861 research outputs found

    Parallelization of SAT on Reconfigurable Hardware

    Full text link
    Quoique très difficile à résoudre, le problème de satisfiabilité Booléenne (SAT) est fréquemment utilisé lors de la modélisation d’applications industrielles. À cet effet, les deux dernières décennies ont vu une progression fulgurante des outils conçus pour trouver des solutions à ce problème NP-complet. Deux grandes avenues générales ont été explorées afin de produire ces outils, notamment l’approche logicielle et matérielle. Afin de raffiner et améliorer ces solveurs, de nombreuses techniques et heuristiques ont été proposées par la communauté de recherche. Le but final de ces outils a été de résoudre des problèmes de taille industrielle, ce qui a été plus ou moins accompli par les solveurs de nature logicielle. Initialement, le but de l’utilisation du matériel reconfigurable a été de produire des solveurs pouvant trouver des solutions plus rapidement que leurs homologues logiciels. Cependant, le niveau de sophistication de ces derniers a augmenté de telle manière qu’ils restent le meilleur choix pour résoudre SAT. Toutefois, les solveurs modernes logiciels n’arrivent toujours pas a trouver des solutions de manière efficace à certaines instances SAT. Le but principal de ce mémoire est d’explorer la résolution du problème SAT dans le contexte du matériel reconfigurable en vue de caractériser les ingrédients nécessaires d’un solveur SAT efficace qui puise sa puissance de calcul dans le parallélisme conféré par une plateforme FPGA. Le prototype parallèle implémenté dans ce travail est capable de se mesurer, en termes de vitesse d’exécution à d’autres solveurs (matériels et logiciels), et ce sans utiliser aucune heuristique. Nous montrons donc que notre approche matérielle présente une option prometteuse vers la résolution d’instances industrielles larges qui sont difficilement abordées par une approche logicielle.Though very difficult to solve, the Boolean satisfiability problem (SAT) is extensively used to model various real-world applications and problems. Over the past two decades, researchers have tried to provide tools that are used, to a certain degree, to find solutions to the Boolean satisfiability problem. The nature of these tools is broadly divided in software and reconfigurable hardware solvers. In addition, the main algorithms used to solve this problem have also been complemented with heuristics of various levels of sophistication to help overcome some of the NP-hardness of the problem. The end goal of these tools has been to provide solutions to industrial-sized problems of enormous size. Initially, reconfigurable hardware tools provided a promising avenue to accelerating SAT solving over traditional software based solutions. However, the level of sophistication of software solvers overcame their hardware counterparts, which remained limited to smaller problem instances. Even so, modern state-of-the-art software solvers still fail unpredictably on some instances. The main focus of this thesis is to explore solving SAT on reconfigurable hardware in order to gain an understanding of what would be essential ingredients to add (and discard) to a very efficient hardware SAT solver that obtains its processing power from the raw parallelism of an FPGA platform. The parallel prototype solver that was implemented in this work has been found to be comparable with other hardware and software solvers in terms of execution speed even though no heuristics or other helping techniques were implemented. We thus show that our approach provides a very promising avenue to solving large, industrial SAT instances that might be difficult to handle by software solvers

    Pipelined genetic propagation

    Get PDF
    © 2015 IEEE.Genetic Algorithms (GAs) are a class of numerical and combinatorial optimisers which are especially useful for solving complex non-linear and non-convex problems. However, the required execution time often limits their application to small-scale or latency-insensitive problems, so techniques to increase the computational efficiency of GAs are needed. FPGA-based acceleration has significant potential for speeding up genetic algorithms, but existing FPGA GAs are limited by the generational approaches inherited from software GAs. Many parts of the generational approach do not map well to hardware, such as the large shared population memory and intrinsic loop-carried dependency. To address this problem, this paper proposes a new hardware-oriented approach to GAs, called Pipelined Genetic Propagation (PGP), which is intrinsically distributed and pipelined. PGP represents a GA solver as a graph of loosely coupled genetic operators, which allows the solution to be scaled to the available resources, and also to dynamically change topology at run-time to explore different solution strategies. Experiments show that pipelined genetic propagation is effective in solving seven different applications. Our PGP design is 5 times faster than a recent FPGA-based GA system, and 90 times faster than a CPU-based GA system

    Generic Connectivity-Based CGRA Mapping via Integer Linear Programming

    Full text link
    Coarse-grained reconfigurable architectures (CGRAs) are programmable logic devices with large coarse-grained ALU-like logic blocks, and multi-bit datapath-style routing. CGRAs often have relatively restricted data routing networks, so they attract CAD mapping tools that use exact methods, such as Integer Linear Programming (ILP). However, tools that target general architectures must use large constraint systems to fully describe an architecture's flexibility, resulting in lengthy run-times. In this paper, we propose to derive connectivity information from an otherwise generic device model, and use this to create simpler ILPs, which we combine in an iterative schedule and retain most of the exactness of a fully-generic ILP approach. This new approach has a speed-up geometric mean of 5.88x when considering benchmarks that do not hit a time-limit of 7.5 hours on the fully-generic ILP, and 37.6x otherwise. This was measured using the set of benchmarks used to originally evaluate the fully-generic approach and several more benchmarks representing computation tasks, over three different CGRA architectures. All run-times of the new approach are less than 20 minutes, with 90th percentile time of 410 seconds. The proposed mapping techniques are integrated into, and evaluated using the open-source CGRA-ME architecture modelling and exploration framework.Comment: 8 pages of content; 8 figures; 3 tables; to appear in FCCM 2019; Uses the CGRA-ME framework at http://cgra-me.ece.utoronto.ca

    Analytical Modeling of High Performance Reconfigurable Computers: Prediction and Analysis of System Performance.

    Get PDF
    The use of a network of shared, heterogeneous workstations each harboring a Reconfigurable Computing (RC) system offers high performance users an inexpensive platform for a wide range of computationally demanding problems. However, effectively using the full potential of these systems can be challenging without the knowledge of the system’s performance characteristics. While some performance models exist for shared, heterogeneous workstations, none thus far account for the addition of Reconfigurable Computing systems. This dissertation develops and validates an analytic performance modeling methodology for a class of fork-join algorithms executing on a High Performance Reconfigurable Computing (HPRC) platform. The model includes the effects of the reconfigurable device, application load imbalance, background user load, basic message passing communication, and processor heterogeneity. Three fork-join class of applications, a Boolean Satisfiability Solver, a Matrix-Vector Multiplication algorithm, and an Advanced Encryption Standard algorithm are used to validate the model with homogeneous and simulated heterogeneous workstations. A synthetic load is used to validate the model under various loading conditions including simulating heterogeneity by making some workstations appear slower than others by the use of background loading. The performance modeling methodology proves to be accurate in characterizing the effects of reconfigurable devices, application load imbalance, background user load and heterogeneity for applications running on shared, homogeneous and heterogeneous HPRC resources. The model error in all cases was found to be less than five percent for application runtimes greater than thirty seconds and less than fifteen percent for runtimes less than thirty seconds. The performance modeling methodology enables us to characterize applications running on shared HPRC resources. Cost functions are used to impose system usage policies and the results of vii the modeling methodology are utilized to find the optimal (or near-optimal) set of workstations to use for a given application. The usage policies investigated include determining the computational costs for the workstations and balancing the priority of the background user load with the parallel application. The applications studied fall within the Master-Worker paradigm and are well suited for a grid computing approach. A method for using NetSolve, a grid middleware, with the model and cost functions is introduced whereby users can produce optimal workstation sets and schedules for Master-Worker applications running on shared HPRC resources

    Software/Configware Implementation of Combinatorial Algorithms

    Full text link
    • …
    corecore