1,938 research outputs found

    Photonic RF and microwave reconfigurable filters and true time delays based on an integrated optical Kerr frequency comb source

    Full text link
    We demonstrate advanced transversal radio frequency (RF) and microwave functions based on a Kerr optical comb source generated by an integrated micro-ring resonator. We achieve extremely high performance for an optical true time delay aimed at tunable phased array antenna applications, as well as reconfigurable microwave photonic filters. Our results agree well with theory. We show that our true time delay would yield a phased array antenna with features that include high angular resolution and a wide range of beam steering angles, while the microwave photonic filters feature high Q factors, wideband tunability, and highly reconfigurable filtering shapes. These results show that our approach is a competitive solution to implementing reconfigurable, high performance and potentially low cost RF and microwaveComment: 15 pages, 11 Figures, 60 Reference

    Analysis of Impact of Transformer Coupled Input Matching on Concurrent Dual-Band Low Noise Amplifier

    Get PDF
    Emerging advancements in telecommunication system need robust radio devices which can capable of working multiple frequency bands seamlessly. In any Radio Frequency (RF) receiver architecture, Low Noise Amplifier (LNA) is the mandatory front-end part in which takes place in between antenna and mixer. To support multiple frequency bands with single hardware, concurrent LNA is the more preferred topologies among others. As LNA is the very front end level of receiver, Input matching, Noise Figure (NF) and gain are the major performance parameters to be concerned. In this work, the impact of transformer coupled input matching on concurrent dual-band LNA is analyzed and verified. A concurrent LNA with concurrent matching without transformer coupling is used for comparison. A transformer coupled input matching is proposed for tunable concurrent dual-band LNA. All the circuits are implemented in UMC 180nm CMOS technology, and simulated using Cadence SpectreRF simulation tool

    Flexible dual-diversity wearable wireless node integrated on a dual-polarised textile patch antenna

    Get PDF
    A new textile wearable wireless node, for operation in the 2.45 GHz industrial, scientific and medical (ISM) band, is proposed. It consists of a dual-polarised textile patch antenna with integrated microcontroller, sensor, memory and transceiver with receive diversity. Integrated into a garment, the flexible unit may serve for fall detection, as well as for patient or rescue-worker monitoring. Fragile and lossy interconnections are eliminated. They are replaced by very short radiofrequency signal paths in the antenna feed plane, reducing electromagnetic compatibility and signal integrity problems. The compact and flexible module combines sensing and wireless channel monitoring functionality with reliable and energy-efficient off-body wireless communication capability, by fully exploiting dual polarisation diversity. By integrating a battery, a fully autonomous and flexible system is obtained. This novel textile wireless node was validated, both in flat and bent state, in the anechoic chamber, assessing the characteristics of the integrated system in free-space conditions. Moreover, its performance was verified in various real-world conditions, integrated into a firefighter garment, and used as an autonomous body-centric measurement device

    Dielectrically Loaded Quad-ridge Flared Horns for Ultra Wideband Reflector Feed Applications in Radio Astronomy

    Get PDF
    Reflector-based radio telescopes are used as tools for observations in both radio astronomy and space geodesy. To observe the weak sources in space, highly sensitive receivers, fronted by optimized reflector feeds, are therefore needed. Wideband and ultra-wideband (UWB) systems enable large continuous frequency bandwidth and reduce the number of receivers that are needed to cover the radio spectrum. Therefore, they are attractive for existing and next generation of reflector arrays such as the Square Kilometre Array (SKA), Allen Telescope Array (ATA), Deep Synoptic Array (DSA), and the Next Generation Very Large Array (ngVLA). To achieve sensitive wideband and UWB performance with reflector feeds, a near-constant beamwidth and good impedance match are required over large frequency bands. The quad-ridge flared horn (QRFH) is a robust and compact UWB feed technology for this purpose, and is easily designed with single-ended excitation for 50-Ohm ports. The QRFH is dual-linear polarized and can typically achieve good performance up to 6:1 bandwidth with high band-average aperture efficiency and good impedance match. A drawback in existing state-of-the-art QRFH designs, is that they suffer from gradually narrowing beamwidth and increasing cross-polarization in the upper part of the frequency band. This is especially challenging for QRFHs that are designed to illuminate deep reflector geometries. The narrowing beamwidth leads to reduced aperture efficiency, and therefore also reduced sensitivity. To meet the demand for high sensitivity observations over large bandwidths, these challenges need to be addressed.This thesis introduces and investigates low-loss, dielectric loading of the QRFH design to achieve ultra-wideband performance that reaches beyond decade bandwidth exemplified with 20:1 bandwidth in one single QRFH. The dielectric load is homogeneous, with a small and non-intrusive footprint and improves the beamwidth performance over the frequency band, while keeping the complexity low and the QRFH footprint compact. Keeping the QRFH robustness and compact footprint is favorable for practical receiver installation in real-world applications for radio observations. Three quad-ridge designs with dielectric loading are investigated, both for room temperature and cryogenic applications, and are shown to be highly suitable for wideband operation in existing and future reflector arrays
    corecore