13,772 research outputs found

    Block-Online Multi-Channel Speech Enhancement Using DNN-Supported Relative Transfer Function Estimates

    Get PDF
    This work addresses the problem of block-online processing for multi-channel speech enhancement. Such processing is vital in scenarios with moving speakers and/or when very short utterances are processed, e.g., in voice assistant scenarios. We consider several variants of a system that performs beamforming supported by DNN-based voice activity detection (VAD) followed by post-filtering. The speaker is targeted through estimating relative transfer functions between microphones. Each block of the input signals is processed independently in order to make the method applicable in highly dynamic environments. Owing to the short length of the processed block, the statistics required by the beamformer are estimated less precisely. The influence of this inaccuracy is studied and compared to the processing regime when recordings are treated as one block (batch processing). The experimental evaluation of the proposed method is performed on large datasets of CHiME-4 and on another dataset featuring moving target speaker. The experiments are evaluated in terms of objective and perceptual criteria (such as signal-to-interference ratio (SIR) or perceptual evaluation of speech quality (PESQ), respectively). Moreover, word error rate (WER) achieved by a baseline automatic speech recognition system is evaluated, for which the enhancement method serves as a front-end solution. The results indicate that the proposed method is robust with respect to short length of the processed block. Significant improvements in terms of the criteria and WER are observed even for the block length of 250 ms.Comment: 10 pages, 8 figures, 4 tables. Modified version of the article accepted for publication in IET Signal Processing journal. Original results unchanged, additional experiments presented, refined discussion and conclusion

    Kalman tracking of linear predictor and harmonic noise models for noisy speech enhancement

    Get PDF
    This paper presents a speech enhancement method based on the tracking and denoising of the formants of a linear prediction (LP) model of the spectral envelope of speech and the parameters of a harmonic noise model (HNM) of its excitation. The main advantages of tracking and denoising the prominent energy contours of speech are the efficient use of the spectral and temporal structures of successive speech frames and a mitigation of processing artefact known as the ‘musical noise’ or ‘musical tones’.The formant-tracking linear prediction (FTLP) model estimation consists of three stages: (a) speech pre-cleaning based on a spectral amplitude estimation, (b) formant-tracking across successive speech frames using the Viterbi method, and (c) Kalman filtering of the formant trajectories across successive speech frames.The HNM parameters for the excitation signal comprise; voiced/unvoiced decision, the fundamental frequency, the harmonics’ amplitudes and the variance of the noise component of excitation. A frequency-domain pitch extraction method is proposed that searches for the peak signal to noise ratios (SNRs) at the harmonics. For each speech frame several pitch candidates are calculated. An estimate of the pitch trajectory across successive frames is obtained using a Viterbi decoder. The trajectories of the noisy excitation harmonics across successive speech frames are modeled and denoised using Kalman filters.The proposed method is used to deconstruct noisy speech, de-noise its model parameters and then reconstitute speech from its cleaned parts. Experimental evaluations show the performance gains of the formant tracking, pitch extraction and noise reduction stages

    The Conversation: Deep Audio-Visual Speech Enhancement

    Full text link
    Our goal is to isolate individual speakers from multi-talker simultaneous speech in videos. Existing works in this area have focussed on trying to separate utterances from known speakers in controlled environments. In this paper, we propose a deep audio-visual speech enhancement network that is able to separate a speaker's voice given lip regions in the corresponding video, by predicting both the magnitude and the phase of the target signal. The method is applicable to speakers unheard and unseen during training, and for unconstrained environments. We demonstrate strong quantitative and qualitative results, isolating extremely challenging real-world examples.Comment: To appear in Interspeech 2018. We provide supplementary material with interactive demonstrations on http://www.robots.ox.ac.uk/~vgg/demo/theconversatio

    Spatial Diffuseness Features for DNN-Based Speech Recognition in Noisy and Reverberant Environments

    Full text link
    We propose a spatial diffuseness feature for deep neural network (DNN)-based automatic speech recognition to improve recognition accuracy in reverberant and noisy environments. The feature is computed in real-time from multiple microphone signals without requiring knowledge or estimation of the direction of arrival, and represents the relative amount of diffuse noise in each time and frequency bin. It is shown that using the diffuseness feature as an additional input to a DNN-based acoustic model leads to a reduced word error rate for the REVERB challenge corpus, both compared to logmelspec features extracted from noisy signals, and features enhanced by spectral subtraction.Comment: accepted for ICASSP201

    Rank-1 Constrained Multichannel Wiener Filter for Speech Recognition in Noisy Environments

    Get PDF
    Multichannel linear filters, such as the Multichannel Wiener Filter (MWF) and the Generalized Eigenvalue (GEV) beamformer are popular signal processing techniques which can improve speech recognition performance. In this paper, we present an experimental study on these linear filters in a specific speech recognition task, namely the CHiME-4 challenge, which features real recordings in multiple noisy environments. Specifically, the rank-1 MWF is employed for noise reduction and a new constant residual noise power constraint is derived which enhances the recognition performance. To fulfill the underlying rank-1 assumption, the speech covariance matrix is reconstructed based on eigenvectors or generalized eigenvectors. Then the rank-1 constrained MWF is evaluated with alternative multichannel linear filters under the same framework, which involves a Bidirectional Long Short-Term Memory (BLSTM) network for mask estimation. The proposed filter outperforms alternative ones, leading to a 40% relative Word Error Rate (WER) reduction compared with the baseline Weighted Delay and Sum (WDAS) beamformer on the real test set, and a 15% relative WER reduction compared with the GEV-BAN method. The results also suggest that the speech recognition accuracy correlates more with the Mel-frequency cepstral coefficients (MFCC) feature variance than with the noise reduction or the speech distortion level.Comment: for Computer Speech and Languag
    • …
    corecore