3 research outputs found

    A novel routing approach for source location privacy in wireless sensor networks

    Get PDF
    Wireless sensor networks (WSNs) allows the world to use a technology for event supervision for several applications like military and civilian applications. Network privacy remained a prime concern in WSNs. Privacy of Source location is assumed to be one of the main un-tackled issues in privacy ofWSNs. Privacy of the source location is vital and highly jeopardized with the use of wireless communications. For WSNs, privacy of source location is become more complex by the fact that sensor nodes are low cost and energy efficient radio devices. So, use of computation intensive encryption methods and large scale broadcasting based algorithms are found to be unsuitable for WSNs. Several schemes have been proposed to ensure privacy of source location in WSNs. But, most of existing schemes depends on public-key cryptosystems, while others are either energy inefficient or have certain security flaws like leakage of information using directional attacks or traffic analysis attacks. In this thesis, we propose a novel dynamic routing based approach for preserving privacy of source location in WSNs, which injects fake packets in network and switches the real packet information among different routing patterns. It addresses the privacy of source location by considering the limited features of WSNs. Major contributions of this work includes two aspects. Firstly, different from the existing approaches, the proposed approach considers enhancing the security of nodes with minimal transmission delay and consumes power with minimum effect on the lifetime of the network. Secondly, the proposed approach is designed to defend many attacks like hop by hop, directional attacks by choosing a suitable path to send information from node to BS dynamically without affecting network life significantly. Thus, it becomes difficult for the attacker to find the exact path, and hence the original location of node. The proposed approach is implemented and validated by comparing its results with that of the existing approaches in the field of source location privacy in terms of Power consumption, Transmission delay, Safety period, and network lifetime. The analysis of comparative results indicates that the proposed approach is superior to the existing approaches in preserving the source location privacy

    Near optimal routing protocols for source location privacy in wireless sensor networks: modelling, design and evaluation

    Get PDF
    Wireless Sensor Networks (WSNs) are collections of small computing devices that are used to monitor valuable assets such as endangered animals. As WSNs communicate wirelessly they leak information to malicious eavesdroppers. When monitoring assets it is important to provide Source Location Privacy (SLP), where the location of the message source must be kept hidden. Many SLP protocols have been developed by designing a protocol using intuition before evaluating its performance. However, this does not provide insight into how to develop optimal approaches. This thesis will present an alternate approach where the SLP problem is modelled using different techniques to give an optimal output. However, as this optimal output is typically for a restricted scenario, algorithms that trade optimality for generality are subsequently designed. Four main contributions are presented. First, an analysis is performed based on entropy and divergence to gain insight into how to reduce the information an attacker gains via the use of competing paths, and ways to compare the information loss of arbitrary routing protocols. Secondly, the SLP problem is modelled using Integer Linear Programming. The model result guides the design of a generic protocol called ILPRouting that groups messages together to reduce the moves an attacker makes. Thirdly, a timing analysis of when events occur is used to dynamically determine fake source parameters for the Dynamic and DynamicSPR algorithms. These fake sources lure the attacker to their location instead of the real source. Finally, the first SLP-aware duty cycle is investigated, and implemented for DynamicSPR to make it more energy efficient. These techniques are evaluated through simulations and deployments on WSN testbeds to demonstrate their effectiveness
    corecore