1,521 research outputs found

    Vine Robots: Design, Teleoperation, and Deployment for Navigation and Exploration

    Full text link
    A new class of continuum robots has recently been explored, characterized by tip extension, significant length change, and directional control. Here, we call this class of robots "vine robots," due to their similar behavior to plants with the growth habit of trailing. Due to their growth-based movement, vine robots are well suited for navigation and exploration in cluttered environments, but until now, they have not been deployed outside the lab. Portability of these robots and steerability at length scales relevant for navigation are key to field applications. In addition, intuitive human-in-the-loop teleoperation enables movement in unknown and dynamic environments. We present a vine robot system that is teleoperated using a custom designed flexible joystick and camera system, long enough for use in navigation tasks, and portable for use in the field. We report on deployment of this system in two scenarios: a soft robot navigation competition and exploration of an archaeological site. The competition course required movement over uneven terrain, past unstable obstacles, and through a small aperture. The archaeological site required movement over rocks and through horizontal and vertical turns. The robot tip successfully moved past the obstacles and through the tunnels, demonstrating the capability of vine robots to achieve navigation and exploration tasks in the field.Comment: IEEE Robotics and Automation Magazine, 2019. Video available at https://youtu.be/9NtXUL69g_

    Flora robotica -- An Architectural System Combining Living Natural Plants and Distributed Robots

    Full text link
    Key to our project flora robotica is the idea of creating a bio-hybrid system of tightly coupled natural plants and distributed robots to grow architectural artifacts and spaces. Our motivation with this ground research project is to lay a principled foundation towards the design and implementation of living architectural systems that provide functionalities beyond those of orthodox building practice, such as self-repair, material accumulation and self-organization. Plants and robots work together to create a living organism that is inhabited by human beings. User-defined design objectives help to steer the directional growth of the plants, but also the system's interactions with its inhabitants determine locations where growth is prohibited or desired (e.g., partitions, windows, occupiable space). We report our plant species selection process and aspects of living architecture. A leitmotif of our project is the rich concept of braiding: braids are produced by robots from continuous material and serve as both scaffolds and initial architectural artifacts before plants take over and grow the desired architecture. We use light and hormones as attraction stimuli and far-red light as repelling stimulus to influence the plants. Applied sensors range from simple proximity sensing to detect the presence of plants to sophisticated sensing technology, such as electrophysiology and measurements of sap flow. We conclude by discussing our anticipated final demonstrator that integrates key features of flora robotica, such as the continuous growth process of architectural artifacts and self-repair of living architecture.Comment: 16 pages, 12 figure

    A Dexterous Tip-extending Robot with Variable-length Shape-locking

    Full text link
    Soft, tip-extending "vine" robots offer a unique mode of inspection and manipulation in highly constrained environments. For practicality, it is desirable that the distal end of the robot can be manipulated freely, while the body remains stationary. However, in previous vine robots, either the shape of the body was fixed after growth with no ability to manipulate the distal end, or the whole body moved together with the tip. Here, we present a concept for shape-locking that enables a vine robot to move only its distal tip, while the body is locked in place. This is achieved using two inextensible, pressurized, tip-extending, chambers that "grow" along the sides of the robot body, preserving curvature in the section where they have been deployed. The length of the locked and free sections can be varied by controlling the extension and retraction of these chambers. We present models describing this shape-locking mechanism and workspace of the robot in both free and constrained environments. We experimentally validate these models, showing an increased dexterous workspace compared to previous vine robots. Our shape-locking concept allows improved performance for vine robots, advancing the field of soft robotics for inspection and manipulation in highly constrained environments.Comment: 7 pages,10 figures. Accepted to IEEE International Conference on Rootics and Automation (ICRA) 202

    Using a Soft Growing Robot as a Sensor Delivery System in Remote Environments: A Practical Case Study

    Get PDF
    Soft continuum robots are a new class of robotic devices, which are very promising for enabling measurement applications especially in remote, difficult-to-reach environments. In this work, we propose the use of a particular soft robot, which is able to evert and steer from the tip, as a sensor delivery system. The measurement system consists of two major sections: i) the robotic platform for movement purposes; and ii) the sensing part (i.e., a sensor attached to its tip to enable the measurement). As a case study of the use of the soft-growing robot as a sensor-delivery system, the transportation of a wired thermocouple towards a remote hot source was considered. The preliminary results anticipate the suitability of soft continuum robotic platforms for remote applications in confined and constrained environments

    Kinematic Control and Obstacle Avoidance for Soft Inflatable Manipulator

    Get PDF
    © Springer Nature Switzerland AG 2019. In this paper, we present a kinematic control and obstacle avoidance for the soft inflatable manipulator which combines pressure and tendons as an actuating mechanism. The position control and obstacle avoidance took inspiration from the phenomena of a magnetic field in nature. The redundancy in the manipulator combined with a planar mobile base is exploited to help the actuators stay under their maximum capability. The navigation algorithm is shown to outperform the potential-field-based navigation in its ability to smoothly and reactively avoid obstacles and reach the goal in simulation scenarios

    Static Shape Control of Soft Continuum Robots using Deep Visual Inverse Kinematic Models

    Get PDF
    • …
    corecore