206 research outputs found

    Anomaly detection in roads with a data mining approach

    Get PDF
    Road condition has an important role in our daily live. Anomalies in road surface can cause accidents, mechanical failure, stress and discomfort in drivers and passengers. Governments spend millions each year in roads maintenance for maintaining roads in good condition. But extensive maintenance work can lead to traffic jams, causing frustration in road users. In way to avoid problems caused by road anomalies, we propose a system that can detect road anomalies using smartphone sensors. The approach is based in data-mining algorithms to mitigate the problem of hardware diversity. In this work we used scikit-learn, a python module, and Weka, as tools for data-mining. All cleaning data process was made using python language. The final results show that it is possible detect road anomalies using only a smartphone.European Structural and Investment Funds in the FEDER component, through the Operational Competitiveness and Internationalization Programme (COMPETE 2020)This research is sponsored by the Portugal Incentive System for Research and Technological Development. Project in co-promotion nº 002797/2015 (INNOVCAR 2015-2018)info:eu-repo/semantics/publishedVersio

    Irregularity Finding in Roads Conditions using Data Mining: A Survey

    Get PDF
    Road conditions play a vital role now days. Irregularity in road surface can cause accidents, vehicle failure and discomfort in drivers and passengers. Governments spend lots of amount every year in maintenance of roads for keeping roads in proper condition. But more maintenance work can increase the traffic, causing disturbance in road users. To avoid disturbances caused by road irregularity,this system can detect road irregularity using Smartphone sensors. The approach is based on data mining. In this, it used scikit-learn, a python module, and Weka, as tools for data-mining. All cleaning data process was made using python language. The final outputs show that it is possible to find out road irregularity

    AI-based framework for automatically extracting high-low features from NDS data to understand driver behavior

    Get PDF
    Our ability to detect and characterize unsafe driving behaviors in naturalistic driving environments and associate them with road crashes will be a significant step toward developing effective crash countermeasures. Due to some limitations, researchers have not yet fully achieved the stated goal of characterizing unsafe driving behaviors. These limitations include, but are not limited to, the high cost of data collection and the manual processes required to extract information from NDS data. In light of this limitations, the primary objective of this study is to develop an artificial intelligence (AI) framework for automatically extracting high-low features from the NDS dataset to explain driver behavior using a low-cost data collection method. The author proposed three novel objectives for achieving the study's objective in light of the identified research gaps. Initially, the study develops a low-cost data acquisition system for gathering data on naturalistic driving. Second, the study develops a framework that automatically extracts high- to low-level features, such as vehicle density, turning movements, and lane changes, from the data collected by the developed data acquisition system. Thirdly, the study extracted information from the NDS data to gain a better understanding of people's car-following behavior and other driving behaviors in order to develop countermeasures for traffic safety through data collection and analysis. The first objective of this study is to develop a multifunctional smartphone application for collecting NDS data. Three major modules comprised the designed app: a front-end user interface module, a sensor module, and a backend module. The front-end, which is also the application's user interface, was created to provide a streamlined view that exposed the application's key features via a tab bar controller. This allows us to compartmentalize the application's critical components into separate views. The backend module provides computational resources that can be used to accelerate front-end query responses. Google Firebase powered the backend of the developed application. The sensor modules included CoreMotion, CoreLocation, and AVKit. CoreMotion collects motion and environmental data from the onboard hardware of iOS devices, including accelerometers, gyroscopes, pedometers, magnetometers, and barometers. In contrast, CoreLocation determines the altitude, orientation, and geographical location of a device, as well as its position relative to an adjacent iBeacon device. The AVKit finally provides a high-level interface for video content playback. To achieve objective two, we formulated the problem as both a classification and time-series segmentation problem. This is due to the fact that the majority of existing driver maneuver detection methods formulate the problem as a pure classification problem, assuming a discretized input signal with known start and end locations for each event or segment. In practice, however, vehicle telemetry data used for detecting driver maneuvers are continuous; thus, a fully automated driver maneuver detection system should incorporate solutions for both time series segmentation and classification. The five stages of our proposed methodology are as follows: 1) data preprocessing, 2) segmentation of events, 3) machine learning classification, 4) heuristics classification, and 5) frame-by-frame video annotation. The result of the study indicates that the gyroscope reading is an exceptional parameter for extracting driving events, as its accuracy was consistent across all four models developed. The study reveals that the Energy Maximization Algorithm's accuracy ranges from 56.80 percent (left lane change) to 85.20 percent (right lane change) (lane-keeping) All four models developed had comparable accuracies to studies that used similar models. The 1D-CNN model had the highest accuracy (98.99 percent), followed by the LSTM model (97.75 percent), the RF model (97.71 percent), and the SVM model (97.65 percent). To serve as a ground truth, continuous signal data was annotated. In addition, the proposed method outperformed the fixed time window approach. The study analyzed the overall pipeline's accuracy by penalizing the F1 scores of the ML models with the EMA's duration score. The pipeline's accuracy ranged between 56.8 percent and 85.0 percent overall. The ultimate goal of this study was to extract variables from naturalistic driving videos that would facilitate an understanding of driver behavior in a naturalistic driving environment. To achieve this objective, three sub-goals were established. First, we developed a framework for extracting features pertinent to comprehending the behavior of natural-environment drivers. Using the extracted features, we then analyzed the car-following behaviors of various demographic groups. Thirdly, using a machine learning algorithm, we modeled the acceleration of both the ego-vehicle and the leading vehicle. Younger drivers are more likely to be aggressive, according to the findings of this study. In addition, the study revealed that drivers tend to accelerate when the distance between them and the vehicle in front of them is substantial. Lastly, compared to younger drivers, elderly motorists maintain a significantly larger following distance. This study's results have numerous safety implications. First, the analysis of the driving behavior of different demographic groups will enable safety engineers to develop the most effective crash countermeasures by enhancing their understanding of the driving styles of different demographic groups and the causes of collisions. Second, the models developed to predict the acceleration of both the ego-vehicle and the leading vehicle will provide enough information to explain the behavior of the ego-driver.Includes bibliographical references

    Road anomalies detection system evaluation

    Get PDF
    Anomalies on road pavement cause discomfort to drivers and passengers, and may cause mechanical failure or even accidents. Governments spend millions of Euros every year on road maintenance, often causing traffic jams and congestion on urban roads on a daily basis. This paper analyses the difference between the deployment of a road anomalies detection and identification system in a “conditioned” and a real world setup, where the system performed worse compared to the “conditioned” setup. It also presents a system performance analysis based on the analysis of the training data sets; on the analysis of the attributes complexity, through the application of PCA techniques; and on the analysis of the attributes in the context of each anomaly type, using acceleration standard deviation attributes to observe how different anomalies classes are distributed in the Cartesian coordinates system. Overall, in this paper, we describe the main insights on road anomalies detection challenges to support the design and deployment of a new iteration of our system towards the deployment of a road anomaly detection service to provide information about roads condition to drivers and government entities.This work was supported by European Structural and Investment Funds in the FEDER component, through the Operational Competitiveness and Internationalization Programme (COMPETE 2020) [Project No. 002797; Funding Reference: POCI-01-0247-FEDER-002797].info:eu-repo/semantics/publishedVersio

    SigSegment: A Signal-Based Segmentation Algorithm for Identifying Anomalous Driving Behaviours in Naturalistic Driving Videos

    Full text link
    In recent years, distracted driving has garnered considerable attention as it continues to pose a significant threat to public safety on the roads. This has increased the need for innovative solutions that can identify and eliminate distracted driving behavior before it results in fatal accidents. In this paper, we propose a Signal-Based anomaly detection algorithm that segments videos into anomalies and non-anomalies using a deep CNN-LSTM classifier to precisely estimate the start and end times of an anomalous driving event. In the phase of anomaly detection and analysis, driver pose background estimation, mask extraction, and signal activity spikes are utilized. A Deep CNN-LSTM classifier was applied to candidate anomalies to detect and classify final anomalies. The proposed method achieved an overlap score of 0.5424 and ranked 9th on the public leader board in the AI City Challenge 2023, according to experimental validation results

    A Study on the Influence of Speed on Road Roughness Sensing: the SmartRoadSense Case

    Get PDF
    SmartRoadSense is a crowdsensing project aimed at monitoring the conditions of the road surface. Using the sensors of a smartphone, SmartRoadSense monitors the vertical accelerations inside a vehicle traveling the road and extracts a roughness index conveying information about the road conditions. The roughness index and the smartphone GPS data are periodically sent to a central server where they are processed, associated with the specific road, and aggregated with data measured by other smartphones. This paper studies how the smartphone vertical accelerations and the roughness index are related to the vehicle speed. It is shown that the dependence can be locally approximated with a gamma (power) law. Extensive experimental results using data extracted from SmartRoadSense database confirm the gamma law relationship between the roughness index and the vehicle speed. The gamma law is then used for improving the SmartRoadSense data aggregation accounting for the effect of vehicle speed

    Using Sensor Redundancy in Vehicles and Smartphones for Driving Security and Safety

    Full text link
    The average American spends around at least one hour driving every day. During that time the driver utilizes various sensors to enhance their commute. Approximately 77% of smartphone users rely on navigation apps daily. Consumer grade OBD dongles that collect vehicle sensor data to monitor safe driving habits are common. Existing sensing applications pertaining to our drive are often separate from each other and fail to learn from and utilize the information gained by other sensing streams and other drivers. In order to best leverage the widespread use of sensing capabilities, we have to unify and coordinate the different sensing streams in a meaningful way. This dissertation explores and validates the following thesis: Sensing the same phenomenon from multiple perspectives can enhance vehicle safety, security and transportation. First, it presents findings from an exploratory study on unifying vehicular sensor streams. We explored combining sensory data from within one vehicle through pairwise correlation and across multiple vehicles through normal models built with principal component analysis and cluster analysis. Our findings from this exploratory study motivated the rest of this thesis work on using sensor redundancy for CAN-bus injection detection and driving hazard detection. Second, we unify the phone sensors with vehicle sensors to detect CAN bus injection attacks that compromise vehicular sensor values. Specifically, we answer the question: Are phone sensors accurate enough to detect typical CAN bus injection attacks found in literature? Through extensive tests we found that phone sensors are sufficiently accurate to detect many CAN-bus injection attacks. Third, we construct GPS trajectories from multiple vehicles nearby to find stationary and mobile driving hazards such as a bicyclist on the side of the road. Such a tool will effectively extend the repertoire of current navigation assistant applications such as Google Maps which detect and warn drivers about upcoming stationary hazards. Finally, we present an easy-to-use tool to help developers and researchers quickly build and prototype data-collection apps that naturally exploit sensing redundancy. Overall, this thesis provides a unified basis for exploiting sensing redundancy existing inside a single vehicle as well as between different vehicles to enhance driving safety and security.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/155154/1/arungan_1.pd

    Connectionist systems for image processing and anomaly detection

    Get PDF
    Dissertação de mestrado integrado em Engenharia InformáticaA Inteligência Artificial (IA) e a Ciência de Dados estão cada vez mais presentes no nosso quotidiano e os benefícios que trouxeram para a sociedade nos últimos anos são notáveis. O sucesso da IA foi impulsionado pela capacidade adaptativa que as máquinas adquiriram e está estreitamente relacionada com a sua habilidade para aprender. Os sistemas conexionistas, apresentados na forma de Redes Neurais Artificiais (RNAs), que se inspiram no sistema nervoso humano, são um dos mais importantes modelos que permitem a aprendizagem. Estes são utilizados em diversas áreas, como em problemas de previsão ou classificação, apresentando resultados cada vez mais satisfatórios. Uma das áreas em que esta tecnologia se tem destacado é a Visão Computacional (Computer Vision (CV)), permitindo, por exemplo, a localização de objetos em imagens e a sua correta identificação. A Deteção de Anomalias (Anomaly Detection (AD)) é outro campo onde as RNAs vêm surgindo como uma das tecnologias para a resolução de problemas. Em cada área são utilizadas diferentes arquiteturas de acordo com o tipo de dados e o problema a resolver. Combinando o processamento de imagens e a deteção de anomalias, verifica-se uma convergência de metodologias que utilizam módulos convolucionais em arquiteturas dedicadas a AD. O objetivo principal desta dissertação é estudar as técnicas existentes nestes domínios, desenvolvendo diferentes arquiteturas e modelos, aplicando-as a casos práticos de forma a comparar os resultados obtidos em cada abordagem. O caso prático principal consiste na monitorização de pavimentos rodoviários por meio de imagens para a identificação automática de áreas degradadas. Para isso, dois protótipos de software são propostos para recolher e visualizar os dados adquiridos. O estudo de arquiteturas de RNAs para o diagnóstico da condição do asfalto por meio de imagens é o foco central no processo científico apresentado. Os métodos de Machine Learning (ML) utilizados incluem classificadores binários, Autoencoders (AEs) e Variational Autoencoders (VAEs). Para os dois últimos modelos, práticas supervisionadas e não supervisionadas são também comparadas, comprovando a sua utilidade em cenários onde não há dados rotulados disponíveis. Usando o modelo VAE num ambiente supervisionado, este apresenta uma excelente distinção entre áreas de pavimentação em boas condições e degradadas. Quando não existem dados rotulados disponíveis, a melhor opção é utilizar o modelo AE, utilizando a distribuição de semelhanças das reconstruções para calcular o threshold de separação, atingindo accuracy e precision superiores a 94%). O processo completo de desenvolvimento mostra que é possível construir uma solução alternativa para diminuir os custos de operação em relação aos sistemas comerciais existentes e melhorar a usabilidade quando comparada às soluções tradicionais. Adicionalmente, dois estudos demonstram a versatilidade dos sistemas conexionistas na resolução de problemas, nomeadamente no projeto de estruturas mecânicas, possibilitando a modelação de campos de deslocamento e pressão em placas reforçadas; e na utilização de AD para identificar locais de aglomeração de pessoas através de técnicas de crowdsensing.Artificial Intelligence (AI) and Data Science (DS) have become increasingly present in our daily lives, and the benefits it has brought to society in recent years are remarkable. The success of AI was driven by the adaptive capacity that machines gained, and it is closely related to their ability to learn. Connectionist systems, presented in the form of Artificial Neural Networks (ANNs), which are inspired by the human nervous system, are one of the principal models that allows learning. These models are used in several areas, like forecasting or classification problems, presenting increasingly satisfactory results. One area in which this technology has excelled is Com puter Vision (CV), allowing, for example, the location of objects in images and their correct identification. Anomaly Detection (AD) is another field where ANNs have been emerging as one technology for problem solving. In each area, different architectures are used according to the type of data and the problem to be solved. Combining im age processing and the finding of anomalies in this type of data, there is a convergence of methodologies using convolutional modules in architectures dedicated to AD. The main objective of this dissertation is to study the existent techniques in these domains, developing different model architectures, and applying them to practical case studies in order to compare the results obtained in each approach. The major practical use case consists of monitoring road pavements using images to automatically identify degraded areas. For that, two software prototypes are proposed to gather and visualise the acquired data. Moreover, the study of ANN architectures to diagnose the asphalt condition through images is the central focus of this work. The experimented methods for AD in images include a binary classifier network as a baseline, Autoencoders (AEs) and Variational Autoen coders (VAEs). Supervised and unsupervised practises are also compared, proving their utility also in scenarios where there is no labelled data available. Using the VAE model in a supervised setting, it presents a excellent distinction between good and bad pavement areas. When labelled data is not available, using the AE and the distribution of similarities of good pavement reconstructions to calculate the threshold is the best option with both accuracy and precision above 94%. The full development process shows it is possible to build an alternative solution to decrease the operation costs relatively to expensive commercial systems and improve usability when compared with traditional solutions. Additionally, two case studies demonstrate the versatility of connectionist systems to solve problems, namely in Mechanical Structural Design enabling the modelling of displacement and pressure fields in reinforced plates; and using AD to identify crowded places through crowd-sensing techniques
    corecore