. The data transfers required are two (possibly simul-
taneous) broadcasts, one of the current input signal value, and one of a com-
pleted output ‘value. “All PEs are always active, each cycle of the algorithm
- completes one output, where the computations during a cycle are one indexing
operation to select a filter coefficient, two broadcasts,,‘. 'one"_addi»tion,‘, one
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- multlphcatlon and one a551gnment Flgure 6. 4 shows that for thlS SIMD2 algo-

-rlthm, the coefficients are arranged as a vector in each PE This arrangement_

allows each PE to use “the same lndex into the vector. to access the ‘correct

,coefﬁclent f;for ‘the cycle at cycle 'm, . each PE: ~ accesses - _its

COEF [m mod (p+q+1)], where" p+q+1 = N = the number .off-}PE»s.. The

SIMD2 algonthm works on the computat1on ‘of . p+‘q+I ¥m's sim'ultaneously by

having each PE at a. different stage in the computation. of its- own ym The

f algorithm is agaln based on the recurrence relations in equatlon (6.2).: For its -

own 'y, each PE is computmg y(k“) for a different value of k, 0 < k. < p+q.

‘The data is arranged so that if PE i completes y, after cycle t, then PE (i+1)

mod- (p +q+ 1} will.complete Ym+1 after cycle t+1. Y is-used in. computing

Ym+j for 1. < i <p,so after PE i computes: Yms its value is broadcast to PEs

(i+j) mod (p+q+1) for 1<j< < p. In general PE m mod (p+q+1) com-

- putes.output Y and y, is completed in cycle m.

Flgure 6 5 gives the SlMD2 algorlthm that executes s1multaneously in all :
PEs " Each PE will-have its own values for the program variables. Inltlahza-' .

' tlon is handled by broadcastlng 0 for the value x,, durlng in the ﬁrst q cycles of
"~ the algorlthm 'Combined with the mltlahzatlon of SUM to 0 this ensures that

y|m] = 0 for m < 0, ‘At cycle q+1 (ie, m = —p) Xg IS’ broadcast followed by

- Xy on the next cycle etc. The computatlon of yo is completed during the cycle
when m =0, followed by completlon of y; when m =1, ete. The algorithm
» assumes that during each cycle, the current input value'x is broadcast as vari-

able x from the control unit, and the interconnection network broadcasts the
- newly completed y value from the PE i in ‘which it was computed For Slmpll-
~ city, the algorlthm is written so that all PEs receive the broadcast y and x

values, and each PE selects whlch one it will use in accumulatlng the next term
in its sum. To perform this selectlon each PE holds a vector of ﬂags in which

"‘ FLAG[I] is set to one if COEF[I] in that PE is an “a” coefficient, and set to-

zero  if itv is ‘a “b” coefﬁc1ent By - determlnlng whether its

(Y% 2)

_,COEF[m mod (p +q+1)] value for cycle m is an ‘“‘a” or b coefﬁc_lent, each
W

PE can select whether 1t_ is to use the newly recen_red y value (w1th an ‘“‘a
coefﬁcient) or the input x value (with a “b’" coefficient) for cycle m.
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PE COEF[0] COEF[1] COEF[2] .... COEF|p+q-1] COEF|[p+gq|

0 2y bq . bq_l ) vere bq_2 o 29
1. 22 K by by a3
2 a5 Ay a .o by a,

|4 by, ap «'ﬁrx 3p-2
pti b, by 3y » Ay by
.qtp-1 bes . by bq—a by by
q+p ‘ bq bq—l - bq_z N bq_s ay

Fvigure 6.4. Skewed coeflicient storage for SIMD2 algorithm.
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/*
ADDR Address of PE (e.g., ADDR = 0 in PE 0)
DTRin Data Transfer Register input to interconnection network
DTRout . Data Transfer Register output from mterconnectlon network
. coef]]  Vector of coefficients (see Figure 6.6)
flaglij Equals 1 if COEF(i] is an “a” coefficient
sum Contains partially computed y,
m Index of y value to be completed in this cycle
(SUM =y, in PE (m mod (p+q+1))
*/
sum « 0

FOR m — ~(p+q) TO M-1DO

/* select the PE contalmng the newly */
[* completed y value: y, . */

- BROADCAST sum FROM PE m-1 mod (p+q+1) TO DTRout

WHERE ADDR = m~-1 mod(p+q+1)

_ SUM « 0 [+ start a new sum in that PE */
" ENDWHERE
WHERE flag|m mod (p+q+1)] = 1 DO [+ In each PE, select to use */
: tmp + DTRout [* either the broadcast y value ¥/
ELSEWHERE :
tmp + x : /* or the new x value, Xm+p */
ENDWHERE ‘

sum « sum + tmp * coeflm mod (p +q+1)]

| Figdre'6.5. SIMD2 generalized digital filtering a]gOrithm.b
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. 8.1.4. 'SIMD_ Solution of General Linear Recurrence Equations

The approach p‘resentedvin the SIMD?2 algorithm for digital filtering can be
" applied to the solution of general‘-linea’r recurrence equations of order p, given
~ y;for0 < i< p, solve:folf ¥, for p < m < M, where '

: yfﬂ:i a’m,k'yt‘n—k + B, . s
k=1 .

" The SIMD algorlthm to handle the recurswe dependence uses N = p PEs, with

~"PE m mod P computlng ym" ThlS PE completes computatlon of y, at cycle m,

then broadcasts its completed y,, value to PEs (m+j) mod p, for 1 <j < p.
“PE i, 0<i <N, will hold the coeﬁicient sets (a “‘,k’é) for all m for which
i = m mod p- “The coefficient sets are skewed in a manner analogous to that in’
Figure 6.4. In particular, let z be such that z mod p=0(e,PEO computes
Y,) Flgure 6.6 shows that the coefficient sets a(z+])k for 0 < j < p are stored.
At eycle m of the computation, each PE will access its’ COEF[m mod pl. For
example at: cycle m, PE- m’ mod p is completing computatlon of y,,. From Fig-
~ure 6.6, this PE accesses 8,1, Which is the coefficient used with Ym-1, and
- which is the last term in the recurrence to be accumulated in computing y,, in

_the . SIMD algorlthm At the same time, ‘each other PE is ‘accessing the
approprlate coefficient for its computatlon Depending on the form of the B’s,
it. may be desirable and p0551b1e to use addltlonal PEs to compute these terms.
- (This is the case in the digital ﬁltermg algorlthm, when B, is considered to be
the (q+l) -term non-recursive sum in each Yo) This general method will reduce
the number of multlphcatlons and addltlons in solving an. order p, M-point.
- recurrence from p(M=p) in the serlal algorlthm to M+p in the p-PE SIMD

| ~ method... The- overhead in the SIMD algonthm is M+p ‘broadcasts. The

broadcast-based algonthm for dlgltal ﬁlterlng therefore provides an efﬁc1ent
general method for solvmg linear recurrence equatlons on an SIMD machine. ‘
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Figure 6.6. Skewed coefficient storage for solution of general linear recurrence
equations. '
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6.1.5. Comparison of VLSI Processor Array and SIMD Algorithms _.

_ Table 6.1 shows the times for the serial and parallel generalized digital
filtering algorithms. (The “Preem’” entry will discussed later in Section 6.1.8.)
‘The parallel algorithms can be compared in three ways:

1) total time to compute oney., | |
2) number of y.'s computed per unit time (throughput) (the throughput can
also be considered by measuring the time between successive y,'s), and

3) speedup over the correspondmg serial algorithm.

The times considered are for the steady state operation of the algorithms.
Although the algorithms require some initialization steps (for example, to dis-
tribute the first iq/2]+l x’s in the VLSI processor array algorithm), most of
~ the processing is in the steedystate operation.. -

" The time to compute one ym value is the time from the beginning of the
computation of ¥, until the time that y, is available as an output. In the
VLSI processor array algorithms and SIMD1 algorithm, computation of each y,
starts with the calculation of the bx_, term in PE/cell 0 and completes on
the inclusion of the alym_l term in the sum of PE/cell p+tq. (In the VLSI1
algorithm, y, is avallable at this- pomt or access to y,, may be delayed by one
array cycle, until y, arrives at the output line in the dummy cell.) For all of

these algorithms, the time to compute y,, is the time to move, via the algo-
| rithin, from PE/cell 0 to PE/cell p+q, comprising p+q+1 algorithm cycles.
The number of arithmetic steps to compute one y is therefore the same as in
the serial algorithm.. The VLSI processor array algorithms have an overhead of
p+q+1 shifts and the SIMD1 algorithm has an overhead of p+q+1 shifts and
2(p +q+1) broadcasts. (This section assumes that the two SIMD broadcasts do
" not occur simultaneously.) The VLSI2 algorithm has p+q+1 shifts‘and bread-
casts, assuming. the two broadcaéts can occur simultaneously. In the SIMD2
algorithm, the time to compute one y is the time for a single PE to perform the
arithmetic operatlons (e, “the serial tlme) plus the time for p +q+1 broadcasts
of x values and p+q+1 bro_adcastsvof completed y values. As in the SIMDl
algorithtn brbadcests of Xy, +1 through x4, and of Yin-q-p through yp_., con-
tribute to the tlme to compute Ymy even though they are not used in the y,

' calculatlons



Table 6.1. Execution times: for serlal VLSI,

and SIMD digital filtering algo-

rithms.
Output(s) Additions Multiplications Shifts -_Broadcasts ‘Speedup
Serial - 1. ptq+1 ptq+l1 0 0 ‘
M M(p+q+1) M(p+q-+1) 0 0
VLSI1 1 p+q+l ptq+l -ptqtl 0 A
M 2M-1)+p+qtl 2AM-1)+p+qtl 2M-1)+p+q+1 0 - (p+q+1)/3
VLSI2 1 ptq+1 ptq+1 . ptq+l ptqtl ,
M. M+p+q M+p+q M+p+q M+p+q  2(p+q+1)/3
SIMD1 1 ptq+1 ptq+l - ptqt+l 2(p+q+1)
M M+p+q M+p+q M+p+q 2(M+p+gq) 2(p+q+1)/(2+3t)
SIMD2 1 ptq+1 ptq+1 0 2(p+q+1)
M M+p+q M+p+q 0 2(M+ptq) (ptqt1)/(1+t)
| Preem M 1 1 1 0 M :

b
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. For all the parallel algorlthms the time to compute M output values is the
tlme ‘to compute one y value plus the time to compute (M~1) subsequent y
values. The latter time is obtalned by cons1der1ng the time between successive

o ) y values. The trme between successive y's in the VLSIL array is two additions,

multlpllcatlons and shifts srnce one y is computed every two cycles. The
VLSI2 algorithm takes only one: addltlon, multlpllcatlon and shift/broadcast.
* The SIMD algorithms on the other hand do one addition, one multiplication,
and either two broadcasts,and one shift for SIMD1 or two broadcasts for
SIMD2 between succ'essi‘ve 'y values, since they compute one y every cycle. -
Depending on the SIMD broadcast versus VLSI processor array shlft time, the
* second SIMD. algorrthm may have a greater complete throughput

" The speedup of an algorrthm is (serial t1me/parallel time) [Kuck77].
v 'Assume that additions and multlplrcatlons require one time unit on all
-machlnes and data transfers (shlfts or broadcasts) require one time unit on the
"VLSI _processor array and t. units on the SIMD machine. Also assume shifts
and broadcasts oceur 51multaneously on ‘the VLSI processor array and sequen-
| tially on the SIMD machine. The value of ¢t will depend on a number of fac-
tors, 1nclud1ng 1mplementatron detalls of the VLSI and SIMD:machines. Table
6.1 shows the speed ups for- the parallel algorlthms assuming that M >> p+q.
If t=2, SIMD2 will have the same speed up as VLSIL. If t= 1/3 SIMD2 will -
_match the VLSI2- algorithm... If a multlstage mterconnectlon network such as -
the multrstage Cube [SxMcSlb] or. Augmented Data Manlpulator [SrMcSla] per-
forms: the broadcasts, it is: unhkely that t < 2. Unless the broadcasts can be
performed srmultaneously, the speed up for the systolic array is significantly
greater than for the SIMD algorrthm However smaller values for t may be
fea31ble If the. control umt performs the broadcasts then the systollc and |
' SIMD algorlthms may have comparable speed ups ‘ ’

-6 1 6._ Varylng the Problem Slze on an Sll\'ID Machlne

The VLSI processor array and SIMD algorlthms can. also be compared
wrth respect to the ease w1th which the machme—srze/problem—srze relatlonshlp
- can be changed. In partlcular assume the above technlques have been used to ’
1mplement an order p+q dlgltal ﬁlter Con51der the 1mpact of deciding to use
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a higher order filter. ‘Let the new filter. have p’ +q +1 coefﬁcrents where
p' +q" +1 > ptq+1. With some _rnodlﬁcatlons, the SIMD2 algonthm can
implement a filter having p’ -l-q’ +1 coefficients with feWerthan p' +q +1
PEs. Flgures 6.7 and 6. 8 show the data allocatlon dlagrams for two dlﬁ”erent
problem sizes. Case A is for N = pt+q+1 ‘and case B ~ for
N=p' +¢ +1 < p+q+l Each rectangle in the diagram represents the cycles
during which a given PE is computing a certain y. In each rectangle are the x
and y values the PE needs durin'g each cycle of the computation. In the origi-
nal algorithm (case A, Figure 6.7) PE m mod (p +q+1) computes output y, .
Since each Yo computation reqmred p+q+1 cycles, as soon as PE m mod
(p +q+1) completed cornputatlon of ¥, computatlon of Ym+p+q+1 was about
to be started. “The computatlons were skewed so all recurrences that required'a
given x, (or Ym) as input were computed during the same cycle. Case B (Fig-
ure 6. 8) shows the data allocation needed to 1mplement a p' +q +1 coefficient
 filter with N < p' +q' +1 PEs. Each PE again performs all the computations
for a given output, with y, computed in PE m mod N. However, since the
number of cycles to compute ymvis greater than the number of PEsk computa-
tion of y, +N° does' not begln until ym is completed Cycles are classified into
two types o
1) trans:ent cycles, deﬁned to be cycles in whlch any PE starts to compute a

new y value, and. ‘ '
2) steady state cycles, cycles that are not transient.

Followmg every set of N transient. cycles there are p’ +¢' +1-N steady state
cycles. Also followmg every set of N cycles during which y values are com- |
~ pleted, there are p/ +q’ +1-N cycles during which no new y values are com-
pleted. During the set of N transient cycles,, each PE can be placed into one of
two classes: . ' | |

1) PEs that have started computmg a new y value since the beglnnmg of the

~set of transrent cycles, and '

2) PEs that have not started computing a new y value
At the start of the set of transient cycles, all PEs are in class 2. After each
transient cycle, one PE completes its y value and therefore moves to class 1.
At the end of the set of transient cycles, all PEs have moved to class 1. During -
the steady vstate cycles, the computations are skewed as in the Case A
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Figure 6.7. Data allocation for SIMD machine algorlthm with N = p+q+1

PEs, shown for p=2, q=2.
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Flgure 6: 8 Data allocatlon for SIMD machme algonthm w1th N < p+q+1
shown for p“2 q=2, N"4 :
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| 'computation" so all recurrences requiring'a given‘)‘(" (or y,,) as input are com-

puted during the same cycle. However, during the transient cycles, the PEs in
class 1 need a different set of x’s and y's than the PEs in class. 2 (see Figure

68). - | -

o Flgure 6.9 g1ves an algorlthm to 1mplement a ﬁlter where the number of
PEs is less than the number of ﬁlter coefficients. Lines 6-16 compute the -

{ - steady state cycles, while lines 18-39 handle the transient cycles Line 25

_broadcasts the newly computed y value to all PEs and line 29 stores the newly
‘.computed value 1n ‘the vyl vector The variable diff is used to determine
whether a PE is in class 1 or 2. If diff= 0, the PE is in class 1; otherwise,
© diff = A is the difference in mdlces of the x and y vectors between the PEs in
\class 1 and the PEs in class 2. ‘Execution time is p’ +¢' +1 cycles to compute
one 'y . value and . lM/Nl p +q +l)+((M—1)modN) cycles to compute M y
values For large M, if N-= (p' +¢ +1)/r for r > 1, then the throughput of |
- the N-PE algorithm is reduced by approx1mately a factor of r from that of the
(p! +4' +l) -PE algorithm.. ThlS ab111ty to adapt the SIMD algorithm to
different problem sizes means that a fixed set of PEs can be used to implement.
‘d1g1tal filters. Alternatlvely, on reconﬁgurable systems in wh1ch it is poss1bleb
to vary the number of PEs that act together as a virtual SIMD machine [e g,
Sleg8l] it means that for a glven dlgltal ﬁlter the v1rtual machlne size can be
v-tallored to the partlcular apphcatlon Fewer PEs may be chosen if speed
requrrements do not requlre ‘the use of p+q+1 PEs If, as w111 most often be
the case, the filtering lS ‘one processmg step in a sequence of algorlthms fewer
'than p+q+1 PEs may be chosen to make the dlgltal filtering algorlthm com-
: patlble w1th other SIMD algorlthms to be applied as. part of the complete task.
_This- method of adaptmg the SIMD dlgltal ﬁlterlng algorlthm to fewer PEs - |
'also apphes to .the solution of general hnear recurrence equat1ons The
broadeast-based approach therefore_ provides a. general_me_thod for using an
: S’IMD_’_'systemto. 'solv,e' linear recurrence equati'ons;b of Aorder_piusing‘ p or fewer
PEs. . oo R o
In contrast to thls ﬂexrblhty in the SIMD 1mplementat1on VLSI processor

o | :array needs a major hardware mod1ﬁcat1on (addmg more Tegisters to add ‘addi-

tional coefﬁcrents and Y values) to handle a dlgltal ﬁlter of larger size. It is

generally easrer to add. more cells to the array than to modlfy the eXIStlng cells..



s ADDR Address of PE (ie., ADDR = 0 in PE 0)

A - difference in indices between PEs in class 1 and 2
dif = OifPEisinclass1, Aif PE IS in class 2 '
x[] Input data {x[m] = 0 form < 0)
(stored in each PE before start of algorithm)
y[] Output data (y[m] = 0 for m < 0)
coef[ - Vector of coefficients (see Figure 6.6)
flaglij = Equals 1 if coef[i] is an “a” coefficient
:,sum ‘ . Contains partially computed y, */
diff « 0
¢+~ ptq+l
A~ c=N
sum + 0

FOR m « 1-N TO M—-l DO
IF m mod N = 1 THEN /* Do steady state recurrences */.
[* ie. no new y, is started */
FOR i+« m TO m+DELTA-1DO
- WHERE flaglimod ¢] = 1 DO
tmp « y[i~1-DELTA]
ELSEWHERE
» tmp + x[1+p-DELTA]
ENDWHERE

sum « sum + tmp * coef]i mod c]

dlﬂ A
WHERE ADDR = m=1 mod N DO /* a new y,, is computed in
A . PE m mod N #/ -
’ .DTRin +~ sum /* Send newly computed y value to */
. /* all PEs by placing it in the DTRin. */
sum +~ 0 - . [* Clear SUM for next y,; */
/* value to be computed in this PE. */
diff + 0 /* When diff=0 in a given PE, */
: : /* the given PE is in class 1 */
'BROADCAST . [* Broadcast the SUM placed in DTRin */
‘ : ~/*in line to all PEs. +/
[m—l] - D’I‘Rout ' /* DTRout contains Yot */

/* in all PEs */
WHERE ﬂag[m mod c] =1DO [+ 1If COEF[s are “a” values */
/* load y values into TMP. */
tmp + y[m—1-DEL TA +difl]
ELSEWHERE ~ /= if COEF[|s are “b” values, */
~ [* load x values into TMP. */
tmp « x[m+p—DELTA+d1ﬂ']
ENDWHERE |
sum + sum + tmp * coef[(m + diff) mod c|

Figure 6.9. ‘SIMD digital filtering algorithm fdrN < p+q+1 PEs.
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Therefere a VLSI process:'of :irray of size p+q+1 cannot easily implement a
larger problem size. -In terms of flexibility to adapt to changing problem sizes,
then, the SIMD system has the. capability of handling varying problem sizes
‘under software control. Adapting a VLSI processor array to a problem size
different ‘than that for which the ‘array was designed requires hardware
modiﬁeation. For some computing environments, this difference in flexibility
may be signiﬁcant, and would dictate use of the possibly slower but more flexi-
ble SIMD system. '

6.1.7. Summary of General Digital Filtering Algorithms

‘Synchronous parallel structures for implementing digital filters have been
presented.- Both VLSI processor arrays and SIMD implementations yield
significant speedups over serial processing. The SIMD method provides a gen-
eral approach to solving linear recurrence equations on an SIMD system. For a
given application or envirenment, the choicetof VLSI processor or SIMD struc-
ture depends on a number of factors. Although exact timing is implementation
dependeht, it is most likely that the VLSI processor array approach will be fas-
'ter then the SIMD algorithms. System cost will also be less for the VLSI pro-
cessor array. On ‘the other hand, the SIMD system can accommodate changes
in the order of the filter, whereas the VLSI processor array requires hardware
m_odlﬁcatlon to handle a change in problem size. Moreover, if the filtering is
simply one step in a series of ‘operations, no additional hardware is needed in
the SIMD system. The data allocation resultlng from the SIMD algorithm,
where the output data is dnstnbuted across the PEs, is a useful allocation for a
number of SIMD sngnal processmg algonthms lncludlng computation of auto-
correlation and covariance coefficients [SlSOb] and FFTs [SMS79]. The ability-
to run the SIMD “algorithm on dlﬂ‘erent machine sizes improves its potential
compatlblhty w1th other SIMD algorlthms which, together w1th digital filtering,
compnse a complete slgnal processmg task. Therefore, for a particular environ-
B ‘ment, speed requlrements cost the lmportance of flexibility, and the context in
whlch the algorithm is to be used may all be factors in selectmg a parallel

structure for dlgltal ﬁltermg
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6. l 8 Parallel Preemphasxs Flltermg ‘

Fortuna.tely, the preemphasrs ﬁlterlng which is used before performmg :
autocorrelatron in a speech processing system is much simpler than the general
dlgltal filter. Figure 6.10 is the Flock Algol algorithm for lmplementmg

CH(z) = 1 - 095%™

The signal is broken up lnto frames contalnmg N samples each where N is the
number of PEs. Before execution, sample i of the input data is in PE i for
0 <i< N. After executron PE i contains output sample i for 0 <i<N.
The number of PEs used need not be equal to the number of samples per LPC
frame (M). However, they are often the same since the autocorrelation algo-
rithm which follows uses M sample frames with the same data arrangement as
output by the filtering algorithm. Line 1 sets up the intércOnnection ‘network
for a.Shift +1 transfer. Line 2 transfers the input data so that PE i contains
sample i in input and sample i-1 in tmp for 1 < i < N. PE 0 however has
sample N—-1 in tmp since the shift transfer wraps around. Lines 4-8 handle the
wrap around from PE N-1 to PE 0 by saving the value in tmp in PE 0 for
later and using the sample from the previous time the algorithm was used.
This value was sample N—1 from the previous N samples, which is the value
that is needed. The value that wraps a.round is saved in oldvalue untrl the
next tlme the routine is called.

After line 8, PE i has both sample i and sample i~1, therefore the ﬁlter
operation is easily performed by the operation in line 10

The numbers to the right of the line numbers are the approximate execu-
tion times in ps for each statement. These are based on the program presented

in Section 7.2. Since there are no loops, the time complexity is O(1).
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000 AT D Lo U8R e

e ) |
" Flock Algol program to do preemphasis filtering.
H(z) = 1-0.96 * 7 *+ -1 :
. input: input data » ,
output: . filter output data
tmp,tmp2: temporary values
[ | '
ine Time in ps
3 . USE Shift +1
8 - TRANSFER input TO tmp -
7. ’ WHERE ADDR = 0DO /* Get value.from previoﬁs call */
0.5 . tmp2 + tmp . o . :
1.5 , tmp + oldvalue /* Switch tmp and oldvalue *[
L5 : oldvalue «— tmp?2
2 ENDWHERE
0 1275 oﬁtput - input + tmp * 0.95

Figure 6.10. Algorlthm for preemphams ﬁltermg Left column is the execution
‘time assuming an 8 MHz M068000
(See Section 7.2.) -
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6.2. Autocorrelation Algorithms"

Section 5.1 presented three SIMD algorithms for computiﬁg autocorrela-
tion coefficients. This section presents another algorithm for the same task. It
is a variation, with throughput improvement, of ’Ashajaya,nt»hi’s [ASV7'9’]v SIMD
machine autocorrelation algorithm. Ashajayanthi’s algorithm (AUTO3) is
presen’ted' in Figure 5.4 in Section 5.1.3. A direct mapping of it into a VLSI
processor array results in the array in Figure 6.11 Each cell ‘pérforms the opera-
* tions shown in the figure with all the variables set to zero before the first sam-
ple enters c’ell 0. After sample M—-1 enters cell 0, SUM in cell i contains
R(p-i-1). .

" Figure 6.12 shows an improved version of this array (AUTO4). The array
differs from AUTO3 in that the data entering inl in the top cell is also broad-
cast to in2 in all cells. AUTOS3, on the other hand, broadcasts the data enter-
ing inl in the bottom cell to in2 in all cells. The cells in AUTO3 all do the
same operation as the cells in AUTO4, with cell i computing the same opera-
tions as in Figure 6.11. All variables are set to zero before Sample 0 enters cell
0, and cell i computes R(i) for 0 < i < p. This is an improvement since Figure
6.11 requires p operations to get sample 0 into cell p—1, followed by M—1 opera-
tions to compute the coefficients. AUTOA4 needs no initialization and requires
M operations using the same cells as AUTO3.

6.2.1 Summary - _ . | :
Table 6.2 compares Ashajayanthi’s algorithm '(AUTO3) with the improved
algorithm (AUTO4). Initialization times are included in the times in Table 6.2,
but were omitted when computing the times in Table 5.2. AUTO4 is a faster -
algorithm than AUTOS3 since it uses the same cells and does not Tequire any
initialization steps other than setting R to zero before sample 0 is 'com-puted.
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Figure 6.11. Ashajayanthi’s SIMD autocorrelation method [ASV79] mapped to
a VLSI processor array.
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Table 6.2 Comparlson between Ashajayanthl s SIMD autocorrelatlon algonthm .
(AUTO3) and an 1mproved version (AUTO4). ~

PEs Additions Multipli- Transfers = Broadcasts
_ : - cations - o
AUTO3 | p+1 M+p+1 M+p+1 M+p+l . M+2p+2
AUTO4 {pt+tl - M - . -~ M ' M = Mtp+l
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8.3. Linear Tlme Wa,rp

- The purpose of linear time warping (LTW) is to take an utterance R(j) for
0 < j < J and stretch or shrink it to an utterance T(i) for 0 _5 1 <L Ele-
ments of R(j) and T(i) are vectors of LPC coefficients. The following equations.
show the relationship between R() and TY(). ‘

T() = (IspRG) + sRGH), =10 (63)
where |

(6.4)

N (J— )
o (J—l) L
= (i-1) (I-l) + 1

One method to compute T(i) in- parallel is to have PE i compute T(1) for
0 <i<L A second method is to compute the vector/scalar products
(1-s)R(j) and sR(j +1) in parallel (i.e. have PE k compute element k of vector -
T(i)). The following sections dlscuss each method.

8.3.1. Method One

The algorithm in F'igure 6.13 does a linear time warp frqtn J frames to I
frames on an SIMD machine. It uses equations 6.3 and 6.4 to warp R(j),
0 <)< toT(), 0<i<IL Each element of R(j) is a feature vector and
R(j) for 0 < j < Jis one utterance. The algorithm assumes R(j) is in PE j for
0 < j < J. Method one has three cases, one where J <I another where J=I,
and finally where J>1. The following sections give examples for how the a,lgo- :
rithm works when J<I and J>I. The J=I case is a SImple copymg operatlon

-as 1s not discussed here.
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Problem: Take J samples in PEs O through J—1 and linearly
, . warp them to I samples in PEs 0 through I-1.
Input: The input frames R are stored with R[j] in PE j.

J is equal to the number of input frames. -
1 is equal to the number of output frame.
Output: T}i] will contain the linearly warped output in
PEs 0 -through I-1.

Line Time in ps

1 1.5 : IF({I = J) THEN

2 32.25 T««R

3 2 : RETURN

4

5 24.5 factor « (J-1} / (i-1)

6 26.24 i+ [ADDR/factor]

. B .

8 [*

9 If data is being expanded, move input data to
10 , . cover all output PEs.

i f = .

12 2 IF(I > J) THEN

13 3 ~ USE Shift. +1

14 3.5 - FOR k+1T01-1J

15 6.5 . WHERE(ADDR < i) DO
16 7.5 _ ’ TRANSFER i
17 127.5 I TRANSFER R
18 2 ENDWHERE

19 0.5 i +— ADDR

20

21 11.25 tmp + i* factor + 1

22 2.5 )+~ {tmp]

23 1.25 , s + tmp —j

24 3 , USE Shift —1

25 96.5 TRANSFER R toR1’

26 217 T+ (1-s)*R +s*R1

27

28 ‘ ‘ /*

29 , , Shift new T’s down until only I PEs are occupied
30 */
31 1.75 IF(I < J) THEN
32 3 : : FORk+~ 1TOJ-1
33 7.5 ' TRANSFER i TO'i_tmp
34 6.5 WHERE(i_tmp < ADDR) DO
35 92 ' TRANSFER T -
36 0.5 ’ ' i+ i_tmp
37 2 ENDWHERE

Figure 6.13. SIMD algorithm to do linear time warp. Numbers right of line
number are the execution times assuming an 8 MHz 63000. (See Section 7.5.)
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6‘ 3.1.1. An E:cample of Ezpandmg J=5 Frames to =7 Frames o

' Suppose J=5 and I—7 Smce J < I the data is bemg expanded Usrng
equatrons (6 3) and (6 4) we have ' o S

T =RO)

TE) = —;—R(l)' + %R(é)’ |
te=Zrerireg
T4) =R(3) L e9)
™) = ir@ + 2Ry |
,ﬂ®m§m+lmm;
T(7) =R()

Line 6 computes i in each PE based on the PE’s address. R 'R{j) can be com-
~ puted.in PE k by us1ng R in PE k and R in PE k+1. Flgure 6 14 shows the
PEs and their i values.. Notice 1 and 4 are missing from the i column ‘Lines
1218 shxft the data so that T(i) can be computed in PEs 0 through 6. This is

- done by comparing ADDR to i. If ADDR < i, (as in PEs 2 through 5), i and

R() are shifted from PE k to PE k+l This happens I-J times as shown in
' Flgure 6.13.. Now i is assigned ADDR i in PEs 0 through 6 and R is transferred
from PE k to R1 in PE k-1 in line 25. Line 26 then does the computations of
the equations in 6.5 in parallel, leaving T(i) in PEifor0 <i <L d , -

~In general, if J < I, the R(j)’s are then shifted between the PEs until I
PEs are used, and PE i contains the two R()'s needed to compute T(i).

- 6 3 1 2. An Ezample of Compressmg J“ 7.5 mmes to 1‘5 Frames

Now suppose J=7 and I= 5 then the followrng aSSIgnment must be made
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After one | After two | After
: transfer transfers. . line 25 _
PE R ili- R i R i R1 j 8
0 R(o) o0 R(0|O R(O) |0 R(0) 1 o
1 R(1) 2|0 RO |0 RO |1 R(1 1 28
2 R(2) 3|2 R{){|2 R(1) | 2 R(2) 2 1/3
3 R(3) 5|3 R(2 |3 R(2) [ 3 R(2) 3 0
4 R{4) 6|5 R@B) |3 R(@ |4 RB 3 2/
5 ’ 6 R(4) |5 R(B) |5 R(4 4 1/3
6 ' 6 RH#4) 16 5 0

R(0)

| Figure 6.14. Data flow for LTW for expanding from J=5 to I=7 frames.
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=Ry

| T@) = RE@ + HRE e
™R e
T) = JRG) + gRE) I
T(5) = R(T)

This is done by the transfer of lines 24 and 25. Figure 6.15 shows the data in
each PE after the transfer. The boldface values in the T columns indicate
those PEs that are disabled after line 34. Recall that if a PE is disabled, it can
pass data to other PEs, but other PEs cannot pass their data to it. Notice the
equations in (6.6) can now be computed simultaneously, with PEs 2 and 5 com-
puting values that are not needed (“junk” values). Lines 31-37 then shift the
T(i)A"values so that ‘T(i) is in PE i. ‘Line 33 shifts the i values .‘frOm PE k to
i_tmp in PE k-1, then those PEs with ADDR > i_tmp put i_tmp in i, and R
gets the value of R in PE k+1. i is transferred to i _tmp before cdx‘npa‘rin'g to -
ADDR since a disabled PE cannot receive data. This, in effect, shifts good T(i)

values over the junk values.

In general, if I > J, PE i comp-utes T(i) and then the data is shifted so PE
i contains T(i) for 0 < i < L. ' ‘ o |

6.3.1.3. Time Complexity

Table 6.3 summarizes the time complexity for the hnear time warp algo-
‘rithm. The total number 'of PEs required is the maximum of J and L The 2N
products and the I additions in- equation (6.3) are all done in parallel by line 26
of Figure 6.13. The rest of the algorithm is for shifting data so that each R(j)
and T(i) value is plaLced in the correct PE. Some of this shiftv'ing’c')\férhead may
be reduced depending on the arrangement of the data in the algbrithms before

and after the linear time warp algorithm.
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l Afte_r first

After second
, . ‘ R transfer transfer
PE R R1 i s T | i_tmp T i | i_tmp T i
0. R(0) R(1) 0 1 0 T(0) 1 T O 1 T@O o
1 R() R 1 2 1/2 T(1) 2 T(1) 1 2. T() 1
2 R(2) R{@B) 2 4 0 junk 2 T2 2| 3 -T(2 2
3 R{33) R@A) 2 4 0 T2 3 T 3| 4 T3 3
4 R4 R(G) 3 5 1/2 T(3) 4 junk 4 4 T(4) 4
5 R() RB) 4 7 0 junk 4 T4) 4| o T(0) ©
6 R(6) RO 4 7 0 T4 0 T(0) © 0 T o0
Flgure 6.15. Data flow for compressmg J =7 frames to I 5 frames. Boldface

indicates PEs which are dlsabled after line 34 of the algorithm in Flgure 6.13.
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Table 6.3 Time complexities of linear time warping algorithms, -

Method One Two
: Scalar Vector Scalar  Vector
Number of PEs max(J,}) P "
Addit:ion’s 5 - 1 21+2 0.
Multiplications -1 2 31 0
Divisions 2 0 1 0
Transfers [3-1] | J-1] +1 0 0
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- 8.3.2. Method Two

‘The second app'ro:ich to parallel linear time warping is to have PE k hold
~ coefficient k of frame j for 0 <k <p and 0<j < max(J]l). Each
vector/scalar multiplication is done in parallel. The algorithm is presented in-
Figure 6.16. ‘The number to the right of the line numbers are the execution
times in ps when implemented on an SIMD machine (see Section 7.5). The
number of PEs (cells) used is p, the number of coefficients per frame. This
algorithm can be implemented. on both the SIMD machme and the VLSI pro-
cessor array (see Section 8.5 for details on the VLSI processor array). The time

complexity is summarized in Table 6.3.

6.3.3. Summary

Method two is an improvement over method one in that it uses fewer PEs
(cells) and does not require vector operations. . Method one requires fewer
operatiohs overall, and will therefore execute in less time. The final considera-
tion. in choosing between these two methods is the arrangement of the data
among. the PEs (cells). The algorithm commonly preceding the linear time
warp will be the LPC algorithm. The SIMD LPC algorithm leaves the data in
~the PEs in an arrangement that method two can used directly. To use method
one, the data must be rearranged whlch might require more time than will be

saved by using the faster method one.
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Line Time in s ,
1 1.75 IF(M = N) THEN
2 111 - T+ R
3 2 RETURN
4
-5 235 factor — (M-1)/(N-1)
7 2.75 .. FOR'n « 0 TO N-1
8 11.25 tmp « n * factor + 1
9 2.5 ' m + ltmp]
10 1.26 . _ § - tmp - m
11 29 v T « (1-s) * R(m) + 5% R(m+1)

Figure 6.16. Algonthm for linear time warping using p PEs. Executlon times
are for an 8 MHz MC68000. (See Sectlon 7.5).
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8.4. Dynamic Time Warping

ThlS section presents dynamic time warplng algorlthms for both the SIMD
machine and the VLSI processor array. These algorlthms have prev1ously
‘appeared in [Y08182]. The SIMD algorithms assume that the feature vectors
- for the entire test word and all tem‘plate feature vectors needed are.store-d in
every PE memory. The PEs are complete processors, and a general intercon-
nection network handles the needed inter-PE communications. The VLSI array
algorithms assume that the cells have less memory, and that fast, fixed inter-
PE transfers are a part of the system architecture. In these algorithms the
- feature vectors shift from one cell to the next, and the computations are per-

formed in a pipelined fashion.

6.4.1 SIMD Algorlthms
This section presents two approaches to performlng DTW on an SIMD

machine. Both assume that the speech recognizer must compare. the test tem-
plate to W reference templates, and each PE contains complete test and refer- .
ence templates ‘The serial-parallel approach uses up td W PEs in parallel with
each PE doing a serial DTW usmg a dlﬁ'erent reference template. The
parallel-parallel approach uses many PEs in parallel for each DTW match of

the test template with a reference template. -

6 4 1.1. Sertal Parallel (SP} SIMD Approach :

A recognizer with a vocabulary of W templates can be implemented on a
’processor»w1th N<W PEs. f W=N, then PE w contains template w,
o< w<W, from the vocabulary; so that every PE contains a different tem-
“plate. Each PE performs a serial DTW between its stored. template and the
input X. Recurswe doubhng [Ston80] is used to find the PE containing the
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_sm'allest distance, in log N time, which represents the templ:ite ‘most closely

matching the mput See Section 2.6 for an example of recursive doublmg

Al DTW algorithms compute the followmg steps:
1) computlng the local dlstance d(i ,); :
2) the two multiplications and four additions in equatlon (4 7) and

3) two comparisons to find the minimum of three values.

These three steps are defined as one Ioop as discussed in Section 4.5.2. A serial
DTW algorithm requires W(2Ir—I-r 2+r) loops to compute W D(A,B)s with the
ad]ustment window 1, and W12 loops without. This does not take into account
the possible time saved by pruning. The same algorlthm on an SIMD machine
with N = W PEs requires (2Ir-I-r2+r) loops with the adjustment window, and
12 without. "This is an ideal speedup (i.e. by a factor of N) over the serial pro-
~ cessor. However, if the serial processor uses pruning, the parallel approach will
attain a less than ideal speedup. At least one comparison (the minimum dis-
tance match) is not pruned, so the time for the SIMD algorithm is not reduced
by pruning. Since the time of the serial algorithm may be reduced by pruning,
the SP algorithm will no longer attain a factor of N speedup. If W > N, (the
vocabulary is larger than the number of PEs) then the SP algorlthm can be run
[W/N] times to match all words See Table 6.4 for a summary of these results '

6.4.1.2. Parallel-Parallel (PP) SIMD Approach

- Two drawbacks to the SP approach are that pruning will not reduce the
computation time unless all PEs can prune at the same time, and that there is
no effective way to use N > W PEs. In the parallel-parallel approach each
DTW match uses several PEs. Equation (4.7) shows that g(i—2,j4l) and
g(i—1,j—2) must be computed before computing g(i,j). The g(i,j)’s that can be |
computed in parallel are all g(i,j)s for i+j=2k and i+j=2k+1, for a fixed
value of k between 1 and I inclusive. If g(k) is defined as all g(i,j) with i+j=2k
and i+j=2k+1, all g(i,j)s in g(k) ¢an be computed in parallel. These g(k)
depend only on g(m) for m < k. Figure 6.17 shows two diagonal rows that
- represent a typical group of g(i,j) in a given g(k); the g(m) for m < k are
“down” and “to the left” of the diagonal rows. Each g(k) _con_tains? at most

2r+1 points when using an adjustment window of size r. I_f no adjustment
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Table 6.4. Slimmary of Parallel’Dynamic Time Warping' Algorithms.

Algoritvhm Adjustment Number APEs per Loops for Number of Loops Operations
:  Window  of PEs  Word 1 Word for W Words per Loop
Serial . no 1 0 I? Wiz 11d,2m,
- yes 1 - o K. WK 4a,2¢

SP | o >1 1 P [W/NI? 1id,2m
yes  >1 1 [W/NIK 4a,c2

EPP o) - 224 2l-1 - I 1" 11d,2m,
| S E | v/ "

v : SR W
~>2rt+l - 2r+1 I Nl ‘
yes 2 r r o l(N)/(2r+1)] 4a,2c 4t
. s _ W-1 ’
HSAC . no I I 21-1 -1+ ild,2m, 4a,
| ' , [N /Izl’,
(full) yes : K K - 21 211+ [-L 2¢,8v,4s5
» ¢ ; . - ‘ . . lN/K] i
HSAC | . no L o1 @Yl 1d2mda
' ke pT|
T+ + 211 i
(rveduced) yes o+l | T 1 2@ ,1 (21- l)l[N/( 1] 2¢,sv,458
BAC | no o1 21 1+ Wi fijel 114,2m,4a
. ) W . .
c2rH1 o 2e+1l 1+ [E] L e | 1/
yes . r‘ ‘ r Y I N/ 1)) fr/2] 2§,sv,4‘ss

SP: ~ Serial Parallel algorithm Id: local distance calculation

PP: _ Parallel Parallel algorithm m:  multiplication

HSAC: High Speed Array Computer a: addition

BAC: Bilinear Array Computer c: comparison

N: " number of PEs used sv: - shift vector through pipe to adjacent PE

K: o 2Ar-T-r%+r ss: . shift scalar through pipe to ad]acent PE

t: : transfer through SIMD mterconnectlon network -
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gLy

Figure 6.17. A set of g(i,j) that can be computed in parallel, labeled with PE
" numbers. , : ) :
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window is used, each g(k) has a maximum of 2I-1 points. Figure 6.18 shows
the PP algorithm. The PEs are numbered —r,—(r—1),...,—2,—1,0,1,2,...;r—-1,r,’k
and PE n computes g(ij) for (i=k+n/2, jzk—n/2) for n even, and
| (i=k+(n+1)/2, j=k—-(n—1)/2) for n odd. Figure 6.19 is a data flow diagram
for a lines 13-55 of the PP algorithm with each box showing which g(i,j) the
given PEls computing and each column of boxs showing the contents of all
PEs during a given loop in the algorithm. The arrows between PEs represent
the data transfers with the g transfers as solid lines and the d transfers as
“dashed lines. The odd (even) numbered PEs correspond to the PEs in the top :
(bottom) row in Figure 6.17. This assumes that the feature vectors a; and b
are stored in the appropriate PEs before the start of the algorithm. Flgure
6.20 is a data ﬂow diagram for the PP algorithm. Each row of boxes indicates
which g(i,j) a grven PE is computmg during each loop of the algorithm. Each
; column shows which g(i,j)s are computed in parallel for a given k value. A
total of 2r+1 PEs per template are needed. If the SIMD machine has N PEs,
lN/ 2r+1 ] templates can -be matched in' I parallel loops requiring

| A
[N/(2r+1)]

methods yleld a speedup over the serlal algorithm. The followmg section

loops for a W template vocabulary Both the SP and PP

discusses a. parallel DTW algorithm for the VLSI processor array The section
. after that compares all the parallel DTW algor1thm to each other '

6 4.2. VLSI Processor Array Algorrthms .

_Burr, Weste, and Ackland [BAW81,BAWS84 WBA83] have presented a hlgh .
: ‘speed array computer (HSAC) in which an I by I grid of cells compares several
vocabulary templates to the input template SImultaneously -They also:
presented reduced arrays which can use as few as r+1 cells to * ‘sweep out”’ the
Ibyl grld The complex1ty analysis of the HSAC was presented in Section 5.6.

The next section presents a bilinear VLSI array algorlthm which incorporates
some of the strategy used in the PP SIMD algorithm with the reduced arrays

* It mo adjustmentt window is  used, the PEs  are ‘numbered
— (1)~ (1-2),...~1,0,1,..,]-2,-1). ' '
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/* | e -
' Algorithm Name: ~ dtw.s (parallel)
- Section: . 6.4.12. '
Machine: - SIMD . :
Function: * This program performs a dynamlc tlme warp..
“ Number of PEs:  2r+1 or 2I-1
Parameters: r, the width of the warping path.
" p,; the number of coefficients per frame.
NetD, the network delay time. ,
: ‘ I, the number of frames per utterance.
Input: = All PEs hold all the input data.
o Output: ' PE r holds the distance score.
Line Time in us o '
1 : PROCEDURE dtw
2 2 ‘ g+~0 .
3 2 gold «~ 0
4 L5 d +~ o0
5 1.5 " dold + o0
6 28 WHERE ADDR = 0 DO
7 2 g+ 0
8 2. o ENDWHERE
9 ' ;
10 . 475 Xindex - {ADDR/zl
11 475 Yindex 4—--[ADDR /2]
12
13 1 - FORIU—ITOIDO
14 124 - . compute d(Xlndex,Yindex)
15 10.5 - WHERE ADDR is even DO
16 . 25 R + dDTR +« dold
17 25 ) gDTR « gold-
18 8 ELSEWHERE
- 19 2.5 ' ' dDTR «~ d
20 . 25 . gDTR+g
.21 8 . ’ ENDWHERE
22 : : ‘
23 3 ~ USE Shift +1 -
24 5+NetD TRANSFER dDTR TO dup
25 5+NetD - . TRANSFER gDTR TO gup
26 S .o .
27 3 o USE Shift ~1
28 '5+NetD - TRANSFER dDTR TO ddown
-29 5+ NetD o TRANSF-ER gDTR TO gdown
30 : B
31 7 T WHERE ADDR =1 DO
32 15 ’ gdown «~ o0
83 -2 .. - _ENDWHERE

Flgure 6 18. Parallel DTW program. Executlon tlmes are for an 8 MHz
MC68000. (See Section 7.6. ) , o
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" WHERE ADDR = - DO

gup + 00

"ENDWHERE

gold «~ g
dold +~d

A« gdown + 2+ddown

Begold +d .
Cegup +2%dup

. WHEREB < ADO.

A+«B |

 ENDWHERE ,
- WHERE C < A DO

A< C -
ENDWHERE

g+~ A+d

 Xindex Xindex +1°
- Yindex + Yindex + 1

' WHERE ADDR = 0 DO

- .. D(AB) « g/(I+])

* Figure 6.18. (Continued)
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B g(2,) QQB,Z) \d(3,2) g(4f',3) o

-1 1q(1,2
'-.27 }
-k
(time)

Figure 6.19. Data transfers into even and odd numbered PEs in PP algoi'ithm.
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V L3 T r ’f .
! 2+3.2°5] 34757
=1 2+2,2-L1 |34523-Lf
Ov '
®
1 2,1 3,2 4,3
o| 1,1 2,2 || 3.3
4y 1,2 || 2.3 3,4
[ ]
o
[ ]
-1 it | ik
-r 2-L2+L| [3-5,3+L
k= 2 3
(time)

1,1

-1,1-1 || 1,1
I-1,1

-1 1

Figure 6.20 ‘ig(i,j)bco'mputations in PP algorithm with r even.
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into a VLSI array structure. This work was reported in [YoSi82] and was
developed independently of the HSAC reduced array [WBA83,BAW84].

6.4. 2 1. A lemear Array Computer (BAC) |
In general the single diagonal HSAC uses r+l cells: per DTW comparlson

Due to the 1nterdependences discussed in the prevnous section, it can use no
more than r+1 cells per DTW for general path restriction. ‘The bllmear array
computer (BAC) presented here restricts the path leading .to a given point on
the warping graph so that: ' :

: R g(i-1,j-2) +2d(i,ji-1)

. g(l,J) = d( 4) + minp gli-1,j-1) +d(i,j) -
le(i-2,j- 1)+2d(1— A)
g(l,l’) = 2d(1,1).

Because of this restriction, the BAC uses 2r+1 cells per comparison, Which
results in it requiring half as many loops as the single diagonal HSAC. The sin-
gle diagonal HSAC uses enough cells to compute one didgonal iﬁ'Figure 6.17.
‘The BAC uses enough cells to compute two diagonals of points for g(k) shown
in Figure 6.17. Figure 6.21a shows the cells are arranged in a bilinear array
with the cells in the left column édmputing the g(i,j)s for the lower diagonal,
and the right column for the upper diagonal. Figure 6.21b shows the data
paths betwie__‘_‘en adjacent cells. DTtop and DTbot are Data Trahsfer registers.
Storing a value in DTtop in cell i will transfer that value to DTbot in cell i+1.
In general, the feature vectors a; and b; are piped in from opposite ends at the
rate of }o'n.e vector every loop. When a; meets b; in cell i—j; it computes d(i,))
and g(i,j) and sends them to cells i-j+1 and i—j—1. On the next loop, a; and
b+, meet in cell i-j+1 and it computes d(i,j +1) and g(i,j +1) and sends them

. to cells i-j+2 and i—j. Figure 6.22 shows the data flow as a function of time.

Figure 6.23 shows the instructions executed by each groilp of cells if I is odd.
If I is even, the even cells execute the group B instructions and the odd cells
execute the group A. The instruction “a vector down' means to transfer the
“a" vector from cell i to cell i-2 for —(I-2) < i < -2 and transfer in a new
“a" vector into both cell I-1 and cell I-2. The instruction “b vector up” is

similar to “a vector down” but for the “b” feature vector.
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o Cell k+3

o objer
' 1,tb‘Cé|I k-2

FE R

Figﬁfe' 6.21 a) Bilihear array of cells. b) Data paths betWeen cells in left and
right columns. -~ ' v .
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Figure 6.22 Data flow in BAC algorithm.
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Even numbered cells Odd numbered cells

Group A Group B
a vector down a vector down
b vector up L B b vector up
" computed . < ' computed
DTtop + d d.bot — DTbot
DTbot «— d o - d.top ~ DTtop ~
R . |g.bot.old +2d.bot . g bot+2d bot |-
g +— d+min g+d "~ g +— d+min g+d
.top.old +2d.top : - '|g.top +2d.top

g.top.old—g.top"
g.bot.old + g.bot

g.top +— DTtop DTbot «— g
g.bot — DTbot : DTtop + g
d.bot + DTbot " DTtop ~ d
d.top +— DTtop DTbot +— ¢
DTtop ~ g g.bot «— DTbot

DTbot ~ g . .- . gtop — DTtop

Figure 6.23. Instructions executed during one loop of the BAC algorithm for I
odd. (Exchfmge columm for I even).
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, This array computes only one DTW at a time so its throﬁghput is less
than the full array HSAC, but it uses twice as many cells as the single diagonal
reduced array, so it takes half as long for a ‘comparison. If the BAC requires n.
cells, and N>n cells are avallable lN/n] arrays can be bmlt ‘and- lN /n] DTWs'
can be computed ‘simultaneously. The time to compute one DTW is the
number of loops from the time a, enters the array until a; enters cell 0. This
time is [1/2] loops to get the first a; b, pair to cell 0, and I loops until aj,b;
arrive at cell 0, giving a total time of I+ II/2] loops. The ay,bj values for the
second template follow the aj,b; values of the first template, so thp_initiél [1/2]
loops used to. get a;,b; into cell 0 are not needed for the DTWs that follow.
~ With an adjustment window r, the algorithm needs only 2r+1 cells a,nd r+2I

loops.

6.4.3. Summary of Results

Table 6.4 summarizes the above results. The column la,.bveled' “Number of
PEs” lists ’theniiliimuml number of PEs (cells) needed to use the algorith_ﬁi.
The APE column is-the number of PEs (cells) to be added to doanotliér match
in parallel. The fifth and sn(th columns- list the number of loops needed to do
one match and W matches. The last column shows the operatlons done durmg v
one loop. | o LT

The serial and SP algdrithm's require the same operatidns per loop. The
. PP algorithm requires inter-PE transfers of the d and g values, which may
increase the total loop time. Based on proposed general interconnection net-
works (e.g., [SiMc81a,SiMc81b]), the transfer time will be negligible compared
to the time to compute the local distances. Depending on the imp]efnentation
it may be possible to overlap the transfers with the computatlons so that little .
or no extra time is incurred. The loop times for the HSAC and the BAC will v
be about equal. The operation counts for the SIMD and array a]gorl}thms differ
significantly; however, time differences will depend on specific _implementations.
‘The predominant difference in operation counts arise because the serial and
SIMD algorithms assume each PE contains the feature vector before thelalgo-
rithm starts, whereas the VLSI array algorithms require shifts to bring the test

and vocabulary vectors into the cells. The A and B vector shifts oceur



131

'simultan_eously, so the time required is for the transfer of one feature vector.
The times to transfer d and ¢ values may also differ, since the PP algorithm
‘uses a genei‘al interconnection network, whereas the VLSI array uses a less gen-
eral (but most likely faster) fixed pipeline between adjacent cells. If transl'er
and computation steps can be overlapped, the loop times will be approximately
eQual in spite of diﬂ'erences in the operations counts. Figures 6.24 and 6.25
show two- plots of the number of loops needed to match W=100 words of
length 1=40 vs. the number of PEs (cells) with and without an adjustment win-
~.dow. Figures 6.26. and 6.27 are the same as 6.24 and 6.25 exLept for W=1,000.
In Figure 6.24 the BAC and RHSAC lines are plotted almost on top of each
~ other. .In Figure 6.25.the BAC, PP, and‘ RHSAC lines are almost one top of

~each other, with the RHSAC requiring fewer loops in the 1 to 128 PE range.
In Figure 6.26 all but -the SP are plotted almost on top of each other. The SP
_requires fewer loops than the other algorithms when using 1 to about 384 PEs,
and around 500 PEs, and around 1,000 PEs. In Figure 6.27, the BAC and PP
-_»llnes are plotted exactly on top of each other, and the RHSAC lS plotted
slightly below the BAC and PP llnes for certain numbers of PEs.

Figure 6. 24 shows that the BAC takes a few more loops than the PP algo-
rlthm since it requires a few loops to 1n1tlallze the array wh1ch the PP algo- :
rithm' does not need. _The figure also shows that the BAC algorlthm requires
fewer loops than the HSAC with 544 cells. Since the operatlons per loop are
equlvalent the BAC will therefore be slightly faster.. This speed 1 is attained by
reducing the number of idle cells. ' In the BAC, no cells are idle after [ /2 |
loops, while the HSAC requires 2I loops before all cells are in use. The PP and
BAC algorithms ckan continue to reduce execution timev by adding more PEs
(cells), so for these. algonthms/archltectures the machme size can be chosen to

meet, speed requ1rements

- Figures 6.26 and 6.27 show that when the vocabulary size is increased to
1,000 words, the SP program clearly requires the fewest loops. This is because
each cell is executlng a serial DTW program which. has llttle overhead of paral-

'lehsm o
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8.5. Conclusions

Five parallel digital filtering algorithms, an autocorrelation, a linear time
warp, and three parallel dynamic time warping algorithms were -diséussed; To
choose the best algorithm, one must consider the need for flexibility, the type
of processor used (PEs for SIMD or cells for the VLSI array) available. Also,
when using the DTW algorithms the use of pruning and an adjustment window
must be considered. The VLSI array algorithms are best suited for a dedicated
task since the inter-cell connections are not easily changed. "The SIMD inter-
connection and PEs are more general and could therefore be used to perform
other tasks in a recognition system. All the algorithms prov1de 51gn1ﬁcant

speedups for these computationally intensive tasks
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7. SIMD MACHINE SIMULATION

This chapter presents the results of simulating many of the SIMD machine
algorithms presented in the previous chapters. Section 7.1 describes the stm68
simulator that is used to run the simulations. These simulations allow the
operations of the algorithms to be verified and also give an idea about the exe-
“cution times of each algorithm assuming the use of current technology proces-
sors. The Sections 7.2 through 7.6 pi‘ésént the results of simulating some of the
SIMD élgorithms from Cha‘pters 5 and 6. Each algorithm is presented as an
individual program in these sections and Section 7.7 combines some of the pro-
grams into an SIMD machine based isolated word recognition system. This
system can pfocess input data sampled at 20 KHz and reCogniie a 1,000 word
vocabulary in real time. Section 7.8 discusses the strengths and weaknesses of
using an SIMD architecture for speech processing and suggests improvements to

the architecture.

7.1. Simulating an SIMD Machine Using Sim68

The sim68 program performs an assembly language instruction level simu-

lation of an SIMD machine [SiKu82]. All sim68 programs are written in

MC68000 assembly language with the aid of many support programs such as.a

parallel assembler and loader. The following sections describe the different
parts of the SIMD model from Chapter 2 that are simulated.
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 7.1.1. Simulating the PEs and the CU |
- . Simé68 .simulates, the PEs and‘ the CU in the SIMD machine as MC68000
o m‘icro‘processors,. The MCGSOOO is a state-of-the-art 16-bit microprocessor
’ '[ToGu81 Mot79], and reasons for its selectlon are dlscussed in [SiKu82].
Among these reasons are: o E ’
) It can operate on a variety of data s1zes ‘bit, byte, wordv (16-bits), -
‘ and long (32- blts) S : - b‘ :
'2) It has a fast cycle time: from 8 to 12. 5 MHz
3) Tt has'a large address: space :24-bits. R
4) It has a regular 1nstruct10n set. See Flgure A.lin Appendlx A.

, It has been shown in [SlKu82] that the execution of CU and PEs instruc-
- tions can overlap by using an 1nstruct10n queue between them. This overlap
‘can’ result in-a reduction in processmg time. Sim68, however assumes that
.there‘is..no' overlap a'_nd‘_:»‘no delay time for-v.b'roadcastlng instructions to the PEs.
,There_,fore, either the CU is executing an instruction, or the PEs are, but. never.
jbo‘t.h at the same time. This as_sumptio’n means that the execution times given
are eonServative and might be reduced if an instruction queue were used.

, 7 1. 1 1. The MC6‘8000 Parallel Assembler

o All: programmmg for: stm6‘8 is done in MCGSOOO assembly language. The
' parallel. assembler used is. called pabs. Pa68 ‘is loosely based on the Digital -
Equlpment Corporatlon Macro 11 assembler [Dec]. . The major differences
- between pa6‘8 and a typlcal serial assembler are: | N -
| 1) Instructlons executed by the Ccu begm w1th a ‘e Whil‘e PE instruc-
- } tlons start with a‘'p. _ ,
2) Instructlons opcodes may end w1th a. b .w, or. an .l depending on
whether the data operated on is byte (8-b1ts) word (16-b1ts)
. . long (32 bits). o S :
) The .word directive is used to deﬁne data in the CU and the PEs .
When deﬁmng data in the PEs argument i of the word dlrectlve»

lS stored in PE 1—1 Therefore

Cword 10111213
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~ would store the value 10 in PE 0, 11 in PE 1, and so on.
4) Instructions starting with a capital letter such as Where(dO EQ,dI}
~and Shift(d1) are macros defined to simulate the functlons w1th
“the same name in Flock Algol. These are discussed 1n Section
7.1.2. I |
5) Unlike some assemblers, the opcode is 'follewed by the'source o:p'erand'
~ which is followed by the destination operand as deﬁned in
~ [Mot79]. Therefore, p_mov.w d0 d1 moves the data in reglster do
~ to d1 in all active PEs. ' ,
6) The ¢ _cmp instruction compares the destxnatlon to the source, so if
' the instructions ’ B '
~c_emp.w  d0,dl
- c_blt label
are executed, the branch to label will occur if d1 is less than do.
This is the reverse of the normal convention. Note that p bit
‘does nothing since the CU must perform all the branchlng
instructions. ’ '
Flgure 7.11is a sample listing of a Flock Algol algorlthm It is presented here
as an example, and the details of its operation will be discussed in-Section 7.2.
It shows some of the features of Flock Algol and the conventions that will be
used here irr'presenting algorith'ms and programs. The left most numbers in
Figure 7.1 are the line numbers, while the next number on the line is the exe-
cution time, in ps, of the statement running on an 8 MHz MC68000. '

- The block of comments before the first numbered line is a standard header

~ that appears before each major pregram. Each section of the header is

described in the following list. ‘

 Program Name gives the name of the program. This is sometimes referred to
if there are several programs that perform the same function.

Algorithm will give the figure number of the corresponding Flock Algol code if
the program is an assembly language program. The Flock Algol listing
will give the ﬁgure number of the algorithm it is lmplementmg

Machine will be the SIMD ‘machine. » '

Function will give a brief description of what the program does,

Precision lists the number of bits and format for the input, output, and any



t/‘

3 .

8.
7
0.5
1.5

1.5
2

N

— O Q0 =~}

0 12.75

Figure 7. 1 Sample algonthm SIMD machme “The execution time assumes an

8 MHz MC68000.

ine  Time (in ys) -

" Program name:
.Section:

Machine:
Function:

Number of PEs:’

Parameters:
Input format:

Output:

Cycles:

Typical time:: -
Variable Usage:

input:
output:
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filter

6.1.8.

SIMD .

This program preemphasises the
input speech data with a filter-
with the transfer function: :
H(z) = 1 - coef + 27!

coef, The filter coef. (default = 0.95).
The input data is stored in

PEs 0 through N-1. PE i contains
sampleifor0 <i < N-1.
The output data is stored in

PEs 0 through N-1. PE i contains
sampleifor 0 < i< N

130 + NetD

37 ps
(* means set by calling routme)
input data *
filter output data

tmp,tmp2: temporary values

USE Shift +1

TRANSFER input TO tmp

WHERE ADDR = 0 DO/* Get value from previous call+/
tmp2 «— tmp S
tmp oldvalue/* Switch tmp and oldvalues/
oldvalue «~ t,mp2

ENDWHERE

output « input + tmp * 0.95
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other important varlables used by the program.
Number of PEs will list the number of PEs used by the SIMD machine.
Parameters lists and describes the parameters that affect the executlon times. _
Input tells how the input data is distributed among the PEs in the SIMD_ L
-~ machine. - ’ S
Output is the correspondlng information as Input _
Cycles gives the number of machine cycles needed to process one 1nput sample
~ for the SIMD machine. Typical Time gives the execution time in ps for
a typical speech recognition system. o : '
Figure 7.2 is a listing of the assembly language program* written for pa68
to implement the algorithm in Figure 7.1. The numbers on the left are the
only part of the listing-that would not appear as an input to pa68. They show
how many cycles each instruction takes. To convert cYcles to secondsf, divide
two by the clock rate and multiply by the number of cycles. Therefore, for an
8 MHz clock, divide the number of cycles by four to get the execution tiine‘in
#S_ ' : : | . . .
Everything to the right of a semicolon in Figure 7.2 is a comment. The
comments written 'in boldface type are the Flock A_l"gol statements. which
“correspond to the assembler statements which follow them. The number to the
left of the Flock Algol statement but to the right of the semlcolon is the line-
number of the corr%pondmg Flock Algol lxstmg

Lines stcrtlng with the strlng #include instruct pa68 to read in another
file and process it. The speech processmg programs commonly use the simd.h
and the defs.h include files. The include file simd.h is listed in Figure A.2. All
the data transfer registers, masking unit registers, and other special devices are
memory mapped into the CU and PE address spaces. Simd.h deﬁnes‘v where the
various devices appear in the address spaces. It also defines macros for setting
“up the diﬂereht‘intefconne’c'tion functions and for data conditional masking.
These are discussed later. | | ‘

Figure A.3 is the listing of the include file defs. h. Defs k- contains

definitions for the parameters used by the different speech processing programs.

*The assembly language programs for all the simulations in this chapter are listed in Ap-
pendix A. : »
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: Program name: filier

5 Algorithm: - Figure filter.1??
3 Machine: - SIMD, simulated by a MC68000.
3 Function: ' This program preemphasises the

input speech data with a filter
~ with the transfer function:
‘ Hz) = 1- coef s 37!
Numiber of PEs: N
Parameters: coef, The fiiter coef. (default = 0.95).
Input format: The input data is stored in .
' PEs 0 through N-1. PE i contains
: S ‘ sample i for 0 < i < N-1.
s Output: The output data is stored in -
PEs 0 through N-1. PE i contains
‘ S sample i for 0 <'i < N.
Cycles: 130 + NetD

; Typical time: -~ 37 us ~

B Reglster usage: (* means set by calling routme)

; do pe used by macros

5 - di pe  tmp '

: d2 pe - used to swap tmp and oldvalue

; d7+ pe WHOAMI (physical pe address)

3 a0 pe  points to input signal ‘
als pe- _points to output sxgnal

#mclude ”simd.h”
#mclude "defs. h”

Data allocatlon for routine -
p_data’ ; Data stored in.each PE
coef: word 0x8667, 0x8667 0x8667,0x8667, \
S * 0x8667,0x8667,0x8667,0x8667, \
~ 0x8667,0x8667,0x8667,0x8667, \
0x8667,0x8667,0x8667,0x8667

,pb_bss: ‘ ‘ L

oldvalue: .=.+ 2 - ; Holds sample N-1 for next time ~
.globl ~ filter

: .c_text -

filter: '

3 . -

51 USE Shift +1

5 ' . '

12 o Shift(#l) ; Set up interconnection network addresses

Figure 7.2 S1m68 program to perform preemphasxs ﬁltermg Numbers to left
are execution times in cycles ’
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filterend:

1

TRANSFER input TO tmp ', »

p_mov.w  : (a0),d0 v . »

p_mov.w. .. dODTRIN.w ; transfer inputs from
- j ‘PEitoPEil

NetworkDelay(0) .

‘pmov.w  DTROUT.wdl .

WHERE ADDR =0 po / ‘Get value from previous call

Where(dZ.EQ#0)  ; In PEO, get value from last call

tmp2 &-tmp
tmp <- oldvalue - /* Switch tmp and oldvalue s/
. oldvalue <- tmp2 v o o
p.mov.w. d1,d2

p.mov.w - . oldvalue.w,dl
p_mov.w " d2,0ldvalue.w

- ENDWHERE

‘EndWhere

~ output <- input +tmp * 0.95

p_muls coef.w,;d1. ; mult. by coef and save in a...
p_asll #1,d1 - - ; shift 15 to the.right by shifting left one,

p_swap dl ; and swapping upper and lower words.
p_add.w d1,do -

; d0 =d0 + coef s dl -

p_mov.w d0,(al) - ;'save in memory

c.rts ‘ Sl :
1Fiig"u’re 7.2 (Contin ued)

s/
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7 1.2. Sxmulatmg the Interconnection Network

Szm6'8 does not simulate a given mterconnectlon network Instead each
PE has access to the follow1ng three reglsters ’

DTRDEST - Physical PE address of destmatlon
‘DTRIN Input to the interconnection network.
DTROUT Output from the lnterconnectlon network

The DTRDES T reglster allows any PE to talk to any other PE Settmg
' DTRDEST to the approprxate values in eac_h_ PE -allows any interconnection
l’UnctionIto be simulated;‘ “The programs presented here use only the Shift,
Cube, and Permutation functions as described in Section 2.4. To assist the
programmer, the macros Shzft(x) Cube(x), and Perm{:c} define the given func-

~ tions’ respectively. See Flgure A2 for the actual macro definitions.

. Most 1nterconnect10n networks take some:time for data to travel from the

1nput to the output The macro NetworkDeIay{) is defined to be a nop (no
operatlon ie. an operatlon that does nothmg) whose execution time is the
“same as the typical network transfer tlme -This value is assumed to be 18

e cycles, or 4.5 ps based on the lnformatlon in [BaLu81 Br8182] The' intercon-

nectlon network may have a transfer time as fast as 500 ns for a 16-bit word ’
[Ku84] If such a'network is used or the transfers are overlapped with the exe- -
cution: t1me the eﬁectlve network could be zero.. Therefore the case where. the
. network delay is’ zero 1s also presented in. many of the tables

i .Some algorlthms require the CU to make conditional branches based on
~ data stored-in. the PEs; therefore there is a data path between PE-0 and the
- CU. Anythmg PE 0 writes into memory location TOCU will appear at the CU
~in memory location. FROMFPEQ after one network delay tlme

7. 1 3. Slmulatmg Broadcasts L

»_ Szm6'8 s1mulates broadcasts from the CU to all PEs by using self modlfy- ;
o ing code. The following two lnstructlons will broadeast’ the data of size word :
~ in register d0 m the CU to register d1 in all the actlve PEs: |

<o czmov.w - d0,.+6
. p_mov.w  #0,d1
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- The first instruction writes the data in d0 into the memory location contain;ing
the immediate data for the PE instruction When the second instruction is
broadcast to all active PEs the new data goes ‘with it. No addltlonal network
delays are encountered usmg ‘this method. The macro Broadcast(m,out) is
defined to broadcast data from reglster in in the CU to register out in the PEs
using the above method '

7.1. 4. Data Condltxonal Masking

Although the SIMD machme model presented in Chapter 2 1ncludes both
PE address maskmg and data conditional masklng, $tm68 simulates only data
" conditional masking. It uses a mask stack as presented in [ClSl83] The fol-
lowing example shows how it is performed ' T '

Suppose thevfo_llowm_g code is to be performed:

1 WHERE A>B DO
2 - C«A
3 ELSEWHERE

4 C+~B

5 ENDWHERE

, Llne 1 is executed ﬁrst in the active PEs by comparmg A and B
 pemp  BA

»Next the ﬂags set by the comparison are moved to the PE condltlon codes '
register (PECCR) of the masking unit: o ' '

p_mov.w sr,»PECCR
Now ‘the .rnasking unit is given ‘the desired condition:

p_movb #GTPECCS |
" The PE condition code select regrster (PECCS) tells the- maskmg unit whlch"
condition ‘must be met. At this ‘point, all prevrously active PEs are still active.
The CU now tells, the masking ‘unit to logically AND ‘the negative of the
current condrtxon ‘with ‘the top of the mask stack and push the results on the

mask stack This is done by wrltlng the proper code to the mask control regis-
_ ter (MASKOTL} '
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c mov w. #Pushs +NDataCond MASKCTL.

The negatlve of the condition enables the PEs for the ELSEWHERE condition.
~ Next, the positive condltlon code is loglcally ANDed with the value second
: _from the top of the mask stack and pushed on the mask stack:

¢_mov.w #Pushss +Da,taCond MASKCTL

" Now the PEs are enabled i'or the WHERE condition. The statements for line 2
are now executed in those PEs where the condition is true. The ELSEWHERE
* on line 3 is performed by popping the top of the mask stack:

c_mov.w F#Pop +,DataCond,MASKCTL

Then the statements of line 4 are executed. Finally, line five is executed by

again popplng the mask stack:
C_IMOV.W #Pop +DataCond M_ASKCTL

'Now all the PEs tha,t were actwe before line 1 are again actrve

Sim68 assumes that if all PEs should be disabled. durmg a WHERE or an
- ELSEWHERE condition, the statements in that block will take no time to exe- :
cute This means the hardware must be able to detect that all PEs are dis-
abied and ignore all PE instructions until some PEs are enabled agaln

In most cases some PEs will execute the WHERE block, while some will -
do the ELSEWHERE block, making the execution time the total of both
blocks plus the time for enabling and disabling the appropriate sets of PEs.

7.1.56. The Typical Speech Recognition System

The programs in the rest of the chapter frequently reference a typical
speech recognition system. Table 7.1 lists the parameters for the typical sys-
tem as used here. These parameters are for a high quality speech recognition
system. Most speech recognition systems use 12-bit input samples rather than
the 16-bit samples as shown in the table. Also, many high quahty systems use
an input data rate of 15 KHz, while this system can process data at 20 KHaz. |
This system was chosen to be a conservative system, therefore, it requires more

»p‘roce‘_ssor throughput than many high quality speech recognition systems.
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Table 7.1 Parameters for the typical‘s'peech recognition system.

Parameter Variable Name Value

Sample Rate 20 KHz
Bits per Sample 16, signed
Frame Size ' M 100
Autocorrelation Coefs. autocoef 9
LPC Coefs. p '8

.| Bits per Coef. 16
LTW Output Frames 1 40 .
DTW Warping Path. Width r 6
Range in Vocabulary Size w

10-1,000 words
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Execution times that are listed for the typical system are in ps and assume the
‘MC68000 uses an 8 MHz clock and data takes 4.5 ps to travel through the

interconnection network.

7. 1 8. Executlon Times

Execution times for all sim68 SImulatlons are given in cycles This paper
assumes that the M068000 runs at an 8 MHz clock rate which gives a reglster-
“to-register addition time of 0.5 ps for a word (16-bits) data size, or 1 ps for a
" long '(32'-bit) data size A 16 by 16 bit signed multiply takes 8.75 ps.

For each program an expression for the executlon time is derived in terms
of the parameters of the program. These times are given in terms of:

- autocoef - The number of autocorrelation coefficients used of LPC.
M " The number of semples per LPC frame. u
1 " The number of frames output from the ltw routine.
N ~ The number of PEs the given programs uses.
logN " Ilog2N|
NeitD_ | The network delay time in cycles.
p  The number of LPC coefficients.
'r  The width of the dtw warping path.

In most speech processing systems p:autocoef—l.‘ The times are given in an
expanded form, for example ' '

cycles = 10 + autocoef[(2 4+NetD) + 85 +
(54 + 2NetD)logN + 2 + 19] = 23 ~ NetD +1
Each term eorresponds ~rough‘ly to the execution time between adjacent labels
in the program being considered. In the example above, (54 + 2NetD)logN +2

~would correspond to a loop that executed log N times and contained two net-

work transfers. These times do not include the overhead of a main program cal-

lmg or returmng from the glven program.
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7.7, Summary v v _
S$1m68 does a good job of simulating an 'SIMD machine. The important

things to know about the 51mulat10ns are: : S

1) All Flock Algol times are given in ps assuming an 8 MHz clock and a 4.5 ps

network delay time. :

2) All pa68 times are given in cycles. Divide cycles by 4 to convert to y_s;

| 3) If all PEs are disabled, the PE instruction takes no time to execute.

4) The times are conservative because of the assumptlon that CU and PE

lnstructlons are not overlapped.
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7.2. Digital Preemphasis Filtering
This section presents the SIMD implementation of the Flock Algol algo-
rlthm for preemphasrs filtering. The filter transfer functlon is:

(z) 1-az™!

where typlcally a S .95. The preemphasis filter is used on the input speech
data before autocorrelation analysis is dome. To process telephone quality
speech in real time, the filtering program must be able to filter 6,670 8-bit sam-
ples per second Filtering‘ high quality speech requires a sampling rate of 15 to
- 20. KHz using 11 to 12 bits per sample. - |

Figure A4 is a parallel MC68000 program to perform the preemphasrs
filtering on an SIMD machme as discussed in Section 6.1.8. The program uses
16-bit samples and N PEs. It assumes the speech data is stored in the PEs
before the program is executed Sample i1s stored in PE 1 for 0<i<N,
where N is the number of PEs used The output data uses the same arrange-

"ment as the lnput data. The total executron time is
o 130 + NetD.

Where NetD is the network delay time in cycles This time does not include
approx1mately 26 cycle overhead of calhng and returnlng from the routine.

Tab]e 7.2 lists the samplmg rates using different network delays and different
numbers of PEs. "The parameters than are being changed are shown in bold-
face type Using one PE may be fast enough since Table 7.2 shows that one
PE can process data at a sample rate of 27 KHz whlch is greater than the rate
‘needed for high quahty speech ‘processing. This is a lower bound on the max-
_ lmum sampling rate since if the algorithm uses only one PE, the conditional
maskmg can be replaced by branchlng instructions and the network transfers-

- are not needed T
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Table 7.2 Sampling rates for the SIMD preemph:isis program using 16-bit
signed data. , :

Program Preemphasis Filter
N 1 10 100 1 10 100
Number of PEs 1 10 100 1 10 - 100
NetD (1] ¢ 0 18 i8 18
Transfers | 1 1 1 1 1 1
Cycles 130 130 130 | 148 148 148
Time/Sample (us). 325 325 325 | 31 37 37
|.Max Sample Rate (KHz) | 30 300 3,000 | 27 270 2700
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7.2.1. Summary

This section presented a parallel preemphasis filter program. It is able to
process speech in real time using as few as 1 PE. By using more PEs, the pro-
gram can process data at a higher sampling rate. This program assumes that
the data was already in the PEs before the program is executed. This is a
valid assumption if the program calling the filter program has already loaded
the data.

The MC68000 processor is well suited for this type of speech processing
since speech data typically uses 12 to 16 bits per sample. The 16 by 16 signed
multiplication instruction and the 16-bit signed addition instruction allow the
MC68000 to compute the filtered signal quickly.

Filtering usually precedes the computation of autocorrelation coefficients.
The next section presents the autocorrelation program and shows how it will

work with the preemphasis filtering program to process speech.
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7 -3. Slmu!atlon of the Autocorrela.tlon Algorlthm "

Autocorrelatlon plays an lmportant role in many 1solated word recogmtlon -
systems. It is used to find the short term autocorrelation coefﬁcnents whlch are
then used to ﬁnd the LPC coefﬁcxents Autocorrelatlon as used here is deﬁned

as:
 M=int N
R(i) = ¥ x(k)x(k+i) 0 <i < autocoef
k=0 '
where R(z) are the autocorrelatlon coefficients and z(m) is the mput 51gna.l
For speech processing' M ranges from 100 to 300 samples ‘while autocoef is

between 8 and 16 [Myer80]. For the typical sys_tem, M—,IOO and autocoef =9.

In this section, Siegel’s autocorrelation algorithm, discussed in Section
5.1.1, is converted to a MC68000 assembly language program and s:mé68 is used

to simulate an SIMD machine executing the program. Figure A.5 is a listing of

the program with the execution times, in cycles, on the left, and the
corresponding Flock Algol statements as comments in boldface. This program
assumes 16-bit input data and keeps a 32-bit sum. In general the total execu-

tion time is:
| cycles =10+
(autocoef)[ 30 +NetD)+85+(54 + 2NetD)logM +2+19]
"23—NetD +1
(autocoef)[136 +NetD + (54 + 2NetD)logM]— 2—NetD

 Each number in the first line roughly represents the execution time between

‘adjacent labels in Figure A.5.

Table 7.3 gives the execution times for a typical speech application.
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‘Table 73 Execution time for autocorrelatlon program usmg 16—bxt 51gned
inputs-and a 32-bit signed sum. :

Program auto auto+ filter
autocoef g 2 0 9
M 100 100 100 100
logM -7 7 7 7
Number of PEs 100 . 100 100 100
‘NetD o 18 0 18
-Transfers 134 134 135 135
Cycles 4,614 7,026 | 4,744 7,174
Time 1,153 ps = 1,757 ps | 1,186 us 1794 ps
Time/Sample 1153 ps 1757 ps | 11.86 ps.  17.94 us
Max Sample Rate | 86 KHz 56 KHz 84 KHz 55 KHz
" Program auto auto +filter
" autocoef 17 17 17 17
M 100 100 100 100
v logM 7 7 . 7T 7
* Number of PEs 100 © - 100 100 100
NetD L0 18 0 18
" Transfers 134 134 135 135
.~ Cycles 8,726 13, 316 8,856 13,464
Time 2,182 us 3,329 us | 2,214 ps 3,366 us
Time/Sample 21.82pus 33.29pus | 2214 ps 33.66. ps
Max Sample Rate | 45 KHz 30 KHz 45 KHz 29 KHz
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7.3.1. Eﬂ'ects' of NetD on Execution Times

‘ Selectmg a value for NetD is difficult. The executlon summarles use the |
values 0 and 18 cycles 0 is used for a small or negllglble delay [Ku84] or when

the network transfer is overlapped with the 1nstructlon executlon 18 cycles R

which is 45 ps, is the value used in [Br8182] Another approach is to ask
“What 1s “the maximum value NetD can have and still allow the program to
run in real time?” Comblmng the filtering and autocorrelatlon programs as
they would be in a typical speech system, gives an executlon time of 4,744 |
cycle to process 100 samples for ‘autocoef=9. There are 200 cycles between
samples when usmg a 20 KHz sampllng rate, therefore transfers can use’
20,000—4,744=15,256 cycles The programs use 135 transfers so each transfer
can take 113 cycles or 28 us per 16-bit word. For example the Poker system
[Snyder82b) requlres 12 us per byte, or 24 ps per 16-bit word for- transfers -
“ which is less than ‘the maximum delay of 28 ps. An effective sampling rate of .

- 85 KHz with no network delay is reduced to 20 KHz if the network delay is 28

ps per 16-b1t word. This algorithm' can tolerate a slow lnterconnectlon network :
and still process ‘high quahty speech in real time if autocoel‘ 9. If auto-
coef=17, then 8 856 cycles are “used leaving 11, 144 cycles for the 256 transfers
'whlch is 43 cycles (10 us) per transfer - :

- .7.3.2. 'Uslng Fewer PEs | » ‘

V The algorithm, as presented, must use as. ‘many PEs as there are samples_
in each frame. In a typlcal speech recognition system the frame size ranges
from 100 to 400 samples which means 100 to 400 PEs must be used. The algo- '

rithm (auto/2) in Figure 7.3 can find the autocorrelation coefficients of a -

- M=2N sample frame using N PEs. Before execute, PEi contalns samples 1 and j
| i+N/2 for 0 < i <N. As before, the data is shlfted between the PEs so that
when autocorrelation coefficient J is being computed, PE i contains samples i-
and i+j, and samples i+N/2 and i+j+N/2. Since each PE contains two sam-
‘ples, two trarsfers must be used to get this arrangement The product of sam-
.ples i and i+j for 0 < i <2N is found using two multlphcatlon steps per PE
and the sum of the products is found using recursive doubling. ’
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/% . Algorithm Name: auto/2
L ’ Section: - - - 7.3.2
Machine: SIMD :
" Function: - This program finds the autocorrelation

. coefficients of input speech data using
i -7~ - half as many PEs as samples in a frame.
‘Number of PEs: - N o

| “Transfers: Shift(—1), Cube
- Masking: -~ . Data Conditional

Parameters: ~ autocoef, The number of coefs. to ﬁnd
’ ’ - N, The number of PEs in use.
"~ NetD, The interconnection network
delay time in cycles.

" Imput: . - - The input data is stored in PEs 0 through N-1
o R ‘wnth PE i containing sample i and |+N/2
. S for0<l<N
‘Output: =~ The autocorrelatior coeﬂiclents, R(i),

for0 <i <aut.ocoef—l appear in PE i
for 0 < i <N (i.e. each PE contains
Lo every coefﬁclent.) ’ '
Cycles: - © autocoef{136 +NetD + (54+2Net.D)logN} - 12 - NetD
Typlc’al Time: - 1,757 ps for autocoefs=9, NetD=18, and logN"7
_Varlable Usage: (* means set by calling routine)
"ADDR: . Address of PE (e.g. ADDR = 0ii in PE 0).

L: . on completion, PEs 0~L will contains R(i).
v par’tsum: temporary variable holding a partial sum.
R(:  -autocorrelatin coefficients.

sigl:s first half of input signal (sample i) -
- sig2:*  second half of input signal (sample 1+N/2)
- slastl:  after stage i: “slast” in PE m holds sng(m+l)
© slast2: - after stage i: “slast” in PEm_
R - " holds sng(m+N/2+1) v

Line Timeings = C =
1 175 - slast]l « sigl /* After stagel “slast” in
2. o - PE m holds sig(m +i) */
3 .. 157 . - slast2 «sig2 © - [¥ After stagel “slast” in’
1 : ' ST PE m holds sng(m+1) */
5. .. o
6 5 FORH—O TopDoj
1 5 IFl#OTHEN :
8 -3 , R . USE thft(—l)
9 15 SRR ‘ DTRin « slastl
10 . 45 - . TRANSFER o
‘1. 20 - " slastl <~ DTRout =
12 s 'DTRin « slast2 -
13 45 © .. TRANSFER ~
14 20 EE T slast.2 - DTRout.

- -Flgure 7. 3 Algorlthm for autocorrelation using N PEs for a frame size of 2N
. The executlon tlmes assume an 8 MH:z M068000 (See Sectlon 7.3. 2 )
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WHERE(ADDR EQ,N-1)
tmp + slasti
slastl + slast2
slastZ «— ¢mp

ENDWHERE

partsum « 0

WHERE ADDR < M-i DO
partsum «+ slast2 * sig2
ENDWHERE

partsum + partsum + slastl * sigl

FOR j « 0 TO max([log(M-i)}1,log(L-1)) DO
USE Cube(j)
TRANSFER partsum TO tmp
partsum + tmp + partsum

R(i) «+ partsum

Figure 7.3 (Contin ued)
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Figure A6 is a listing of the-corresponding program. The time complexity
for auto/2 is: ' ' | |

cycles 18+ (autocoef )[(84 + 2NetD) +87+44+(54 + 2NetD)logN +2+ 19]—-
7—2NetD +1i
(autocoef)[236 + 2NetD +(54 +2NetD) loerN] —58—2NetD

In ‘the proposed speech recogmtron system using 100 PEs the autocorrela-
tion program uses 7,174 cycles when autocoef=9, the frame size is 100 samples,
and NetD=18. If 50 PEs are used, auto/2 uses 7,214 cycles which is a sam-

- pling rate of about 55 KHz. Auto/2, using 50 PEs, requires 188 cycles more |
- than auto, using 100 PEs, which is about 3% more. This is a surprisingly small
" increase in execute tlme Examining the time complexity equatlons for auto
'and auto/2 shows that auto requires 136+ NetD cycles to perform the Shift
transfer and find the product of two samples. Auto/2 requires 236 +2NetD .
cycles to compute the same values,  therefore needing almost twice as many
cycles. Auto requires (54 + 2NetD)logM cycles to find the sum of the‘produc_ts
using recursive doubling, while auto/2 uses (54+2NetD)logN cycles where
“M/2 Therefore since auto/2 has two 'samples p'er PE, it requires one less
pass through the 1nterconnect10n network, so it uses 54 +2NetD fewer cycles to
compute the sum. The time saved by auto/2 havmg two samples per PE is
“slightly less than the extra time it uses to. compute the product of two samples

per PE, therefore there is only a slight 1 increase in the total computatlon time.

. The same techmques that converted auto to auto/2 can be applied to
further reduce the number of PEs used, whlle increasing the execution time. In |
general if there are more samples per each frame than PEs, the algorithm can |
- be modified so each PE will compute IM/ Nl products where M is the number

- of samples per frame and N is the number of PEs.

7.3. 3. Increasmg the Throughput Through Serlalnsm

-+ The previous section showed that using half as many PEs resulted in only
a 3% increase in the executlon tlme ThlS result can be used to increase the
throughput while- usrng the same number of PEs. Suppose a system uses 100
: samples per frame and has 100 PEs. The executron trme will be 7 ;026 cycles if
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autocoef =9 and NetD=18. The system can proéess two frames- at a time if o
PEs 0 through 49 process the first frame, and PE 49 through 99 process the
second frame using a modified version of auto/2.” The total execution time will
be roughly 7,214 cycles (there will be some over head due to processing two
frames at a time.) The average execution time per frame is then 7,214/2 =

13,607 cycles which is. 52% of the cycles used when processmg only one. frame at

a time.

 The above technique could be repeated until 100 frames are bemg pro-
cessed in parallel with the 100 PEs doing one frame each. This w1ll certainly
increase the throughput but ‘it W1ll also i increase greatly the delay between the
time a sample enters the system, and the tlme the’ autocorrelatxon coefficients
are computed. This is probably not a,pproprlate for an envu'onment m whxchv

- real-time processing is desnred

7.3.4. Summary »
This section presented a program implementing a'phrallel ‘autocorreiation
~ algorithm. Usmg M=N PEs it can find the first autocoef =9 autocorrelation
~ coefficients of an M=100 sample frame of speech in L7 ps. This gives an
effective sample rate -of 56 KHz whlch is more than sufficient for high quality
speech processing. Each additional coefficient computed takes 194.5 ps. Com-
blnlng autocorrelation with the preemphasxs filter program from the previous
section glves a sampling rate of 55 KHz which is more than enough for high
quallty speech recognition. Some high quality speech processing uses auto-
coef =17 coefficients, which gives a sampling rate of 29 KHz whlch is still more
than enough for high quality speech. _

The input data is arranged with one 16-bit sample per PE W1th PEicon-
taining sample ifor 0 <i < N. This is the same as the output format of the
filter program. The output has PEs 0 through autocoef containing all the
autocorrelation coefﬁments .

- Fewer PEs than samples in a frame can be used without greatly__increasing ,
the execution time. Although the throughput can. be iucreased by computing
“several frames in parallel using a fewer PEs per frame, the delay tlme between

an 1nput and an output will.increase.
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: The hardware is. well sulted for this ploblem since it has a 16 by 16-b1t
srgned multlphcatlons and 32- bit additions. These built-in instructions Whlch
perform operatrons on data the same size as the problem s data srze make pro-

gramrmng the SIMD machme a stralghtforward task
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7.4. Slmulatlon of the Linear Predlctlon Algorlthm o

Llnear predictive coding (LPQC) is frequently used in both speech synthesis
and recognition. The LPC coefficients model the vocal tract. as an all pole
filter, and the error signal from the coding, models the excitation of the vocal
chords. A speech reCognition.systemvdivides the the speech signal into 10 to 20
ms frames and finds the LPC coefficients for each frame. Therefore a real-
time system that inputs data at 10 KHz to 20 KHz must process one frame of
between 100 and 400 samples every 10 to 20 ms. Generally 16-bit coeﬂicnents

are used, but some applications can use as few as 10 bits [MaGr74].

Figure A.7 is the listing of a program that finds the LPC coefficients given
the autocorrelation coefficients. It‘ is based on' the algorithm in Figure 5.7..
The input - data is. arranged so each PE- contalns all the autocorrelatlon
coefficients (R (1) for O < i < autocoef). The output data has LPC coeﬂicrent i
stored in PE 1—1 for 1 < i<p. ~

| The program uses fixed point arlthmetxc The posmon of the dec1mal pornt
is shown in the right column. The code d# =1y means that in reglster d#,
bits . are to the left of the decimal point, and y bits are to the rlght ’

‘ The total execution time for the program is:
cycles = 26»+p[92 +(5 4+2NetD)log(p) +2+112+
s +88+81+NetD+l3]—NetD—65 +1
= h‘[513+N'etD +(54+2NetD)log(“p)]»—38fNetD, j

where each number in the first line roughly represents the time between labels
in Flgure A.7. Table 7.4 gives the execution times for a typical speech applica-
tion. Computmg the LPC coefficients alone can be done at a rate of 62 KHz
assuming 100 samples per frame, 8 coefficients and NetD=18 using 8 PEs. A
typical speech prOcessing system would preemphasize the signal and find the

" autocorrelation coefficients before finding the LPC coefficients. Using the pre-
~ vious filtering and autocorrelation programs, this can be done with_‘a sampling v‘
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: Table 7.4 'EkecntioAn'times for LPC program and filter +auto+1Ipc programs.i

. Program - - LPC - filter +auto+LPC |
P -] 8 -8 | 8 8
M ' 100. - 100 100 - 100
.Number of PEs . 8. - 8 1 100 - .- 100

NetD: 0 18 | o0 18
Transfers | 55 5 | 190 190
_ Cycles - | 5362 - 6352 | 10,106 - 13,526
Time 1,341 us 1,588 us | 2,527 us. 3,391 ps
Time/Sample - | 13.41 s 15.88 ps | 25.27 ps -33.82 ps
Max Sample Rate | 74 KHz 62KHz | 39 KHz 29KHz |

Program _ ~__LPC - filter +auto+LPC
P 6. 16 | 16 16
.M | 100 100 | 100 100
. Number of PEs 8 8 100 100
-NetD 0 - 18 0 . 18
-Transfers 143 143 399 - 399
- Cycles - 11,626 14,200 20,482 27,664
- Time - 2,907 ps 3,550 ps. | 5,121 ps 6,916 ps
Time/Sample . | 29.07 ps - 35.50 ps | 51.21 ps  69.16 ps
Max Sample Rate { 34 KHz 28 KHz | 19KHz . 14 KHz
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rate of 20 KHz, which is sufficient for high quality speech.

' A sample rate of 20 KHz and a frame size of 100 samples gives 20,000
cycle between frames. The three programs use 10,052 cyycles leaving at most
9,948 cycles for network delays. Since 190 transfers are used, each can tak‘e'5'2
cycles, or 13 ps per 16-bit word and process speech in real time.

Table 7.4 shows that if p=16 coefficients are used and a 4.5 ps NetD is
assumed, the programs can process data at 14 KHz which is too slow for most
high quality speech processing. If the network transfers are fast, or overlapped
with the instruction execution so that NetD=0, the speech data can be pro-
- cessed at 19 KHz which is in the range of 15 KHz to 20 KHz used most often
for high quality processing. K

7.4.1. Summary _
 This section ‘f)re‘sented a parallel program for computing LPC coefficients
from autocorrelation coefficients. It is able to process data at a rate of 62 K
samples per second aSsuming a 100 sample frame, 8 LPC coefficients, and a
network delay of 4.5 ps per 16-bit word. LPC analysis is usually preceded by
preemphasis filtering and autocorrelation. The processing rate for these three
programs, using the conditions above, is 20 KHz. This is sufficient for real-time
processing of hig.h quality speech. A network delay of up to 13 pus per 16-bit
word can be tolerated and still process at the 20 KHz rate needed for high
quality speech. |
This program uses fixed-point arithmetic and computes coefficients with
16-bit precision. The program uses approximately 7% of the coefficient calcu-
lation time to rotate the data so the decimal point is in the correct position.

This is a small overhead for implementing fixed point arithmetic.

The LPC program uses both the Cube and Perm interconnection functions
and is the only program to use the Perm function. It is possnble the intercon-
nection network will not be able to perform the Perm function directly, but
instead will use multiple passes through the network. Since the Perm function
is used p times and it may take p passes through the interconnection network
to implement it, p(p—l) additional network delays may be added to the execu-
tion time. For the typical system this is roughly_(8)(7)(4.5 ps) = 252 ps. This
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is about a 16% increase over the original time.
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7.5. Simulation of Linear Time Warping (LTW) Algorithms
In a typical isolated word recognition system, linear time warping occurs E
after the endpoint detection and before the dynamic time warping. Its purpose
is to take an utterance of variable length and linearly stretch or shrink it, in
the time domain, until it is a fixed length. Isolated utterances can range from
20 to 80 frames in length in a typicdl system, where a frame consists of 8 LPC
coefficients. - Some systems will stretch or shrink the utterance to a 40 frame
length. Only after the endpoint routines detect an utterance can the LTW
program process the speech data. Since isolated words are about one third to
one half second. in du_ration, ‘the LTW must be able to perform its opef_a.tion in
about 300 to 500 ms. L
“Two LTW algorithms were presented in Section 6.3. Method one places
one frame per PE and moves the data between the PEs to do the warping.
Method two has one coefficient from each frame in each PE and gets its speed
by doing the vector operations in parallel. The following sections present pro-

grams implémenting each algorithm and gives timing information for each.

7.5.1. Method One — One Frame per PE |

Figure A.8 is a program for performing method one. 'The input -data is
arranged so PE j contains frame j for 0 < j < J, where J is the nﬁmber for
~ frames in the input utterance and each frame consists of p LPC 'coefﬁcie‘nts.‘
After processing, PE i contains frame i for 0 < i < [, where I is the new utter-
ance length In a typical system 20 < J < 80 and 1=40, so the number of PEs

is the maximum of J and L

The time complexity for method one in Figure A.8 is:
cycles=7+210+80+p(29 +NetD) +2+10+109p +2+6+6 -
+ {42 +NetD + 26+ NetD|p + 2+ 15}(J-1) +2
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=325+ (138 +NetD)p +(J-1)[59 + NetD + (29 + NetD)p]

' .if I>L If J ;‘l the linear time warp simplifies to a copy operation taklng
B | ot | |
cycles If J<I the time complex1ty is:
| cycles =7+232+ (I—J)[42 +NetD +(45 +NetD)p +2+13]+2+2+80
+(29 +NetD)p+2+ 10+109p+2+7 »
=344+ (138 +NetD)p +(1-3)[57 +NetD + (45 +NetD)p]

Whenever the utterance is being expanded or compressed the number of

operations is based on the ‘amount of change in size. Table 7.5 gives values for

-1 =-20, —10, 0, 10, 20 40 for network delays of 0 and 18 cycles and p=8

coefﬁclents

7.5. 2. Method Two — One Coeﬂiclent per PE

| Flgure A9 is the program for 1mplementlng the the second method of
linear time warping as dlscussed in Section 6.3.2. For 8 LPC coefficients, it
uses 8 PEs with the input data arranged so that PE k contains coefficient k of
frame j for 0 < k<p and O <j < J. The output data uses the same

arrangement Its time complexity lS
B cycles—7+98+I(45 +10+22 +106) 2
| _1o7+ 1831

if J#I and 450 cycles if =L Table 7.6 glves times for a typlcal speech system

7.5.3. Comparlng LTW Methods One and Two

These two methods are an example of the importance of 1ncludlng over-
head such as transfers in the time complexrtles From Table 6.3. one would

expect method one to perform better than method two because method one:
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Table 7.5 Execution times for linear time ‘w'arpinbgv, method one. -

Program LTW Method One
J=1 -20 =20 -10 =10 0 0
: r - 8 8 -8 8 8 8
Number of PEs 40 40 40 40 40 40
NetD 9 18 0 18 0 18
Transfers 188 188 '98 98 0 O
Cycles 9,788 13,172 | 5618 7,382 | 99 99
Time (ys) 2447 3293 | 1,405 1846 | 34 34
- Program . LTW Method One .
J-1 10 101 20 20 40 40
p 8 8 8 8 8 8
Number of PEs 50 50 60 - 60 80 80
NetD 0 18 0 18 0 .18 -
Transfers 98 98 188 188" | 368 368
Cycles 4,339 6,103 | 7,249 10,633 |-13,069 19,693
Time (us) | 1,085 - 1,526 | 1,812 2658 3,267 4,923

Program 'LTW Method One

J-1 =20 -20 -10 -10 0 0
p 8 8 8 8 8 8
Number of PEs 40 40 40 40 40 40
NetD 0 18 -0 18 0 18
Transfers 356 356 186 186 0 0
Cycles 18,092 24,500 | 10,322 13,670 | 187 187
Time (us) 4,523 6,125 2,580 3,418 47 47
Program LTW Method One. _ o
J-1 10 10 20 20 40 40
P 8 8 8 8 8 8
Number of PEs 50 50 60 60 80 80
NetD 0 - 18 0 18 0 18
Transfers 186 186 356 356 |1 696 - 696
Cycles 7,763 11,111 | 12,993 19,401 | 23,453 35,981
Time (us). 1,941 2778 3,249 4,851 5,864 8,996
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Table 7.6 Execution times for linear tine warping, method two.

Program LTW Method Two »
I 40 40
P 8 18
Number of PEs 8 16
Transfers 0 0
Cycles 7,427 7,427
Time 1,857 us 1,857 ps
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uses one scalar and two vector multiplication steps* and method two uses 3I
‘scalar multlphcatlon steps In a typical system the vectors contain 8 elements
and 1=40, so method one uses 17 scalar multlpllcatlon steps while method two
uses 120. Tables 7.5 and 7.6 show that methods one and two both take about
1.8 ms if I-J=10 and T\IetD 18. This seems inconsistent with Table 6.3 until
, the transfer times are “considered. Method one uses lJ—Il +1 transfers while
method two uses none. The vector and scalar transfers take approximately
|J-I| +1)(453) cycles, and the iJ—Il vector multlphcatlons used in methodi
one, require 872 cycles for p=8 and- NetD=18. The vector transfer time is
about half the time of a vector multiplication. Therefore when comparing the
time complexities of two methods, relative times of all operations should be

considered.

7.5. 4. Summary

A typical speech recognltlon system has at least 300 to 500 ms between
the starting times of two utterances. The LTW program must be performed
once for each input utter-ance, therefore the LTW must executed in less than
300 to 500 ms to run in real time. Both methods presented here can execute in
less than 300 to 500. ms assumlng that the data is stored in each PE before the
LTW program is run. The problem of getting the data in this allocation is dis-
cussed in Section 7.7.

The arrangement of the i‘nput and output data and the number of PEs
used are the main differences between these two methods. Method one uses the‘

maximum of J and I PEs while method two uses p PEs.

_ Selectlng one of these methods may depend on the data arrangement, not |

the execution tlme If a system has each PE processing one frame of speech |
~ method one should be used since it requires one frame per PE as input. If the
system has each PE containing one coefficient from each frame method two
should be used since that is how its input data is arranged. If the system uses
neither of the above arrangements the data will have to be moved to match

*The time of a multiplication step is the time used by one multlphcatlon operatlon in
several PEs in parallel.
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one of the arrangements The choice of which arrangement to use would be
'ba.sed on the time needed to move the data into one of the arrangements, and
the des1red output data arrangement.

Nelther LTW program can begin executlon until after the mput utterance

“has been detected. This causes a delay time since the L'TW program and the
programs tha,t follow it must wait until the entlre utterance is spoken.
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7.6. Simulation of Dynamic Time Warping Algorithms
Dynamic time warping (DTW) is the process of taking one unknown u'tter_-" -
ance and comparing it to ‘one known utterance. The DTW algorithm dynami-
cally stretches and shrinks both utterances, in time, to match them “to each
other as well as possible. This is done, ‘as explamed in Section 4.6.2, by com-' :
puting the local distance d(i,j) between frame i of the known utterance and
frame j of the unknown utterance. Dynamic programming theory is used to 7
find the minimum path from d(0,0) to d(LI) where I'is the number of frames in
the known and unknown utterances. The local distance scores are accumulated
- along this minimum path, and the result is a single score telling howclosel.y_ the
two utterances match. A typical isolated word recognitionl System matches an
unknown utterance to every known utterance in the system's vocabulary A |
1,000 utterance vocabulary would therefore require 1,000 DTWs to be per—-
formed. _ 7 » ‘ R _

‘An utterance is a collection 'of I frames of p coefficients each. [ is con-
stant since the LTW program will stretch or shrink the utterance to a fixed
length before the DTW program processes it. Typically /=40 .and p=8-and' )
each coefficient has 16 bits. '

Section 6.4.1 presented two. approachs for lmplementmg a parallel DTW
Both methods are simulated usmg sim68. The first approach is the serial
parallel (SP) method. Since a typlcal speech recognition system needs to per-‘ :

form:-one DTW match for each word in its vocabulary, the SP method .uses one . = -

PE for each vocabulary word and broadcasts the unknown utterance to all

_ PEs. Each PE executes a serlal DTW to match its known utterance to the S |

unknown utterance

The second approach is the parallel parallel (PP) method The PP method'
uses several PEs to perform one DTW comparison. Two 1mplementatlons of the
PP method are given. The first (PPI) moves the 1nput data to the appropriate
PEs and then computes the local distances as they are needed The second '
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: program (PP2) computes the local distances while moving the data to the PEs
and then computes the DTW. » ' |

| The following sectlon presents the rearrange routine which is used to rear-
‘range the unknown utterance among the PEs before executing the SP and PP1

- programs.

o ’_7 6.1 Rearrange _

Both the SP and PPl methods need to store the input data in each PE in
an unusual manner. The rearrange routine ‘moves the data from one arrange-
" ment to another so that the DTW prog‘rams will have the data in the right
places. ' | SR

- 'The rearrange routine expects its 1nput data to be stored with coeﬁicrent_
_k of frame i in PE k for 0<k<pad 0Li<L This arrangement is

chosen since it is the arrangement used by the LPC and LTW routines. Rear-
range moves the data from this arrangement to the arrangement needed by the

DTW ‘program, in which each PE has all the coefficients from all the frames in

the unknown utterance. Figure 74isa listing of the rearrange algorithm and "
Figure A.10 contains a listingb of the rearrange program. ‘The rearrange routine ,
- gends the data to all PEs by using a series of the Shift — 1 transfer functions.
First PE 0 sends its data to the CU by writing it to a memory location cal_led' -
TOCU. There is a data path from PE 0 to the CU, so that anything PE 0
stores in memory location TOCU appears in memory lo-cation-FR_OMPEO,"in
the CU after the network delay tirne PE 0 sends its data to the CU and the :
CU broadcasts it to all the PEs. The broadcast if performed by havrng the CU .
| store the data to be broadcast in the immedlate data field of a PE 1nstructlon :
The PE instruction, with the broadcast data, is broadcast to all PEs as is any
other 1nstructlon and when the PEs execute it, then the data is stored in each

PE s register

‘After PE 0 sends its data to the CU all PEs execute a Shift —1 transfer
function. Now PE i contalns the data from PE i+1. PE 0 sends the data it
‘_vreceived from PE 1 to the CU and it is broadcast, as before. All PEs execute,
- the Shzft 1 transfer function again, so now PE i has data that was orlglnally“
in PE |+2 and PE 0 sends its data to the CU. This shlft-broadcast loop is
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Rearrange

7.6.1

SIMD

This program moves data around in preperatlon
for the DTW program - :

L 2r+1
'r the wrdth of the warping path
'p, the number of coetﬁcrents per frame

NetD, the network delay time.
I, the number of frames per utterance.

‘input[i] contains coefficient k of

input yector i in PE k for 0 <l<k.
output[ |k| contains coefficient k of
vector i of the output in all PEs.

26 + 1[13 + p(47 + NetD)] + 9 [r/2}

5344usforp 8, r=6, 1= 40 NetD 18

PR OCEDURE Rearrange

- USE Shift -

FORH—OTOI—

tmp + mput[l] [+ tmp contains coefficient i in PE i */
FOR j +~ 0TO p-1
TOCU + tmp; /[* send coefficient to CU
DTRIN « tmp;/* send coefficient to PE to the left
TRANSFER;
BROADCAST FROMPEO TO output[l] lil;

tmp +~ DTROUT; /* Get coefﬁcrent from PE to right

~FORi+—o0 TO r/2
output[H—I]

[* Send to all PEs */

+— 00,

Figure 7.4 Program to rearrange data from PE k contammg coeﬁicrent k,
0 <k <p to all PEs contalnmg all coefﬁc1ents
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~ repeated until all PEs have‘shifte‘d their data to PE 0 and PE 0 has sent it '_to
the CU and it is broadcast to all PEs. ’ : '

The time complexity of the rearrange program is:
cycles=16+1[6 +p(47 +NetD) J+2+5]+2+6+0lr/2]+2
- :‘2641[513+p(47 +Net)] +9ls/2] |
‘Table 7.9 summarlzes the execution times for the rearrange program.

. - Although some mterconnectxon networks can broadcast data without gomg -
_ _through the CU [SiMc81a,SiMc81b], this method of using a data path between
PEO and the CU is used here because it can use a less powerful interconnection
network. The method implemented requires one data path going from PE 0 to

-the CU, and the network must be able to perform a Shift +1 interconnection

function. The execution time for such a broadcast is the time to send the data

to the CU plus the 3 ps which are needed for the CU to write the data into a

PE instruction and broadcast the instruction.

7.6.2. Slmulatron of the DTW Algorithm — The Serlal Parallel.
Method (SP) ’ ' '

~ Figure A.11 is the listing of the SP MC68000 program for dynamlc time
warping. It uses PE 0 and assumes that the rearrange program was run before
it so that all the known and unknown frames are stored in PE 0 before exec_ut-'
ing the prograrn.‘. It differs from a serial program in that the CU executes the
branching . instructions and performs the loop control as in a parallel program.
| ‘Some “IF ... THEN . .. ELSE" constructs that a serial program would use are
‘ ‘replaced by the “WHERE . ELSEWHERE .. ENDWHERE” constructs in the
SP program. Although the serlal-parallel program executes on only one PE, it
is written to execute on several PEs at the same time. This is the way it
would be used on an SIMD system in which each PE compares the unknown

utterance to. a reference utterance

The dxstance score of oo whlch is used in the algorithm to represent dis-
‘tances from invalid- paths is. represented in the MC88060 program as the value
4000, ThlS value ‘is. used since the local distance scores are stored as 16—b1t '

,numbers and they may be multlphed by two. and added to each: other. For
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Table 7.7 Execution tinies for rear‘range routine.

Program v Rearrange
p 8 8 16 18
r : 6 6 6 ' 6
1 40 40 40 40
Number of PEs | 13 13 16 16
Netb | -0 18 0 - 18
Transfers 320 320 - 640 640
Cycles 15,613 21,373 30,653 42173
Time/Rearrange | 3903 us 5344 ps 7,663 us 10,543 ps
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‘example 1f dl co' and d2=oo,  then 2+d1+d1 ICOOOig which can be
represented with 16 -blts. Using ‘a larger value for oo could cause the 16-bit o
value to o'verﬂow‘after the above manipulations are performed. o

The tlme complexrty of the SpP program is: |
12+(24+50p +2+47 +7+25+13)+ o )

r[2}4+50p+2~+7'+23+54+l3]+ = »‘ @
| ‘§1[9+13+13]+ e | ~‘(3)'f‘
=1 L R
| B r[24+50p+2+15+1s+54+13]+ R @)
: [(I— )(2r+1)—r—r2][24+50p+2+lb+16+48+44+54+l3]+ (5)
: 21[19+13+13]+ o - (6)’
"'v';,33_1+'3‘ S

Each "number roughly represents the time between two successive labels in the
program. Figure 7. 5 shows the order in which the distances are- computed for
I=10 and r=4 and Table 78 gives a breakdown of the time spent between
adjacent labels The - * ’”s in Flgure 75 are where actual distances are com-
- puted and the “+'"s are locatlons that are v151ted” but no distance is com—
puted A visit to a location means the program sets x and y equal to the coor-
dinates of that location, but the location is not in the warping path. Line (1)
in the equatlon is the time used to lnltlahze the loop counters and compute the
special case where x=0 and y=0 (pornt 1in Frgure 7.5) Line (2) is the special
" case where y=0 and x#0 (points 2-5 in Figure 7.5) In. general this line is exe- B

cuted r times. Line (3) is the time to skip over the +’s in"the lower left trian- .

gle. In general there are r+1 +'s on the horlzontal side of the triangle. Line
(4) is the time to compute the speclal case where x=0 and y#O Line (5) is the
'_normal case: for x#O and y;éO The factor I-1is used because x takes on the
values from 0 to -1 with- hne (2) computlng the executlon times for x-—O | . The

2r+1 term in equatlon (5) 1s the width of the warplng path; the T+
_subtracted to- adjust for_the time taken into account by hnes (3), (4);

}Lrne (6) is. the time to skrp over the +’s in the: upper right trlangle Line (7) is

: he tlme used to reset pomters when movrng from row y. to. row y +1
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Table 7.8 Execution times in cycles between adjacent labels of SP DTW pro-
‘gram (x =50p +2+7).. The column headings refer to the time complexity equa-
tions in Section 7.6.2. ' - '

Lime () (2 () () 6L 60

Times =~ . (FF1){2r+1) )
Executed 1 o Y0 e i o1
1=1 : 1=
dtw: : 12 o » :
nextdist: 24 24 9 24 24 19
takediff: X - X x+8  x+9
findA: - | : . 16
findB:: | - 48
findC: ' 44
| findG: .54 54 . 54 ‘
nextframe: 13 13 13 13 13 . 13
DEWYy: o ' , 33
distanceend: | - ’ o 3
nextpair; . - | 13 S 13
| firstrow: 723 ‘ o '
firstcol: 25 - _
yedge: : 13



179

The SImphﬁed tlme complex1ty is:
= 12 +(78 +50p) +r[l23+50p] + 2301 +
_i=1

r[l2l + 50p] + [(l 1)( 2r+ 1)—r4r2] [217 + 50p] +

3451 +331+3
. i—l .

Table 7.9 glves the execution times for a typlcal speech recognltlon system
The SP DTW program is able to execute a match in 74 ms which is 13 matches
per second usmg one PE. A 1,000 word vocabulary can be matched in one
second using 77 PEs. - '
The SP method has httle overhead of parallellsm because each PE is
implementing a serial algorithm. The only parallel construct used is data con-
 ditional masking which the program frequently uses for finding theminimum

~path.” The following shows the overhead of using the data conditional mask, ' 1 .

' and suggests two methods for ellmlnatmg the overhead

The followmg code’ performs the same task as the Flock Algol lines 32:35 |
lIl Flgure A.10, i.e., it stores the minimum of the variables A and B in the vari-

able min.
34 WHERE A<B
2 - min « A;
8 ELSEWHERE
2 min — B;
8 ENDWHERE |

The numbers on the left are the number of cycles used for each step assuming
an 8 MHz M068000 is used and A, B, and min are stored in reglsters The pro-
gram uses a total of 54 cycles (13.5 us). Over]appmg the PE and CU instruc-
tions by using an instruction queue would not significantly reduce the execu-
tion times of these statements since the CU must wait until the PEs have exe-
cuted the instructions in the queue_before enabling the data conditional mask
[SiKu82]. The following is the faster method used in Figure A.10.

2. min < A;

26 WHERE B < min
2 "~ min « B;

8 ENDWHERE
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, Trabvle 7.9 Execution times for serial dynamic time warping (SP}.

- Program DTW DTW +Rearrange
P 8 - 8
r 6 6 6
T 10 40 40
Number of PEs 1 8 8
_ NetD 0 o 18
Transfers 0 320 320
Cycles 296,452 312,065 317,825
Time/Comparison 74,113 ps | 78,017 us 79,456 ps
Comparisons/Second 13 13 13
Program DTW DTW +Rearrange
P 18 18 16
3 6 . 6 -6
| 1 40 0 40
- Number of PEs 1 8 8
- NetD : o _ 18
. Transfers 0 640 . 640
Cycles 487,652 518,305 520,825
Time/Comparison 121913 us | 129,577 pus. 132,457 us
S :

‘| Comparisons/Second |

7 7
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'Thls requires 38 cycles (9. 5 ps), 'which iis 16 cycles less than the first method
~ The extra cycles are the ‘time needed to. push the ELSEWHERE condition on
‘the condltlon codes stack and to pop it off agaln Avoiding the ELSEHERE
, statement by using the above technlque w111 save 4 ps on the MC'68000 when

runnmg at 8 MHz.

The following is a serlal method to perform the same operatlon

2  min « A; .
7 ]FB<min

2 min «— B; -

This takes only 11 cycles.v A processor using an instruction, prefetch ‘may
reduce the execution time of the above statements, but its effect will be limited
since the second line is a conditional branch which may disrupt the prefetching
of instructions. Although this code cannot be used by the parallel DTW pro-
gram, it does show that the parallel version of finding a minimum takes about
250% longer than the serial version. If the min operation, or any other simple
operation, is’ frequently used it should be included in the 1nstruct10n set of the
" PEs. Then the PEs could execute the simple function with one’ instruction
rather than using the data condltlonal’maskmg which requires more time to

-execute.

A more general approach would be to allow the programmer to define his
own instructions, so that he could define simple operations, like the min func-
tion, as they are needed. On most processors, new instructions are defined by
writing microcode, if they can be defined at all. On the MC68000, which is
used in the simulations, the microcode cannot be changed. Custom instruc-
tions could be implemented by allowing the PEs to execute code out of their
own memory while running in SIMD mode. The routines, stored in the local
memory of each PE, would ‘be identical in each PE, and would be written so

that the execution timé of each routine is independent of the data processed

"~ This would take care of the synchronization problems. Then the PEs could

~ perform simple instructions like min without the overhead of data conditional
masking.

One other approach, if a custom instruction set were being designed,
would be to implement an Mg instruction that works like the Boe instruction
on the MC68000. The B¢g is a branch on condition code._' ¢c can be one of
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16 condltlons such as, less than, greater than, etc. The Mg would be a move
~ on condition code. The opera,tlon would be to move data from one register to
another 1f the condition is true. Therefore

2 p_mov d0,d1; Move data from reglster do to di.
2  p_cmp d1 d2 Compare registers di and d2.

5 p_mlt d0 d2 Move contents of d0 to d2 if
L ' ; d2 is less tha,n dl

would store the minimum of dl and d2 in dO, w1thout da.ta. condltlonal mask-

- ing. The mlmmum, maximum, and absolute value functions are a few of the

many functlons that could be implemented using the MCC instruction.

7.6.3. 'Sim’ulation of the SIMD DTW Algorithms

‘Some applications' may have more PEs available than there are words in
the vocabulary. In ‘cases like this, the SP method may not decrease the execu-
tion time of the DTW-algorithm as much as wanted since it uses only one PE
_per DTW match. The parallel parallel (PP) method, dlscussed in Section
6.4.1.2., uses 2r+1 PEs for each DTW match, therefore decreasmg the time
needed to do one match. Two alternatives to 1mplement1ng the PP program
 are presented. The first, PP1, uses the rearrange routine described earlier to
move the data from the output format used by the LTW program to the input
format used by the DTW program. Then the PP1 DTW program computes |
the local distances as they are needed. The second, PP2, uses a variation of
the rearrange program which computes the local distances while moving the
data. This reduces the amount of data that must be rearranged and stored i In
_each PE _ After the data is moved and all the local distances are computed, the
PP2 program 1s executed The following pa,ragra,phs dlscuss the PP1 program,
a,nd the next sectlon covers the PP2 program.

.7631 PPI

Figure A1l is a llstlng of the PPl Dl‘ ' program The tlme complex1ty
for the PPl distance. program is:

cycles 58+ 50p +2 + 16
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The t1me complexlty for the PPl DTW program i B
: cycles 4+114+I[10+dlst+104+2(52+2NetD)+104+ RS
| 16+l2+16+118+5]+2+44+14r+6r R _(7‘,‘1)’ |
~cyeles= 164+I[565 +50p +4NetD] +20r S

where dzst is the tlme used by the DTW distance program “The value 118 in
equation (7.1) is the time used to run the instruction between labels ﬁndmm :
~and mcmdez in Flgure A.10 Adding up executlon times' between the ‘labels
yields 124 cycles. The six cycles used by the 1nstruct10n 2 lines before the
incindez ‘label are not. included in the total execution: times because it is not
" normally executed The stm68 simulator does not count the executlon time if
all PEs are dlsabled The term 6r is added outside the mam loop (the loop
~starting at the label neztdist) to compensate for the few times the statement is
executed Table 7. 10 summarizes -the executlon times for both the PP1 and

“the PPl +rearrange programs

~ In a typical speech recognltlon system the PP1- program would compare a
pair of utterances in less ‘than 16 ms usmg 13 PEs.- The SP requlres 80 ms to
compute the same comparison using one PE, or it _can compare 13 palrs of

“utterances in 80 ms using 13 PEs. This gives an average of 6 ms b'p,er DTW
using the SP algorlthm with 13 PEs. (All times inc'lude the time for the rear-
‘range program) Thls means the PP1 program takes ‘about.: 8/3 times as long
~as the SP program to execute roughly the same operations. - One" dlﬂ'erence
v"between the SP and PP1 programs is the PPl ‘uses the mterconnectlon net-
- work. If the network delay time is O, PP1 requlres 14 ms per DTW whrle SP
needs 79 ms/ 13 = 6 ms. ‘Still the PP1 program takes over two times as long to

perform a comparlson between an unknown and a reference utterance

‘The difference is. caused by the 1mplementatron on’ the MCSSOOO ‘The
"M068000 has 8 32-bit data regrsters and 8 32-bit address registers. The SP
program stores all of its variables in the data and address registers. The PP1
program uses over 17 variables since it must store the ¢ and d values for itself
and the PEs ad]acent to it, plus it must save the old g and d values for itself
and the adjacent PEs. All these variables are stored in memory since there are
not enough registers to hold them all. The MC68000  can do a register-to-
reglster move in .5 ps and a memory-to-memory move in 2. 5 pis, which is 5



184

"~ Table? 10 Exvec'li,tioh times for ﬁata‘l_lel*dyn;a‘lnic' time warping (PP1).

_PPI

DTW

. Rearrahgg’l'DTW_

. Progra-tn- 3
P
r

I

| Number of PEs :

- NetD _
- Transfers
Cycles
Time/Match

- 8
. 6
.40
13
S0
- 160
54,884
13,721 us
72

8
.6
40

13

18
160,
57,764
14,441 ps

69

- 21,384 us

8 8 .
-6 -6
40 40
13 13
1 3 18
"800 . 800
. 85,637 99,937
24,984 us |

40

46

Matches/Second

"PP1DTW. -

1 Rearrangg+DTW |

- Program
T

.

 Number of PEs

~ NetD
Transfers
Cycles-

Time/Comparison.
‘| Comparisons/Second.

40

160

6

38,884
9,721 ps

6

40
113 8 S &

160

‘95

41,764 ‘
10,441 s

8 . .8

6 6
S 40 S 40
18 . 18
-0 18

480

61,137
15,784 us

54,497
13,624 ps

.73 . 63

.102
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 times as long In ‘general each memory access takes about 1 ps more than each
- .reglster ‘access. Since the memory-to-memory move mstructlon references
', memory once to read the value and again to write it to a new. locatlon it takes

2 ps longer than the reglster-to-reglster move. Therefore the PP1 program- 18
‘slower than the SP program partially because it uses- mter-PE transfers but ‘
malnly because the MC68000 does not have enough reglsters to hold. all the PP
varlables Some variables must be stored in memory which is slower to access.’

ThlS provides another de51gn feature The processor used in ‘each PE of an
SIMD machine for DTW should have more registers than the 8 provrded by the
MC68000. Thls would allow more data to be qulckly accessed w1thout using

' mam memory

76‘ 3.2 Stmulataon o/ the. DTWAIgorzthm PP2 R

The time the rearrange’ program uses  to move data between PEs is all
parallel overhead since the data movement is not needed on a serial processor
. The PP2 program attempts to reduce the rearrange time by computmg the
local dlstance as the data is belng moved. The rearranglng time: should be
reduced since two. frames of p coefficients each are combined into one dlstance
score after the calculation. The next section presents the ‘distance program
which computes the local distances whlle moving the data. The sectlon after

that presents the PP2 program

7.6.8.2.1. The Dzstance Program |

Figure 7.6 is the Flock Algol algouthm for computmg the local distances. ,
It uses max(p,2r+1) PEs and the input - data is arranged so PE k contams,:'
coefficient k of frame i for 0 <k<p and 0 <i < I where I is the total

: number of frames.

The distance routine computes the local distance between known frame i
-and unknown frame j in PE 0 through PE p—1 and stores the. resultlng data in
PE i—j. ‘Figure 7.7 represents the local distances with *“."”s for r=4, p=6, and
I=10. The dots outside of the shaded area are are stored in PEs 0 through
p—1. The dots in the shaded area are stored in PEs p through 2r+1. Since
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- Algorithm Name: - distance (PP2) .
- Section: . 7.6.3.2.1.
‘Machine: ~ - SIMD
‘Functlon e This program moves data around and computes

the local distances in preperatlon
.. for the DTW program.
Number of PEs: - 2r+1 .
Parameters: -~ 1, the wndth of the warpmg path ,
’ . the number of coeﬂicnents per frame.
NetD, the network delay time.
S s 1, the number of frames per uttefance. -
Input: knowax] contains coefficient i in PE i of
BRI input vector x. - :
unknown(y] contains coeﬂiclent iin PE i of
. - input vector y.
~Output: - d|dptr] contains the local dlstances
R ' d[0] contains the first distance needed by the
PE it is stored in for the DTW program.
" d[1] contains the next distance, and so on.

:i:I,/ :
Lme Time in ys
-1 R PROCEDURE dlstance . B '
2 . 5. - LADDR =ADDR-r [+ Logncal address, PE ae numbered =r to r ¥/
3 ¢ FORI‘-—ITO!‘/2 o . ’
4 13 . WHERE |LADDR| >1DO :
522 ~ d[dptr] « oo;
.6 L SRR »_dptr«-dprt-i-l
A E L ENDWHERE ' .
8 _ Lo
9 8 _FORy¢—0TOI—-
10 - 3 S FORx*—-—rTOr," C '
1105 U o o IFy+x<OANDy+x<z.I—2‘
12 1075 VT sum + (known[x] - unknown[y]) 2
3.3 L FOR k «0 TO logN-1
14 3 o B USE Cube(k);
1515 L "~ DTRIN « sum;
16 - Netb - - ' g . TRANSFER;
17T 15 T o . sum + sum + DTROUT; |
18 e - | | . .
2 - ‘ © 7" .. The coefficients are inPE0-PEp
e Lo T and the distance score is needed in PE i
22 TS wherei> p. Use the Shift function to
<23 s R ~'move the data from PE 0 to the desired PE. -

. 'Flgure 76 Algonthrn to compute local distanceSi :;md’mov-e vdata..;' ‘Execution’ -
e tlme are for an 8 MHz M068000 o . .
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27
28
29
30
31
32
33
34
35
36
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Fx+r>p | ;
USE Shift +x+r
TRANSFER sum

WHERE x +r = ADDR

/* Enable PE = */

d[dptr] « sum; [+ that will use */

dtpr + dptr + 1;
ENDWHERE

FOR i+ 1tor/2
d[dptr] « oo;
dptr «~ dptr + 1;

Figure 7.6 (Continued)

/* the distance */ -
/* score.x/
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' TFigure 77 Caleulation order for accumulated distances of SP DTW program.' .
.~ PEs in,_sha‘d_;ed_ area vdo_:_n_ot start with input data.- - , R S
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the input .data is stored in only PEs 0 fhrough p—1, and the distahCe scores sre
computed in the same PEs, the distance scores represented by the shaded area
in Flgure 7.7 must have therr scores transferred from a PE outside of the

- shaded area.

A typical speech recognition system ha,s p=8 and r=6, so 2r+lis > p |
and extra transfers are needed to get the data from a PE outside of the shaded
area to the proper PE in the shaded area. Lines 25-27 of Figure 7.6 handle this
case. If p=16, as with some high quality speech recogmtlon systems P >

2r+1 and lines 25-27 are not ever executed

The time complexity for the distance routine is:

cycles= 12+85[r/2]+2+12+ - (1)
[(2r+1)—r-—r2ll2°+43+4+(NetD+31)logp+2+9+38+13]+ | (2)
| (9+7+13)§)1+ DR
i=1 . ’ B :
(.19+7+13)f3i+" . @
i=1 L '
or+ 1-p)i-r)+ Ln](25+NetD+l)+ B
i=1 '
301+1+. : - (9
6+olr/2l+2 - M

assuming p < 2r+ 1. Table 7.11 gives the breakdown on how the time is spent
between each label in the assembly language program,b given in Figure A.12, for
each line of the time complexity. Line (1) is the time used to initialize some
variables and store infinity scores in those PEs outside the warping path during
the first r/2 ioops of the DTW program (see Figure 7.7). Line 2 is the main
loop of the program, during which the distances are computed. Line (3) is the
time used for visiting the “+"s in the lower left triangle. Line (4) is the visit
" time for the upper right triangle. Line (5) is the time used to move data from
"PEO to PE i when i > p. The “."’s in the shaded area of Figure 7.7 represent
the time in which this is done. Line (5) can be omitted from the time complex-

ity if p > 2r+1. Line (6) is the time used to prepare to use a new unknown

frame. Line (7) is the time needed to pad the d[] array with infinity values for

those PEs outside the warping path.
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Table 7.11 Execution times in cycles between adjacent labels of PP2 DTW
program. The column headings refer ,totiﬁ time complexity equations in Sec-
tion 7.6.4.1. (y=logp(NetD+31)+2, x=8 /2}1‘)*'2‘*'12,: z=9 r/2']l) .

Lie [0 @ @ (A 6 6 @

| Times | - I(2r+1) N ) (2r+12;!))(l-t) ‘

. Executed . i Y o+ Epi B ‘1
R S = WO = | . :

distance: 12

| pad: ' X v
| nextdist: 20 9 19
| takediff: 43 SRR
notinf:. - S 4 ‘ .
dloop: - - y . 25+Netd -
gotd: 9 o .
| easy: 38 . o
- | mextframe: [ . " 13 . 13 13 S .
Cofmewy: o E 30
padz
“{nextpair: | o g 7 .
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 Simplified, the time complexityi!for the PP2 distance p'rogra,rn iss

5+94lr/2]+301+2921+3921+
i=1 i=t.

[I(2r + 1)—r-—r2] [129 +(NetD +31)logp] +

[( 2r+1-p)(I-r)+ Y, 2r—pi][25 + NetD]
Ci=1

Table 7.12 gives executio_n times for a typical speech recognitpion»'system.

7 6‘.3.2. 2. The PP2DTW Program

" After the dlstance program is executed the DTW program is run. The
PP2 DTW program is identical to the PP1 program ‘except the PP2 program
does not call a routine to compute the local distances. Instead, it finds the d'is; '
tances in an array, already computed by the distance program. Flgure A 12
lists the DTW program along with the main and dlstance programs The time
_complexity for the PP2 DTW program is: o

4+76 +I[106+2(52 +2NetD) +104+ 16+ 12+ 16+ 124+5] +2+44
126-+1(487 +4NetD]

Table 7.13 sumrha.rize’s‘ the execution times for a typical speech recognition sys-
tem. The PP2 program can match 24 pairs of utterances in one second using -
13 PEs. The PP1 program is able to match 63 pairs in the same time lrsing the
same number of PEs. The execution time has increased because, 1) the

number of transfers has increased, and 2) less parallelism is used.

It had been -expected that the number of cycles would decrease because R :

two frames of coefficients were belng combined into one- d1stance score, which
would take less time to pass through the network. This did not happen since
in PP2, p PEs are used in parallel to ‘compute each local distance. The dis-
tance calculation requires log p transfers to sum the square of the differences
between coefficients (lines 13-17 in Figure 7.6). This is done once for each dis-
tance score, yielding a total of approximately I(2r +1)log p transfers. The rear-

range program needs transfers to move the LPC coefficients to the appropriate -
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Table 7.12 Execution times for distance calculations for PP2.

PP2 distance

Program .
P 8 .8 18 16
r - 6 6 : 6 . 6
I 40 40 40 40
‘Number of PEs 13 13 16 16
NetD 0 18 o 18
Transfers 1,614 1,614 1,912 1,912
~ Cycles 113,387 142,439 123705 158,121

Time/Compairson

28347 us- 35609 pus - 30,927 ps 39,531 us
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Table 7.13 Execution times for dynamic time warping program PP2.

.. Program 1. PP2DTW distance +DTW.
P B 8. 8
r 6 _ 6 6 6
I 40 40 | -40 40
Number of PEs 13 - 13- .| - 13 ¢ 13
Netb = | 0. 18 o 18
Transfers 160 160 - 1,774 1,774
Cycles 19,606 22,486 132,993 164,825
Time/Comparison 4902 us 5,622 us | 33,249 pus 41,232 ps
| Comparisons/Second 204 177 30 24
Program distance +DTW
P 16 16
r 6 6
I 40 40
Number of PEs | 16 16
NetD . 0 18
Transfers 2,07 2,072
Cycles = 143,311 180,607
Time/Compariscn. | 35828 ps 45,152 us
Comparisons /[Second 24 .22
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destinations and uses p transfers per frame for a total of Ip transfers. If p is
greater than (2r+1jlog p, the distance program will use fewer transfers.

7.6.4. Summary

The previous sections have presented three programs for dynamic time
warping. The serial parallel (SP) program broadcasts the unknown input utter-
‘ance to all PEs and each PE executes a serial DTW program to compare it to a
known utterance. The two paralle]l paraliel (PP)iprograms use 2r+1 PEs to
perform each -match. The PP1 program moves the data to all PEs, then com-
putes the local distances as they are needed during the DTW program. Each
local distance is computed in a single PE, however, all 2r+1 PEs can be com-
puting a different local distance simultaneously. The PP2 program computes
the local distances as the data is being moved to the PEs. p PEs are used to
compute one distance score. All local distances are computed before the DTW

program starts executing.

The SP program is the fastest of the three. - It can match 169 pairs of
utterances (consisting of 40 frames of 8 coefficients each) in one second using 13
MC68000’s running at 8 MHz. The PP1 program is the next fastest matching
63 pairs per second under the same conditions, and PP2 is slowest matching 24
pairs per second. Tables 7.9, 7.7, and 7.12 summarize the execution times for a
typical speech recognition system. If faster processing rates are needed, the SP
program can use N PEs to compute N comparisons simultaneously. The PP
programs can use sets of 2r+1 PEs in parallel so that N PEs can compute
EN/(21°+1)} DTW comparisons in parallel.

The SP program was fastest since it required fewer data transfers between
PEs (none at all after the DTW starts executing except for the recursive dou-
bling needed to find the minimum distance score), and it uses fewer variables
than the PP programs. The SP program stores all of its variables in registers,
while the PP programs have more variables than registers, so some variables
are stored in memory. The MC68000 uses four more cycles to reference
memory than a register; therefore the PP programs, while executing about the
same number of operations, run slower than the SP program. The PP pro-
grams could run faster if the processor in the PE had more registers (at least 18



data reglsters) or faster memory access.

The PP1 program is: the: next fastest DTW ‘program since the PP2 dlS—i;_
tance program uses p PEs to’ compute one distance score in parallel The PP1
DTW program uses 2r+1 PEs to compute 2r+1 distance scores serially within
each PE. Since p < 2r+1 in the typlcal system, the distance program has
-~ 2r+1-p PEs idle when ‘computing local distances. Therefore the PPl DTW

program makes better use of the available parallel computmg power

Although the SP program is a serial program runnmg in each PE i the -
_program is being run under SIMD control, data conditional maskmg must be
used in each PE to find the minimum of two registers. Data conditional mask-
ing is a time consuming operation and should be avoided if possible. It would
“not be needed if the MC68000 could execute a “minimum” instruction direc’tly,"
but is is unrealistic to expect the processor to have every 'possibie “handy_-”_
instruction in ‘its instruction set. A better approach would be to use a proces-
sor with programmable microcode or use a custom processor.. A library' of com-

monly used microcode operations could be available to the programmer so sim-

. ple operatlons like ﬁndmg the minimum of two register could be executed with

one instruction. The would reduce the number of times data condltlonal mask--

ing is used, and should reduce the execution time.

The MC68000 does not have programmable microcode, but thls feature,,

could be simulated by letting each PE execute code out of its own memory

while running in SIMD mode. Again, a library of commonly used functions
could be stored in the local memory of each PE. Each function would be writ-
ten so the execution time was mdependent of the data processed SO all proces- '
sors would execute the instruction in ‘the same amount of time. _ ' '7
The DTW programs all used the Shift + 1 transfer functions, the PE 0to
CU link, and the CU broadcast. The PP2 program used the C’ube transfers_ :
and the Shift +n transfer function for p<n<2r '
Overall, the SIMD architecture 1mplemented with MCSSOOO is well sulted'
for the DTW programs. - '
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7.7. SIMD Maehin’e Based Isolated Word Recognition Sjrstem
- Previous sections in this chapter have presented programs for performing
various speech recognition tasks.  This section shows how these programs are
.assembled together to perform the function of the speech recognition system
shown in Flgure 4.1. The parameters listed on Figure 4.1 are for processmg'
telephone quality speech. Table 7.14 lists parameters for telephone quahty and
hlgh quahty speech processing.

- The following section presents the main program which calls each of the
speech processing programs_ as they are _ne'eded,‘ and contains the endpoint
detection program. The main program contains the endpoint detection pro-
‘ 'gram since the LPC program is not called until after the begining of an utter-
~ ance is found, and the LTW and DTW programs are not called until after an
entire utterance is found. Section 7.7.2 discusses the data allocation used by
each program, and Section 7.7.3 discusses the execution times of the entire sys-
~ tem. Section 7.7.4 discussesthe_s'ize_»of ‘the input buffers needed to hold the _'
incoming speech samples while the DTW. program is executing. Section 7.7.5
| summarizes Section. 7.7. F1gure 7.8 1s a Flock Algol algorithm for the main

program 1n the speech recognlzer and Figure A. 13 is the M068000 program.

,7 7. l. Endpomt Detectlon -

The endpomt portion of the main program ﬁnds the endpornts based on
the energy in each frame as discussed in Section 4.5. The program does not use
the zero crossing (ZX) rate discussed in Section 4.5 since Lamel [LRRWSI]

states 1t is not_ always effective.

The endpomt program checks the energy of the current frame by havrng_
PE 0 send its autocorrelation: coefficient R[0] to the CU after the autocorrela—
- tion program - is executed. If the: energy is greater than lothresh the low

: Unhke the method used in [RaSa75] lothresh and hithresh are not adaptrve They are.
" constants that are set before the program is executed . , '
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Table 7.14 Parameters for speech recognition systems;

Telephone High SIMD
Quality Quality System

Sample Rate 6.67 KHz 20 KHz 20 KHz
Bits per Sample 8 16 16
LPC Coefficients 8 16 16

Bits per Coefficient 16 16 16

Vocabulary Size {(words) 10-1,000 10-1,000 1,000*

*The number of words that can be matched in less than one secend. ‘
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L
/ ‘Algorithm Name: main
Machine: . SiMD
Function: This is the main routine. It calls filter{)
’ and autof) to preemphize the signal and find
the autocoerrelation coefficients. If R(0)
(the energy) is greater than lothresh, it calls
Ipe(). This main routine also does the
endpoint detection. After an utterance is
o - detected, ltw() and dtw() are called.
Number of PEs: =~ 160 .
Parameters: - - N, the frame size:
autocoef, the number of autocorre]atlon coefs.
‘r, the width of the warping path..
" 'p, the number of LPC coefficients.
NetD, the network delay time.
I, the number of frames per utterance.
R VOCABSIZE, the size of the vocabulary.
Input: * Sample i mod N is is PE i.

Output: -~ One distance score per PE.
Variables Used: o
S S .. - Index to current input sample.
~ found: = TRUE if utterance has been found.
lothresh: Lower threshold..
hithresh: .. Upper threshold. See section 4.6??
M: " Index to current input frame.
" inputfx]: . vInput samples, PE i contains sample
© . . “iof frame x. : :
filout; " Filtered output for filter program. :
: ' o PE i contains sample i of frame.
R[: - .. Autocorrelation coefficients,
all coefficients in all PEs. ,
Ipcout|x]: LPC coefficients PE i contains
- coefficient i of frame x. :
ltwoutx]}: ~ Output utterance from LTW" program.

PE i contains coefficient
: i from frame x.
shuffoutfx]: "~ Output of shuffic program.
' ’ ' All PEs contain all coefficients
. from all frames.
liblx]: - - Library of known utterances.
" PE i contains all coefficients from
all frames for utterance x.
Each PE contains a different
L " utterance.
ScoréS[i]: Output scores from all DTW matches

Frgure 7.8 Flock Algol algorithm for lbolated word recognltlon Contams end-
point detection algorithm and calls the filter, autocorrelatlon LPC, LTW, and
DTW algorlthms '
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contained in PE r.#/ )

~ found +~ FALSE;.
‘M +~ 05
i 0;
WHILE(TRUE)
Take fone iu'p'\it frame and filter.
ﬁlter(mput[l] ﬁlout)
A '
S Find autocorrelation coefﬁclents
E for the input frame.
-auto(filout,R[]); -
_ Take the energy R[0] in PEOand
pass to the CU for endpoit detecton.
*/ S ‘ .
' - TOCU + R|0];
_ energy +— FROMPEO; .
e
: Rl the energy is greater than the
: low threshold, compute the- LPC
o * coefficients and save in Ipcout]].
*
- IF energy > lothresh
IF energy > hithresh .
found + ‘TRUE;
~Ipe(R]), Ipcout[M]); -
. MM+ 1;
[+ : : g ,
" Otherwise, this may be the end of
_ an utterances, or between utterances. -
: " ELSE o
. IF found
It’s the end of an utterance.
Do the LTW.
- ltw(Ipcout|] ltwout[],M,40); -
" For each word in the vocabulary,-
do 2 DTW and save the scores.
A :

s‘hﬁfﬂe(ltwont[] ,shuffout(]);
FOR j + 0 TO VOCABSIZE-1

score[]] - dtw(shuﬂout[] hb[]][]) -

Flgure 7.8 (Contmued)
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found ~ FALSE;

It is between words, throw away the saved
LPC frames.

ELSE
M~ 0

Use the next frame.
i—i1+1

- Figure 7.8 (Continued)
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threshold the main program calls the LPC program to compute ‘the LPC‘
coefficients and saves them in an array. If the energy is greater than htthresh
the found flag is set to TRUE. -If the energy is less than. Iothresh and the
’ found ﬂag is TRUE, the LTW. program is called followed by the: rearrange
program and the SP DTW program. If the energy is less: than Iothresh and the
j'ound ﬂag is FALSE, the saved coefﬁcrents are discarded. S ‘

7.7.2. Data Allocatron

When comblnmg SIMD machine programs the output data arrangement of
one program must match the input data format of the program’that follows. -
The programs presented earlier in this chapter were written so their data for-
mats matched. | o N o

The filter program in Sectlon 7.2 expects. the mput data to be stored with
» sample imod Nin PEifor0 <i<N. Where N is the total number of PEs,
and mod is the modulus function. The autocorrelation program in Section 7.3
takes the input data in the same format the filter program outputs and stores
its output so all autocorrelation coefficients are in all PEs. The LPC program
in Section' 7.4 uses just 8 PEs, and expects all the autocorrelation ‘coefﬁcienits in
each PE, just as the autocorrelation program left it. The LPC program leaves
LPC coefficient i-in PE i for 0 S i < p. The next task in Figure 4.1 is the -
endpoint detection. The endpoint detection program does not proeess the data
as the other programs do Instead, it decides whether or not an input utter-
ance has been detected. If it has, the data is sent to the programs which fol-
low. Otherwise, the data is discarded. The LTW routine is called after the

endpoint routine has detected an utterance. The LTW routine expects PE i to V
contain coefficient i of frame j for 0 < i< p and 0 < j <L This is the
arrangement that the LPC program outputs. The output data arrangement of

the LTW program is the same as the input data arrangement..

The SP DTW program needs all frames of the unknown utterance stored
“in all PEs. This is not the format output by the LTW. The rearrange routine
moves the data from the arrangement output by the LTW program to the
arrangement the DTW program uses as input.
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When .running the DTW program, each PE contains W/N known utter-
ances where W is the total number of utterances in the vocabulary, and N is
~ the number of PE‘s The SP DTW program is executed W/N times and the

distance scores are accumulated in the scores array | in each PE.

 7.7.3. Execution Times | |

" To process hlgh quality speech in real time the system must meet the
speclﬁcatlons in Table 7.14. Table 7.4 shows that if p=8 {not p=16 as shown ‘
'in Table 7.14) and N=100, the filter, autocorrelatlon and LPC programs can
process data at 290 KHz. Table 7.9 shows‘ that the SP DTW program can com-
pare 12 utterances vper’second using one PE which is 1,000 utterances per
“second using 77 PEs. These two facts show that the SIMD parallel machine
can easﬂy process- high  quality speech in real time. The only problem is the
filter, autocorrelation, and LPC programs and the DTW program must execute
within the allowed amount of time. Frgure 7.9 shows the time and number of
" PEs used for each task in the system. The ﬁlter and autocorrelation programs
process all lnput data. If the energy is: below the lower threshold, the LPC pro-
gram is not run. Frames 1'and 2 in Figure 7.9 did not exceed the threshold.
Frames 3 through I-1 did, and the LPC coefficients are found for each of
_them Frame I was below the low threshold which marks the end of the utter-
ance. The LTW program then is executed Durlng this time, the input data is
' bemg saved in a buffer smce the PEs are not running the nlter and autocorrela—

tion _programs.

~ After the LTW program the data is rearranged SO, all PEs contaln the
unknown input utterance. Fmally, the SP DTW program is executed in all 100
’PES, In the end 100 distance scores are computed and the smallest, score comes
from the known utterance that best matches the unknown input utterance.

Flgure 7.9 shows that most of the system time is spent executing the
. ﬁltermg, autocorrelatlon and LPC programs For a typlcal utterance with 40
frames, 40(1.8+.16) = 136 ms are spent computlng the LPC coefficients from
_the speech samples. The DTW program uses 79.4 ms for both the rearrange
and SP programs. Since the LPC programs uses only 8 PEs, 92 PEs are idle
'durmg 64 ms of the LPC computation time. These idle PEs can be used if
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PEs

S , 8 | - : 100
Condition Frame o - Time in ms
energy < lothresh ~ #1 ~ filter + autocorrelation | - 1.8 )
energy < lothresh  #2| filter + autocorrelation 1 18
energy > lothresh ~ #3 ~ - filter + autocorrelation -1 1.8 B
ST [LPq R X E
energy > lothresh ~ #4| filter + autocorrelation  * | . 1.8 | §
- o hee : n 16 >E’
: ‘ : . - . - —_— T -
energy > lothresh #5| = - - filter + autocorrelation 1.8 .S;:
R | . | =
energy < _loth-resh I - filter + autocorrelation -~ | - 18
Rearrange o D 5.3
DTW
741

Figur’e» 7.9 Time and PE usage for the parallel isolated word recognition sys-
tem. : : v . ' :
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- several frames of LPC coefficients are computed in parallel. To do this, the
autocorrelation program would leave the first. frame of coefficients rin PEs 0
- through p—1. The LPC program would not be executed as described above;
instead the autocorrelation program would be run again. The autocorrelation
*coefficients from the second run would be stored in PEs p through 2p—1. The
would be repeated with the autocorrelation coefficients from frame i stored in
PEs ip through (i+1)p—1. Then the LPC program could be run and it would
compute lN/pJ frames of LPC coefﬁcrents srmultaneously where N is the
" number of PEs. If this approach were used on the system in Flgure 79 the
filter, autocorrelatlon and LPC execution time would be reduced to 78.4 ms
not including the tlme to move data from PEs 0 through p-1 to PEs ip |
. through (i+1)p—1. Although this approach will increase the throughput it will
also increase the delay between the time the speech enters the system and the
time LPC coefﬁcrents are computed This is because the computatron of the
LPC coefﬁclents of frame 0. must wait until the autocorreiatlon coefficients of
frame [N/p] are computed Such a delay is undesrrable for real-trme process- |
ing. | - : . |
| ‘The DTW program could execute in fewer cycl’es with more PEs if needed.
For a 1,000 word vocabulary, the area in Figure 7.9 will be constant, so addihg
,. more PEs will decrease the execution time, and removihg_ PEs will increase the

execution time. Increasing the execution time will delay the processing of new

" input samples which would have to be buffered while the DTW program is

running. The next sectlon dlscusses the effects of the DTW execution time on

the input buffer size.

7.7.4. Buﬂ'erlng the Input Data

After executmg the' DTW program approx1mately 80 ms have passed
since the last input frame was processed During this time 1,600 new samples

~ will arrive if the sampling rate is 20 KHz. The input data is spread among 100

PEs, so each PE needs a 16 16-bit word buffer to hold the new data while exe-
“cuting the DTW program ‘Each additional 100 utterances added to the voca-
’bu]ary requlre 15 more 16-bit words of buffer space, so the 1,000 word vocabu-
- lary. needs 151 lB—brt words of storage in each PE to hold the new- input
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samples that arrive whlle the-DTW. program is running.

~ The ﬁlter autocorrelatron and LPC Programs can. process data at 29 KHz

when p=8, while h1gh quahty speech samples arrive at 20. KHz, therefore the .
system cam empty the buffer at a rate of 9 KHz. The 100 utterance system '
‘takes 178 ms to catch up, while the 1,000 utterance system takes 1,690 ms.
Both of these times assume the energyis greater than the low threshold and

the LPC coefficients are computed for each frame. If the energy 1s less than
~ the low threshold ‘the endpoint routine does not call the LPC program The
sampling rate for the filtering and autocorrelation programs is 55 KHz. (Table, )
7.3), therefore the buffer will empty at 35 KHz. The 100 utterance system will
catch up in 45 ms, while the 1,000 utterance system will need 431 ms. Most

real-time speech recognition systems can tolerate a delay of 431 ms.

7. 7.5. Summary _ ,
“Although the SIMD speech recognltlon system can process data at 20 KHz»

and have a 1,000 utterance vocabulary, a buffer is needed to hold the input
samples as the DTW program is run, and the utterances must be spaced far
enough apart so that a subsequent utterance does not end before the buffers are
emptied. Table 7.15 summarizes the buffer requirements for p=8. The buﬁer
" requirements were not computed for - p=16 since the
filer +autocorrelation +LPC programs can process at most 14K samples per- :
second when NetD=18, and 19K samples per second when NetD=0.

Thrs chapter has shown that an SIMD machine using a current technology
processor in each of its PEs and CU can process high quality speech in real
- time. The next section gives concluding remarks and describes the strengths

and weaknesses of the SIMD machine for speech processrngv
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Table 7 15 Buffer requn‘ements for SIMD speech recogmtlon system p=8,
NetD 18 1= 40 input sample rate = 20 KHz.

Vocabulary Size 100 1,000

Calls to DTW 1 " 10 .
DTW Time 80ms  745ms
| Samiples Buffered | 1,600 15,000
PE Buffer Size 16 - 150
Catch Up Time - '
. _with LPC 178 ms 1,670 ms
Catch Up Time : ,
“without LP¢. | %oms 431 ms
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7.8. Conclusions _

Designing a parallel processor- is difficult w‘itho_ut knowing the t'y'pes"of pro-
gram it will run. This chapter has presented a parallel speech recognition sys-
tem based on an SIMD machine. The experience gained in programming the
SIMD  machine to recognize isolated words will help in refining the SIMD
machine design for speech recognition. The foIlowing sections discuss the
different parts of the SIMD machine and give details as to which features it

. should have for real—tlme speech recognition.

7.8.1. The Processor

Each PE and the CU contam a processor Sim68 simulated each processor _
as an MC68000 microprocessor, which proved to be well suited for the typical
"isolated word recognition system presented in Chapter 4. The following sec-
tions discuss what was good about the MC68000, and what improvements

could be made if a custom processor were used.

7.8.1.1. Date Size and Type — 16‘-bzt s:gned fized pomt
Most speech data can be represented as a 16-bit srgned 1nteger therefore
the processor should operate on 16-bit data. The autocorrelation’ LPC and |
LTW routines used some 32-bit values, so 32-bit a.ddltlon should also be imple-
'mented .
, The LPC, LTW, and DTW routines could have used ﬂoatmg pomt opera- |
tions, but they were able to be implemented using only fixed point operations.
Adding floating point operations would make writing some of the programs
easier and rnight reduce the execution times of the LPC and L'TW programs.

Some DTW programs use a distance measure whlch requlres taking the -
logarithm of a value [Itak75]. The logarlthm functlon can be approx1mated
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using ﬁxed-point arithmetic, but this places a burden on the programmer. A
system using such a distance measure may benefit from having hardware
~ floating-point operations since it makes the machine easier to program.

7.8.1.2. Internal Registers — At Lcast 18 Data Registers

.i The M068000 has 8 32-bit data registers. Comparing the SP and PP1
DTW programs showed that more registers could be used.: The SP program
has only a few variables and keeps them all i in registers. The PP1 program has

18 variables, which must be stored i in memory. Although the two program exe- - o

cute similar code, the SP program takes half the time of the PP1 program -

because it did not reference varlables in memory as often. For the speech

recognition system used. here, at least 18 data reglsters are needed since the_ o

‘PPl program uses 18 varlables

7.8.1.9. vM‘emory'Sf'ze — 2K bytes

‘Table 7.16 summarizes the memory reduiremehts for each of the programs
in the speech recognition ‘system. Many of the programs. can store all their
varlables in the internal reglsters therefore they require no PE memory The
total memory usage for the CU is 1 ,680 bytes and each PE uses 352 bytes. The
main routine passes the data to the other routines by using pomters ‘therefore
most routines use little PE memory, while the ‘majn routine (and endpomt) uses
the most PE memory ' ‘

A CU memory size of 2K- bytes and a PE memory size of 512 bytes should
be enough for the proposed,speech recognition system. Using 512 bytes for the
PE memory allows 352 bytes for the variable, and 160 bytes for buffer space.

. 78 1. 4 Instructzon Set — Add MCC

~The 1nstruct10n set of the MC68000 is well suited for speech signal Pprocess-
1ng s1nce 1t 1s a 16-bit processor - The. most 1mportant operatlons are the 16
-and 32-bit srgned additions: and: subtractlons ‘and the 16 by 16-b1t SIgned mul—
e::,tlply and the 32 by 16-b1t 51gned d1v1de :



Table 7.16 Memory usage, in bytes, for SIM_D based i'siola_tedb,WOrd 'i'eéo_gnitibh
- system. SR _ S o e :

(610) PE

Prograni { Data

filter © 112 4
auto 200 0
“LPC 372 6
main* | 352 342
LTW 148 N

rearrange . 108 0.
DTW: 388 0
Total 1,680 352

~ *Contains the endpoint routine.
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The need for data cond'itional masking could be reduced 'if a new mstruc-
~tion called Mcg were implemented. The Mcc mstructlon is like the BCC
‘ instruction which branches when a condition code is true. The Mg instruc-
" tion would move data from one reglster to another when a c¢ondition code is
true. Fmdmg the mlnlmum of two. varrables takes 9.5 ps using data condi-
't1onal maskmg The MCC mstructlon could reduce thls to about 3 ps

7. 8.2. Inter-PE "Communication» - Cube,Shift(:l: 1), and Broadeasts
Table 717 shows the inter-PE communlcatron usages for each of the pro-“

~grams. The Shzft(:l: 1) and Cube 1nterconnect1on functions are frequently used
by the programs and should be lmplemented with hardware so they will"

transfer qulckly The Perm- function is used only by the LPC routme and does 1 -

not need a hardware 1mplementat1on smce it is 1nfrequently used.

The broadcasts are all performed by the CU using self modlfylng code,_

bwhlch requires no ‘special hardware. ~The TOCU path from PE 0 to the CU is |

needed by the endpornt routlne 50 the CU can make condltlonal branches based _
on the data i in the PEs. The rearrange program uses the TOCU path to broad-
: cast data from PE 0 to all PEs ’ ’

| 7a8 39 Maskmg Data Conditlonal

Of the two dlﬂ'erent masklng technlques dlscussed in: Section 23 the :
-speech recognltlon system programs used only the data. condltlonal mask. In
all ‘but the DTW program, general PE masks . could have been used ‘instead of

- the data condrtronal masks ~The data condrtlonal masks were used since it was-

' clearer whlch set-of PEs were belng enabled. _In many cases, general PE masks
) -‘w111 execute faster than data condltronal masks because they can be computed
once at. complle tlme The data condrtronal masks however, must be com—b
,puted at run trme once for every tlme the mask is used Table 7.18 summar-

izes the t1mes the data condltlonal mask is used and g1ves the time, in cycles it oo

'_.takes to set-up the data condltlonal mask and the time taken by the state-

o 'ments affected by the mask The LPC program is the only program that used o
. “fthe ELSEWHERE mask and its tlmes are 1nd1cated by 8/91 whlch mean the -



‘Table 7.17- htéf-P_E.comI.nuli:icatioh‘usedf by SIMD machine.

Broadcasts ____Transfers____TOCU |

filter ’ Shift(+1)
auto S Shift(+ 1), Cube -
LPC . ~ Cube, Perm
| endpoint | - c
'LTW- - yes ‘ o
shuffle - | -~ yes ' . yes

" yes

DTW |  ~  shife(+1)



212

. Table -7.1_8 ‘Data conditional masking time in ‘eyecles.

Program /| Set Up -~ Statment -~ | -
- Time = Execution Time
filter | 36 .. 14
“{auto -] 42 . 37
177 % ym

ptw | m 2
1 - %4 2
- 34 - 9
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'WHERE condltron takes 8: cycles and’ the ELSEWHERE takes 91 cycles The
“table shows that except for the LPC program the set up time for the: data con—_
ditional mask rs longer than the time taken by ‘the statements affected by the ‘

mask. The MCC instruction (descrlbed earlier) could be used in all but the - :
LPC program 1nstead of the data condrtronal mask Thls would reduce the o

- ex ecutlon tlmes

" _'7 8. 4.' M068000 Clock Rate -8 MHz

Al the 1nstructlon trmmgs presented have assumed an 8 MHz clock rate |
Some -versions of the MC68000 can Tun using a 12.5 MHz clock rate. This
clock rate wrth a no wait state memory will cause the programs to run 50% -
faster. - Although the proposed system can run in real time ‘with the 8 MH:z

clock, the faster clock rate will allow changes in the system (such as 1ncreasmg S

the number of LPC coeﬁiclents) and still run in real time.

7. ~8’5' N‘umber of PE‘sf—v 100 - :

Table 7.19. summarizes the number of PEs ‘used by each program n the
parallel word recognltron system. By using 100 PEs, the M068000 based SIMD
machine is able to 1mplement a typical speech recogmtron system in real time. -
" The value of 100 was chosen because » R ’

1) it is the maximum number of PEs that can be used by the autocorrelation
program, and | ' _ |
2) the DTW program can compare l ,000 utterances pairs in 0 8 seconds

~ The number of PEs used by the autocorrelation, LPC LTW, and rear-
range programs was determined by the problem size. The autocorrelatron pro-z
gram -uses N=100 PEs, whrch is more than all the other programs Its PE
usage is equar to the number of samples in a frame of speech The preemphasis
filter program can use any number of PEs, so it uses the same . number as the
autocorrelation program The LPC and LTW programs use p=8 PEs. Since -

- p< N, N-p =92 PEs are idle during the execution times of the LPC and LTW

programs. The DTW program can use any number of PEs too. It uses all.100
~ since the -autocorrelation program uses 100. If there‘ are less than 100
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o Table719 Nu:ﬂbér of PEs"uséd by the ‘parfa,llel speech récognitidh;systém. L

e Number of PEs ~_~ . . Determined by
filter - 1 or more T ‘
|auto - § 160 - N (framesize) - -
“LPC - | -8 -~ p (Number of LPC coefficients)

endpoint |. 0 . T o
LTW - 8 p (Number of LPC coefficients)
rearrange. | -~ .~ - Number of PEs used by DTW |
- IDTW___ | 1 or.more ' SRR :
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utterances in the vocabulary, some PEs wrll be idle during the DTW's execu-
| tion. The rearrange program uses as many PEs as the DTW program s1nce_
rearrange’s _rob 18 to rearrange the. data for the DTW program.- '

Us_lng half as many PEs will at increase the execution time of the auto-
correlation program' by 3%. ‘The following example shows how the proposed
system can be 1mplemented using 50 PEs. The filter, autocorrelatlon and LPC
programs requ1re 148 7,026, and 6,352 cycles respectlvely to execute on 100
PEs. If 50 PEs’ are used, the- LPC program will require the same number of
cycles since it uses only 8 PEs, and the ﬁlter program will use twice as any.
cycles slnce it will be executed twice for every input frame. The autocorrela-
_tion program will use 7,214 cycles for a total of 2%148 + 7, 214 + 6,352 =
13,862, cycles which is a sampling rate of 28 KHz. This is only one 1 KHz
slower than when 100 PEs are used. Therefore, 50 PEs can be used and still
process speech in real time; however, the DTW program will require twice as
much time when using 50 PEs. With 50 PEs the DTW program: will use 1.6,
seconds on a 1,000 word vocabulary which is considered too long for real time

response.

7.8.8. Changing the Word Recognition System Parameters
It has been shown that the proposed isolated word recognition,‘vsystem can
process high quality speech in real time. The following section discuss the

effects of altering the system pararrreters on the processing throughput.

7.8.6.1. Changing the LPC Frame Size
If the frame size is increased, the autocorrelation program can use more
PEs and the execution time will increase in proportion to log M (where M is
the fframes1ze) based on the time complexrty equations. The time between
frames will increase if the ‘sample rate remains the same. Suppose the frame
size is doubled to 200 samples and the sampling rate remains the same. The
“autocorrelation program requires 7,836 cycles per frame which is a sampling
rate of 102 KHz (assuming NetD=18 and autocoef=9). This is nearly twice the
throughput of the program using 100 sample frames (See Table 7.3). |
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If the frame size of the above example is doubled from 100 to 200 samples,
and 100 PEs are still used, the autocorrelation program will use 8,204 cycles,
the filter program will use twice as many cycles, and the LPC will used the
same number of cycles. The total will be 8,202 + 2+148 + 10,106 = 18,426
cycles which is 2 sampling rate of 43 KHz. This is faster than using 100 sam-
ples per frame, which yields 39 KHz.

Reducing the frame size would reduce the number of PEs used. The dura-
tion of a frame is based on the characteristics of the vocal tract and the pro-
posed duration (5 ms) is shorter than what is commonly used (10-20 ms}; there-
fore a frame size reduction would most likely result from a decrease in the sam-

pling rate.

7.8.6.2.. Changzng the Number of LPC Coeﬂwients :

.The proposed isolated - word recogmtlon system has assumed 8 LPC
coefficients are used. Many high quality speech processing systems use as many
as 16 LPC coefficients. Table 7.4 shows that the maximum sampling rate for
16 coefficients is 19 KHz; 14 KHz for NetD=18. Although most high qdality
systems sample at 15 to 20 KHz and these are near that range, there is no time
left for executing the DTW program. This shows that the 8 MHz MC68000
SIMD machine based system is able to process in real time, but it does not
have much leeway. Increasmg the number of LPC coefficients makes it unable

to process in real time.

The proposed }ksystem assumes a 5 ms frame size. Typically 10 to 20 ms

frames are used. If the frame size is increased to 10 ms by using 200 samples

~ per frame and ‘100 PEs are still used, the time needed will be 8,202 cycle for

the autocorrelation program, 2%148 cycles for the filtering program, and 14,200
cycles to the LPC program. This gives a total of 22,608 cycles to process 200
samples for a sampling rate to 35 KHz, which is fast enough of high quality

speech. -
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7.8.6.3. Changing the Number of Frames per Utterance

The propOSed system assumeéd that 1=40 'frames' per utterance were outpiit
. from the LTW and processed by the DTW program. The LTW and DTW exe- ,
cution tlmes are proportlonal to 1, so increasing I will increase the LTW and
- DTW processmg times. Thus a- larger buffer is needed to store the incoming
speech samples while the LTW and DTW programs are executing. Decreasmg
I, on the other hand, will shorten the LTW and DTW executlon tlmes and

require a smaller input buffer.

7.8.6.4. Changing the Vocabulary Size ; »

The DTW program is the only program whose execution time 'depends on
‘the vocabulary size. The DTW execution time is proportional to -'[W../Nl where
W is the number of words in the vocabulary and N is the nUmber of PEs. " As
- with the number of frames per utterance an increase in W will require a larger

mput buffer and a decrease will require a smaller mput buffer.

7.8.7. Summary

~ The proposed SIMD machlne based isolated word recognition system is
able to execute in real time using 100 PEs. Many of the word recognition
parameters can be changed and the system will still run in real time. Hov'vey'er,
increasing the number of LPC coefficients from 8 to 16 without increasing the
frame size will cause the system, as it is implemented here, to run slower than
real time. The performance of this system is conservative because , ’
1) a clock rate of 8 MHz was used, although 12.5 MH:z MCSSOOOS are available,
) the PE and CU instruction executions were not overlapped, »
3) the LPC frame size was assumed to be 5 ms where 10 to 20 ms are normally
used, , E '
4) the network delay was assumed to be 4. 5 ps per 16-b1t word and was . not
overlapped ‘with the instruction execution, and
5) the LPC program uses only 8 PEs and leaves 92 PEs idle.
Increasing the clock rate to 12.5 MHz would increase the throughput by 50% if
‘no wait state memory is used. The table on page 59 of [SiKu82] shows that
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overlapplng the CU and PE instruction executlon can result in a 50% speedup
As shown earlier, increasing the frame size and using the same number of PEs
_reduces the number of computations. Using a faster network and overlapping
network transfers can give an effective network delay of 0 which improves the
~ throughput. Finally, computing the LPC coefficients for several frames in
parallel w1ll reduce the ‘number of parallel computatlons needed for the LPC

routme

‘ Con51der1ng all of the above the SIMD based 1solated word systern has the
- power needed to execute ‘the proposed system in real time. A system requiring
more computatlons can be 1mp1emented in- real tlrne if a less conservatlve

model is used



8. SIMULATING VLSI PROCESSOR ARRAYS

Sectron 5.3 showed how a VLSI processor array could reduce the number‘
H}of loops needed to perform a given task Of course the questlon left_‘

. unanswered was “How much time does a loop take?” The following section:

describes Poker an’ emulator for: a processor array called Pringle, which has
| been used to obtain timings. The Poker system was written by members of the
'Computer Scrence Department at Purdue Unrverslty to. help in developlng the
' Blue CHiP prOJect [Snyder82a] S |

| 81 Poker Details |
The CHiP (C’onﬁgurable Hi ghly Parallel) computer [Snyder82a] is-a fam- '

- ily of architectures each constructed from a sw1tch lattlce and a collectlon -of

microprocessors (called cells*).  The switch lattice consists of many switches
that can be connected to each other and to- adjacent cells. Figure 8.1 shows a

B possible layout of switches and cells where the circles represent switches’ ‘and

© the squares are: cells. Each switch can be dynamlcally programmed to connect_

to any of its eight nearest neighbors (i.e., any switch or cell to the north east,
west south, northeast, northwest southeast or southwest). The cells are not .
connected dlrectly to each other, but communlcate through the. sw1tch lattlce

: vThlS CODDe\,tIOD is.a clrcult switch rather than a packet switch. The VLSI

array structure of two cells being connected can be realized in a. CH1P architec-
ture by connecting. two cells through a switch. The VLSI array computer can

Although Poker documentation calls thelr processors PEs, I wrll continue. to call the pro— ‘
_ cessors associated with VL SI arrays. cells, and reserve the label PEs for: ‘processors in an’
SIMD machine.
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_ '.therefore be lncluded as a member of the CHlP computer famlly by usmg thrs o
: type of 1nter-cell connectlon S e =

The Poker System prov1des a.means. to emulate Prrngle a CHIP computer :
_ [Snyder82a] The Poker programmlng envrronment glves the user the followmg :

. ‘ tools for developlng programs for a CHIP computer

' ) A hlgh level language called zz that allows one to wrlte code for each cellf
- without havrng to be concerned with detalls of the hardware e
2) The ability to set sw1tch settlngs, thus controlhng whlch port on one cell can
R communlcate to another port on another cell ’ ' o
3) A s1mple Way to ‘assign whlch cell will run which zz code and pass dlfferent :
, parameters to cells runnlng the same code - R
4) A way to map the logical port names glven in the :m: code to the physwal.
: ports glven in the switch settings. Lo ' o "
5) An added feature that allows a user to trace the executlon of an: zz program '
on a line by line basis. : ' ‘ . |
Details about using 1. through 4 above are given. in: [Snyder83] Th""e“major‘"
‘ difference between the hardware emulated by Poker and a CHiP computer ls;:,t '
the: swrtch lattice. Poker does not use a circuit switched lnterconnectlon as'a .
_'CHIP ‘computer does. Instead, each cell has an output latch and an input
queue between it and the switch lattlce The latch is polled regularly by the
switch hardware. If it contains data, the data is moved to the rnput queue of

“the destination cell.

. Although Poker does not d1rectly emulate the inter-cell communlcatlon of

a VLSI array processor 1t does emulate enough of the VLSI array to obtaln,
'meanmgful timings. ‘The followmg sections describe the Poker programmlng.
: env1ronment and the hardware it emulates. |
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: 8.1.1. | - Software for Emulating with Poker

E 8 1. 1 1 The zz Programmmg Language

The zz programmlng language is a srmphﬁed sequentlal programmlng
language for deﬁnmg the code for the cells in Poker. Figure B.1in Appendlx B
 gives a complete description of the language. The example in Flgure 8.2 shows: B

. some of the features of the language and the conventrons that will be used here

- ine presentmg Poker programs The line numbers on the left in the figure are
- used to refer to portrons of. the ﬁgure ’ '

The block of comments before the first numbered llne is a standard header
: that appears before each major program Each sectlon of the header is
~ described in' the followmg list. R ‘

Program Name grves the name of the program as hsted in. the code names sec-

- tion. The name will be followed by the program name (as used in the -

text) in () 's if more than one program uses, the same name.
Algorzthm will give the figure number of the correspondmg zz. code lf ‘the pro- 'b
’ gram is an assembly language program .The zz programs wrll give the -
, ﬁgure number of the algorlthm 1t is 1mplement1ng
Machme will be the VLSI Processor array. - ;
' .F unction will give a brlef descrrptlon of what the program does , ,
vPrectszon hsts the number of. blts and: format for the lnput output and any’
- other important varrables used by the program o : :
Number of PEs will hst the number of cells used by the VLSI processor array
'Parameters lrsts and descrlbes the parameters that aﬂ'ect the executlon times.
Input tells whlch port: the lnput data comes from in the VLSI processor array:
Output is the correspondlng 1nformatron to Input L e T
E »Loop sze tells how many ps are needed to process one 1nput sample in- the"
N VLSI processor array. _ B S
Maz Sample Rate tells how many samples can. be processed 1n one second
Llnes 1- 12 of Flgure 8.2 show that a comment is enclosed between /* and */
_ and can span more than one line. S _
‘ Lrne 14 declares thrs code’ to be named auto and must be stored in a ﬁle' .
o - named auto z. If parameters were passed to thrs cell the llne would be



- Program:Name: - auto (al) -
“VLSl processor array, srmulated by Poker -
- Functlon . Find autocorrelation coefﬁcrents Rl )

given input signal'x(m), usmg
k=M1

CR()= Y] x (Rt

Loop Time: 90 us to-process one input sample
‘Max Sample Rate: 11 KHz :

k=0
Precision: ©~ ~  Input: 32-bit ﬂoating'poiht '
LD " Output: 32-bit floating point o
Number of PEs: . p, the number of coeflicients computed‘.:' IR
_ ‘Parameters: P, the numberof coefficients computed.
S Input: : Arrives at the north port of cell (1,3). -
o "Output: Departs from east port of merge cell.
N
2 ’ This routine finds the first p autocorrelation coefficients
3 - of its input data. The value-of p depends on  the number of .
4. cells used. One sample-is read from each of the.two mput
5 ports. (ml and’ in2). The sample coming from the inl port
6 ‘is written to the bottom port (out) so.the cell below -~
7 _can use it during the next cycle. The two samples are -
8 multiplied together and added the a running sum (sum). After
-9 _one frames worth of samples have been read (as determined by’
0 . the .variable samples) the total sum 1s output to the results B
ir . port (results) g
12 L #’/‘ ‘ .
14 ‘code auto;
15 - . trace . - ‘sum,left, top;-
‘16 ports - inl,in2,0ut,results;
‘17 begin ’ S : I _ U
8- - sint. - i,samples; - [* Samples per frame ~ */ .
19 o © real  topleft,sum; /* These are type int for (a2) #/
20 - © " real inLin2out,results; [* These are type int for (a2) */
21 ' S ' : :
92 Q=0
23 - S sume= 05
‘24 B - samples = 10; A :
26 ' out <-sum; "~ [* Send a zero out to initialize the pipeline */
26 . S S o
e while true do
28 . begin
2 - S k=it

‘ _. Figure 8.2. An exa'niple of an 7z program.
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32
33

34
35
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38

39
40
41
42

43

44
45
46
47

end.‘

994

top <- inl;

left <- in2;
~if i < samples'then = [+ Has one frame been processed? * /
‘ begin /¥ No -/

out <-top; . [* Send sample from top to cell below */
sum := sum + top # left;/+ Find sum #/

end
else begin - :

' sum := sum + top * left; /* Last sample in frame */
results <- sum; . [* send out results . */
sum := 0; . . /* Reinitialize, sum = */
out <- sum; Y & and pipeline. =/

=0 ' :

end

énd

' Figufe 8.2 (Continued)
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of the ~fdfm e
R _ code auto(argl arg2); ,
where argl and arg2 are- gwen in the code name section wh1ch is dis-
cussed in Section 8.1. 13 ' e o
Llne 15 gives the variables to be’ traced All varlables listed here (up to four)
- owill appear on the’ screen during a run, and in the Trace file if used :
“This allows monitoring of the variables during executron but would not
be used in a product1on setting. R
Llne 16 tells which I/O ports will be used. These are loglcal names and will

not be assoclated with phys1cal names until load time. T he data in the

port names section tell which logical name to map to whlch physical
~ direction. - :
L1ne 17 starts the beg1nn1ng of the program. _
Line 18 declares ¢ and samples to be of type short integer (sint).
Lines 19 and 20 declare several variables to be of type real
' Llnes 22- 24 are assrgnment statements. :
" Llne 25 writes the values of sum to the port out. Notlce that ‘“:=" 1s the
assrgnment operator while “< is the read/write port operator.
" Line 27 is a while statement and the boolean value true is always true, so thlS-‘
loop will go on forever. ‘
Line 28 is the start of a begin/end pair.
The rest of the code is much like any other FORTRAN-like high level

language

81.1.2. The-Switch

- Figure 8.3a is an example of a configuration of cells for a VLSI processor

array algorlthm and Flgure 8.3b is the switch settlng that implements it. The o .4

particular algorlthm is for autocorrelation, and is used as an example of a typl-

+-+ '

cal algor1thm Each box | x,y lis a cell where z is the row number of the
-+ ' )

“cell, and y is the column number A “.” is a switch and the -\,/, and ] are

the data paths.
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Figure 8.3 b'(a) Example of a cell cronﬁguratioh for a VLSI algofithm. i
- (b) Example of Poker switch settings for the algorithm. -



'These values are passed to the g1ven program as arguments on the llne declar- S

I )

) Each processor has elght loglcal swrtch 1nput/output ports Most pro—

- grams presented here use a. glven port for either input or output but not both L e
. S0 often arrow heads. are used ito show the dlrectlon the data- ﬂows “This has‘ ,

R no eﬂ'ect on the hardware or software ‘the arrows are used to make ‘the data_,. 8
ﬂow clearer to the reader.  Also, some data paths are used to synchronlze two‘ :
cells. In this case, the arrlval of data at cell A marks some event at cell B and. .

l the value of the data passed is 1gnored The data paths used in this manner o e
B are drawn w1th llght lmes whlle true data paths are drawn w1th heavy hnes B

’ 3‘81 1.8 C’ode Names

Each processor can run dlﬂ'erent code The code name. llstmg on the rlght' |
of Flgure 8.4 shows WlllCh program is run on whlch processor There is a

- correspondence between the left and the right halves of the ﬁgure The upper:
left cell in the sw1tch runs the code listed in the upper left of the code names,

It a cell is. unused no ‘name is listed. In’ reahty, all cells Tun- all the tlme but
the unused cells run code called empty whlch is a statement Jumpmg to 1tself '

Some programs w1ll have data values llsted below the program names'

wg the name of the code. For example if line 14 of Flgure 8. 2 were -

' code auto(argl arg2 arg3 arg4)

‘the ﬁrst value llsted below the code name in Flgure 83 would be passed as

‘argl, the value below it as arg? and so on. Up to four values can:-be passed -
" The values need not be the same for different cells running the same. code. o

8.1.1.4. Port Names

As mentloned above each port can be assigned a loglcal name. Thls name

1is mapped- to a physical port during. load time. The port’ names given in the

‘ example in Figure 8.5 show the mapping from logical names to physical ports o
- The pos1t10n of a given name in a cell identifies the port to whlch it is con-

: nected The positions are:
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+-+ )' | - ) : .
: ] 1,3 .1,4.° 1 - ‘aute

2,4. 2 7 input  aute . output -

e e _ -
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4142043 .44 4 ‘auto
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i



Sell 2 3 4
int
-1 b1 in2 results |-
out.
I . B \
out ‘iﬁl
2 »sync L yd 02 results
out in
in int one out
. | two
3 out »in2 results p——i three out Il in
four :
out
int
4 h ! in2 resuits
out

Figure 8.5. Example of Poker port name assignments.
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“north "

nw - - . ne -

‘west . east

swWo S ‘se
south

"’When‘running'as’sembly code,‘3data iswritten to the physical ports, and n_ot
“logical ports;v'_therefore the port assignment table is not needed. ' '

': 8. l 2. Hardware Emulated by Poker 3

Frgure 8.6 shows the hardware used in one cell of Poker The main com-
ponents are an Intel 8051 mrcroprocessor an Intel 8231 Arlthmetlc Processor

-Unit* (APU) and the switch interface. - The followmg glves more detalls about SN

-~ the hardware emulated by Poker |

8 1 2 1 The Intel 8051 Mzcroprocessor

The heart of the ‘hardware is an Intel 8051 smgle—component 8-b1t micro- -
. ,comput,e,r (Intel]. .>It is an 8-bit processor designed for single chip operations as -

a contr'ol_ler»or as'an arithmetic processor. It runs with a 12 MHz e‘lock and the

sh'(’)rtest”"i‘nstruc'tion; t_akes 12 cycles, or 1 ps. An 8-bit reg'is:ter addition or sub-.

| ~traction takes 1 ps while. an'8~4bit unsigned ‘multiplication”takes 4 ps. Figure .

_-”Bz is a. hst of the 8051 . mstructron set lncludmg execution tlmes for each' _'
mstructxonv' , T S AR
- The 8051 has two types of RAM 1nternal and external There are 256-
‘bytes of lnternal RAM with the upper 128 bytes belng special function regls-'
ters. These reglsters allow access to the two ‘built-in- 16-bit. timers, the four

. built-in- 8bit 1/0 ports, and other Special features of the 8051. (Fi igure B.3
- glves an example of how to use the built-in. tlmer to control the execution time

v'of a loop ) The lower 128 bytes can. be used as regular memory. Most assembly
E ,language programs presented here use only the mternal RAM

The external. RAM. consrsts of 4K bytes of EPROM and 2K bytes of - :

_RAM The EPROM contalns routmes used to support the: :r:r code. The RAM .
| »holds the user’s program and d'-ata “The’ external RAM. 1s accessed onlyg

.,through a specral regrster and thust ‘takes tore. processor tlme to use. than the o

o mternal RAM
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Figure 8.6. Poker cell detail (from [Field]).
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w8 1. 2 2. The Arathmetzc Processmg Unit (APU)

~ There is an Intel 8231 APU. to assist the 8051 mlcroprocessor w1th 32-b1t }
V ﬂoatlng point arithmetic. The two processors. commumcate via an 8-bit com-
mand latch and an 8-bit data latch. The 8051 pushes data onto the 8231’s’

-stack, sends a command .and’ then pops the result. The APU executes a 32-b1t ‘

| ’ﬂoatlng-pomt add1t1on in at most 92 ps, subtractlon in 93 ps, a multiplication -

“in 42 ps, and a d1v1s1on in. 46 ;zs ‘These maxrmum execution tunes are too sloww
for most - speech processing. Also, there is considerable overhead

'pushlng/poppmg data to/from the APU so it is. faster for the 8051 to perform
_some operatlons than to send them to the APU :

| Varlables declared to be type real or int in zz- are 32 bits long and are
| processed by the APU ‘Otherwise, varlables of type smt are 8 bits each and

o are processed drrectly by the 8051

y 8.1.2.3. | The Swatch

‘An 8051 can communrcate wrth other 8051s through the sw1tch The
'j’switch is a_,crossbar switeh that allows any processor to talk _to any other pro-
d-c‘essor' An 8051 talks to the. sWitch’ through an “11-bit ‘wide output latch, and
an 11- blt wide, 16—word deep- lnput queue. - Since each processor has 8 logical'
1I/0 ports that- are 1mplemented by one latch and queue, three of ‘the 11 bits
- are: dlrectlonal mformatron ie, they tell to- whrch port the remalnlng 8 b1ts of
: 'data are to go. "The same is true for the input queue 8 bits are. data and three
bits are the tag tellmg l'rom whlch port the data came '

The sw1tch can poll 8 cells. every ps There are 64 processor cells in an 8
'by 8 square plus 32 more 1/0O célls along the edges of the square giving a totaI,
of 96 cells or 12 ps to do one scan. It is the software s responSIblhty to wait

"12 ps between wrrtes to the output latch to be sure the prev10us data was. wrlt- o

‘ ten If two wrltes happen between scans,. the ﬁrst data wrltten is lost Flgure,r
o ~B 4 grves an example of how to read/wnte data’ from/to the swrtch ‘
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Once the data is received from the sw1tch it is the programmer’s responSI-

bility to check the tag and buffer the data until all four bytes have arrived -

from the same direction. In some programs the data comes from only one - .

dlrectlon or a known dlrectlon so. the direction need not be checked Thls
~short cut 1s ‘used frequently i in the assembly routines presented.in the followmg
- chapters to decrease the execution time of the algorithms.

When usmg zz, the high level language, all port checkmg and delaylng are
handled by the compller and/or loader. '

8.1 24 The 8051 Assembler

The assembler used for the 8051 supports all the muemonics for machine

instructions spec1ﬁed in [lntel] The general format of an mstructlon is:
opcode : destlnatlon source

s, ' '
o : : mov sum,a _ ,
would move the data from a (the accumulator) to. the internal R’AM-:’loc‘atfiion
called sum. The output from the assembler, shown in the figures in Appendix
B, prints the execution time in ps for each instruction to the left of the mstruc-

tlon

The assembler also allows files to be inserted mto the current 1nput file. A

f line of the form: |
~#include "filename.h”

will stop the assembler from reading the current ﬁle and = start reading

filename.h. Once filename.h is read, processmg is continued on the prev1ous
input file. Two commonly used include file are ports. b and util.h. Ports h con-
tains the I/O port definition as shown in Figure B.5. util.h contams the
deﬁmtlon for wretedelay whlch waits a fixed amount of time for data to be read
from the output latch, and readwast which waits for data to appear in the
input queue. wutil.h is listed in Figure B.6. |
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8.1.3. Summary
This section has presented the Poker system that is used to simulate VL SI

processor arrays. A brief description was given of both the hardware and
software, with emphasis on how the hardware affects the software. The impor-
tant points with respect to the simulations described in the following sections
" are: : o '
1) Although each cell has an Intel 8231 APU, it is often faster to use the Intel
8051 microprocessor to perform the 8 and 16-bit fixed point arithmetic.
2) Each cell has eight logical I/O ports which are implemented by one output
latch and one 16-word deep input queue. g-bit data is written into the
 output latch; the latch is polled once every 12 its, so there must be a
12-ps delay between writes to the latch..
3) The 8051 has two 16-bit timers that can be used to synchronize cells

Overall, Poker provides an accurate simulation of a VLSI processor array.



8.2. Slmulation of Flltering Algorlthms

This sectron presents two dlﬁ'erent drgltal ﬁlterlng algorlthm srmulatlons o

“The first is a direct’ 1mplementat10n of the VLSI algorithms’ discussed in Sectlon
6.1.1. ‘This algorlthm use ‘no broadcasts and produces one output every two
. loops. The second algorithm i is based on the VLSI algorithms i in Sectlon 6.1.2.

L 'Here broadcasts are used, and one eutput is produced. during every loop

The followrng is a hst of requrrements a filtering program must meet to
- process speech data in real time. .
Sampling rate: The samphng rate for speech data ranges from 6. 67 KHz for
‘telephone quallty speech to 20 KHz for high quahty speech “The ﬁlter
- program must process speech data at these rates to run in real time. ©
"Preczswn Speech data needs abeut 8 blts per sample for telephone quallty:
’ speech and 11 to 12 bits per sample for high quality speech ‘
Type of ﬁlter Selecting values for p and .q depends on’ the type of ﬁlter used
The selection of p and q does not affect the execution time of these
o ﬁlterlng algorithms; it changes: only the number of cells that are used
- Therefore during' the srmulatlons P and q are generally set to values -

' that produce convenlent sized arrays

~ 8.2.1. Digital Filtering Without Broadcasts

Flgures 8.7, 8.8, and &: 9 show the switch settings, . port names, and ZZ rou-

o tlnes respectlvely, used to mmulate the first filter algorrthm with p=2 ‘and

q= 2. The values selected for P and. q have no effect on the executlon time of
- this program. For convenience, these values. were selected so that the array
_ would fit in a four- by four. cell arrangement The numbers listed under the
name filter on the right half of Frgure 8.7 is the value of the ﬁlter coefﬁclent
that is used by the | grven filter cell This example is evaluatlng :

boX Fbyxp, 1+'b2:Xm—2,+'31Ym—‘1~+32+Ym-—2 _ |
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