14 research outputs found

    TSCH Multiflow Scheduling with QoS Guarantees: A Comparison of SDN with Common Schedulers

    Full text link
    [EN] Industrial Wireless Sensor Networks (IWSN) are becoming increasingly popular in production environments due to their ease of deployment, low cost and energy efficiency. However, the complexity and accuracy demanded by these environments requires that IWSN implement quality of service mechanisms that allow them to operate with high determinism. For this reason, the IEEE 802.15.4e standard incorporates the Time Slotted Channel Hopping (TSCH) protocol which reduces interference and increases the reliability of transmissions. This standard does not specify how time resources are allocated in TSCH scheduling, leading to multiple scheduling solutions. Schedulers can be classified as autonomous, distributed and centralised. The first two have prevailed over the centralised ones because they do not require high signalling, along with the advantages of ease of deployment and high performance. However, the increased QoS requirements and the diversity of traffic flows that circulate through the network in today's Industry 4.0 environment require strict, dynamic control to guarantee parameters such as delay, packet loss and deadline, independently for each flow. That cannot always be achieved with distributed or autonomous schedulers. For this reason, it is necessary to use centralised protocols with a disruptive approach, such as Software Defined Networks (SDN). In these, not only is the control of the MAC layer centralised, but all the decisions of the nodes that make up the network are configured by the controller based on a global vision of the topology and resources, which allows optimal decisions to be made. In this work, a comparative analysis is made through simulation and a testbed of the different schedulers to demonstrate the benefits of a fully centralized approach such as SDN. The results obtained show that with SDN it is possible to simplify the management of multiple flows, without the problems of centralised schedulers. SDN maintains the Packet Delivery Ratio (PDR) levels of other distributed solutions, but in addition, it achieves greater determinism with bounded end-to-end delays and Deadline Satisfaction Ratio (DSR) at the cost of increased power consumption.This work has been supported by DAIS (https://dais-project.eu/) which has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 101007273. The JU receives support from the European Union's Horizon 2020 research and innovation programme and Sweden, Spain, Portugal, Belgium, Germany, Slovenia, Czech Republic, Netherlands, Denmark, Norway and Turkey. It has also been funded by Generalitat Valenciana through the "Instituto Valenciano de Competitividad Empresarial-IVACE". Furthermore, has been supported by the MCyU (Spanish Ministry of Science and Universities) under the project ATLAS (PGC2018-094151-B-I00), which is partially funded by AEI, FEDER and EU.Orozco-Santos, F.; Sempere Paya, VM.; Silvestre-Blanes, J.; Albero Albero, T. (2022). TSCH Multiflow Scheduling with QoS Guarantees: A Comparison of SDN with Common Schedulers. Applied Sciences. 12(1):1-19. https://doi.org/10.3390/app1201011911912

    IEEE 802.15.4e: a Survey

    Get PDF
    Several studies have highlighted that the IEEE 802.15.4 standard presents a number of limitations such as low reliability, unbounded packet delays and no protection against interference/fading, that prevent its adoption in applications with stringent requirements in terms of reliability and latency. Recently, the IEEE has released the 802.15.4e amendment that introduces a number of enhancements/modifications to the MAC layer of the original standard in order to overcome such limitations. In this paper we provide a clear and structured overview of all the new 802.15.4e mechanisms. After a general introduction to the 802.15.4e standard, we describe the details of the main 802.15.4e MAC behavior modes, namely Time Slotted Channel Hopping (TSCH), Deterministic and Synchronous Multi-channel Extension (DSME), and Low Latency Deterministic Network (LLDN). For each of them, we provide a detailed description and highlight the main features and possible application domains. Also, we survey the current literature and summarize open research issues

    Improving network formation in IEEE 802.15.4e DSME

    Get PDF
    Wireless Sensor and Actuator Networks are becoming attractive also for industrial applications, since recent standardization efforts have introduced significant improvement to reliability and deterministic communication delays. In this context, IEEE 802.15.4e is widely considered the major improvement, introducing many enhancements to the original IEEE 802.15.4 standard aimed at supporting critical applications. Among the new defined MAC protocols, Deterministic and Synchronous Multi-channel Extension (DSME) represents the most suitable option for applications with time-varying requirements. In this paper, an analysis of the IEEE 802.15.4 DSME MAC protocol during network formation is presented. The goal is to study the protocol performance and propose solutions to reduce the network formation time, improving energy and resource efficiency. To carry out the performance evaluation, DSME has been fully implemented in Contiki OS, an actual operating system for sensor nodes. The study has highlighted issues and inefficiencies in the network formation process, allowing to consequently propose effective solutions. In particular, it is proposed a set of guidelines for DSME configuration to the original MAC protocol that are proved to increase significantly the network formation efficiency

    Performance Analysis of IEEE 802.15.4 Bootstrap Process

    Get PDF
    The IEEE 802.15.4 is a popular standard used in wireless sensor networks (WSNs) and the Internet of Things (IoT) applications. In these networks, devices are organized into groups formally known as personal area networks (PAN) which require a bootstrap procedure to become operational. Bootstrap plays a key role in the initialization and maintenance of these networks. For this reason, this work presents our implementation and performance analysis for the ns-3 network simulator. Specifically, this bootstrap implementation includes the support of three types of scanning mechanisms (energy scan, passive scan, and active scan) and the complete classic association mechanism described by the standard. Both of these mechanisms can be used independently by higher layers protocols to support network initialization, network joining, and maintenance tasks. Performance evaluation is conducted in total network association time and packet overhead terms. Our source code is documented and publicly available in the latest ns-3 official release

    DynaMO—Dynamic Multisuperframe Tuning for Adaptive IEEE 802.15.4e DSME Networks

    Get PDF
    Recent advancements in the IoT domain have been pushing for stronger demands of Qualityof-Service (QoS) and in particular for improved determinism for time-critical wireless communications under power constraints. The IEEE 802.15.4e standard protocol introduced several new MAC behaviors that provide enhanced time-critical and reliable communications. The Deterministic Synchronous Multichannel Extension (DSME) is one of its prominent MAC behaviors that combines contention-based and contentionfree communication, guaranteeing bounded delays and improved reliability and scalability by leveraging multi-channel access and CAP reduction. However, DSME has a multi-superframe structure, which is statically defined at the beginning of the network. As the network evolves dynamically by changing its traffic characteristics, these static settings can affect the overall throughput and increase the network delay because of improper allocation of bandwidth. In this paper, we address this problem, and we present a dynamic multi-superframe tuning technique that dynamically adapts the multi-superframe structure based on the size of the network. This technique improves the QoS by providing 15-30% increase in throughput and 15-35% decrease in delay when compared to static DSME networksinfo:eu-repo/semantics/publishedVersio

    Bell-X, An Opportunistic Time Synchronization Mechanism for Scheduled Wireless Sensor Networks

    Full text link
    [EN] The Industrial Internet of Things (IIoT) is having an ever greater impact on industrial processes and the manufacturing sector, due the capabilities of massive data collection and interoperability with plant processes, key elements that are focused on the implementation of Industry 4.0. Wireless Sensor Networks (WSN) are one of the enabling technologies of the IIoT, due its self-configuration and self-repair capabilities to deploy ad-hoc networks. High levels of robustness and reliability, which are necessary in industrial environments, can be achieved by using the Time-Slotted Channel Hopping (TSCH) medium access the mechanism of the IEEE 802.15.4e protocol, penalizing other features, such as network connection and formation times, given that a new node does not know, a priori, the scheduling used by the network. This article proposes a new beacon advertising approach for a fast synchronization for networks under the TSCH-Medium Access Control (MAC) layer and Routing Protocol for Low-Power and Lossy Networks (RPL). This new method makes it possible to speed up the connection times of new nodes in an opportunistic way, while reducing the consumption and advertising traffic generated by the network.This work has been supported by the SCOTT project (Secure COnnected Trustable Things) (www.scottproject.eu), which has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under grant agreement No. 737422. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme, and from Austria, Spain, Finland, Ireland, Sweden, Germany, Poland, Portugal, Netherlands, Belgium and Norway. It has also been funded by Generalitat Valenciana through the "Instituto Valenciano de Competitividad Empresarial - IVACE", and by the MCyU (Spanish Ministry of Science and Universities) under the project ATLAS (PGC2018-094151-B-I00), which is partially funded by AEI, FEDER and EU.Vera-Pérez, J.; Todoli Ferrandis, D.; Silvestre-Blanes, J.; Sempere Paya, VM. (2019). Bell-X, An Opportunistic Time Synchronization Mechanism for Scheduled Wireless Sensor Networks. Sensors. 19(19):1-22. https://doi.org/10.3390/s19194128S1221919Vitturi, S., Zunino, C., & Sauter, T. (2019). Industrial Communication Systems and Their Future Challenges: Next-Generation Ethernet, IIoT, and 5G. Proceedings of the IEEE, 107(6), 944-961. doi:10.1109/jproc.2019.2913443Candell, R., Kashef, M., Liu, Y., Lee, K. B., & Foufou, S. (2018). Industrial Wireless Systems Guidelines: Practical Considerations and Deployment Life Cycle. IEEE Industrial Electronics Magazine, 12(4), 6-17. doi:10.1109/mie.2018.2873820Brandt, A., Hui, J., Kelsey, R., Levis, P., Pister, K., … Struik, R. (2012). RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks. doi:10.17487/rfc6550Vera-Pérez, J., Todolí-Ferrandis, D., Santonja-Climent, S., Silvestre-Blanes, J., & Sempere-Payá, V. (2018). A Joining Procedure and Synchronization for TSCH-RPL Wireless Sensor Networks. Sensors, 18(10), 3556. doi:10.3390/s18103556Pister, K., & Watteyne, T. (2017). Minimal IPv6 over the TSCH Mode of IEEE 802.15.4e (6TiSCH) Configuration. doi:10.17487/rfc8180Levis, P., Clausen, T., Hui, J., Gnawali, O., & Ko, J. (2011). The Trickle Algorithm. doi:10.17487/rfc6206Contiki: The Open Source OS for the Internet of Things: Official Website www.contiki-os.orgStanislowski, D., Vilajosana, X., Wang, Q., Watteyne, T., & Pister, K. S. J. (2014). Adaptive Synchronization in IEEE802.15.4e Networks. IEEE Transactions on Industrial Informatics, 10(1), 795-802. doi:10.1109/tii.2013.2255062Chang, T., Watteyne, T., Pister, K., & Wang, Q. (2015). Adaptive synchronization in multi-hop TSCH networks. Computer Networks, 76, 165-176. doi:10.1016/j.comnet.2014.11.003Palattella, M., & Grieco, L. (2015). Using IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the Internet of Things (IoT): Problem Statement. doi:10.17487/rfc7554Vogli, E., Ribezzo, G., Grieco, L. A., & Boggia, G. (2018). Fast network joining algorithms in industrial IEEE 802.15.4 deployments. Ad Hoc Networks, 69, 65-75. doi:10.1016/j.adhoc.2017.10.013Duy, T. P., Dinh, T., & Kim, Y. (2016). A rapid joining scheme based on fuzzy logic for highly dynamic IEEE 802.15.4e time-slotted channel hopping networks. International Journal of Distributed Sensor Networks, 12(8), 155014771665942. doi:10.1177/1550147716659424Khoufi, I., Minet, P., & Rmili, B. (2019). Beacon advertising in an IEEE 802.15.4e TSCH network for space launch vehicles. Acta Astronautica, 158, 76-88. doi:10.1016/j.actaastro.2018.07.021Karalis, A., Zorbas, D., & Douligeris, C. (2019). Collision-Free Advertisement Scheduling for IEEE 802.15.4-TSCH Networks. Sensors, 19(8), 1789. doi:10.3390/s19081789Vallati, C., Brienza, S., Anastasi, G., & Das, S. K. (2019). Improving Network Formation in 6TiSCH Networks. IEEE Transactions on Mobile Computing, 18(1), 98-110. doi:10.1109/tmc.2018.2828835De Guglielmo, D., Anastasi, G., & Seghetti, A. (2014). From IEEE 802.15.4 to IEEE 802.15.4e: A Step Towards the Internet of Things. Advances onto the Internet of Things, 135-152. doi:10.1007/978-3-319-03992-3_1

    TSCH and RPL Joining Time Model for Industrial Wireless Sensor Networks

    Full text link
    [EN] Wireless sensor networks (WSNs) play a key role in the ecosystem of the Industrial Internet of Things (IIoT) and the definition of today's Industry 4.0. These WSNs have the ability to sensor large amounts of data, thanks to their easy scalability. WSNs allow the deployment of a large number of self-configuring nodes and the ability to automatically reorganize in case of any change in the topology. This huge sensorization capacity, together with its interoperability with IP-based networks, allows the systems of Industry 4.0 to be equipped with a powerful tool with which to digitalize a huge amount of variables in the different industrial processes. The IEEE 802.15.4e standard, together with the access mechanism to the Time Slotted Channel Hopping medium (TSCH) and the dynamic Routing Protocol for Low-Power and Lossy Networks (RPL), allow deployment of networks with the high levels of robustness and reliability necessary in industrial scenarios. However, these configurations have some disadvantages in the deployment and synchronization phases of the networks, since the time it takes to synchronize the nodes is penalized compared to other solutions in which access to the medium is done randomly and without channel hopping. This article proposes an analytical model to characterize the behavior of this type of network, based on TSCH and RPL during the phases of deployment along with synchronization and connection to the RPL network. Through this model, validated by simulation and real tests, it is possible to parameterize different configurations of a WSN network based on TSCH and RPL.This work has been supported by the MCyU (Spanish Ministry of Science and Universities) under the project ATLAS (PGC2018-094151-B-I00), which is partially funded by AEI, FEDER and EU.Vera-Pérez, J.; Silvestre-Blanes, J.; Sempere Paya, VM. (2021). TSCH and RPL Joining Time Model for Industrial Wireless Sensor Networks. Sensors. 21(11):1-17. https://doi.org/10.3390/s21113904117211

    A Joining Procedure and Synchronization for TSCH-RPL Wireless Sensor Networks

    Full text link
    [EN] Wireless Sensor Networks have become a key enabler for Industrial Internet of Things (IoT) applications; however, to adapt to the derived robust communication requirements, deterministic and scheduled medium access should be used, along with other features, such as channel hopping and frequency diversity. Implementing these mechanisms requires a correct synchronization of all devices in the network, a stage in deployment that can lead to non-operational networks. The present article presents an analysis of such situations and possible solutions, including the common current approaches and recommendations, and proposes a new beacon advertising method based on a specific Trickle Timer for the Medium Access Control (MAC) Time-Slotted Channel Hopping (TSCH) layer, decoupling from the timers in the network and routing layers. With this solution, improvements in connection success, time to join, and energy consumption can be obtained for the widely extended IEEE802.15.4e standard.This work has been supported by the SCOTT Project (Secure Connected Trustable Things), (www.scottproject.eu), which has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under grant agreement No 737422. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme, and from Austria, Spain, Finland, Ireland, Sweden, Germany, Poland, Portugal, Netherlands, Belgium, and Norway.Vera-Pérez, J.; Todoli Ferrandis, D.; Santonja Climent, S.; Silvestre-Blanes, J.; Sempere Paya, VM. (2018). A Joining Procedure and Synchronization for TSCH-RPL Wireless Sensor Networks. Sensors. 18(10). https://doi.org/10.3390/s18103556S181

    Relevance- and Aggregation-based Scheduling for Data Transmission in IEEE 802.15.4e IoT Networks

    Get PDF
    Master's thesis Information- and communication technology IKT590 - University of Agder 2017Internet of thing (IoT) is regarded as a new communicating paradigm with Internet connectivity enabling embedded devices to interact with each other on a global scale. IoT has the potential to become the largest producer of information because of a massive number of connected devices with diverse applications ranging from environmental monitoring, home, and building automation. This ubiquitous connectivity requires reliability, efficiency, and sustainability of access to information. As an enabling technology, wireless sensor networks (WSNs) have opened new opportunity with recent technological developments in making miniaturized smart connected devices. With an increase in the activity of these smart devices, there are challenges in maintaining their limited energy, lifetime, and reliability required for IoT applications. The reason is that these devices are mostly battery powered. In this respect, an insight into the activities of sensing devices produced by different vendors with interoperability based on industrial standards is needed. As an enhancement of IEEE 802.15.4 MAC sublayer, the ratification of IEEE 802.15.4e standard makes a step towards IoT medium access control (MAC) for industrial applications. One of the significant enhancements in IEEE 802.15.4e is different MAC modes. However, IEEE 802.15.4e does not specify standardized scheduling policy for network building and data transmission maintenance. It is basically application specific. In general, activities performed at the MAC sublayer contribute to sensor energy consumption. Therefore, an efficient MAC scheme is needed to utilize network resources more efficiently, minimize energy consumption level and at the same time improve data transmission of the network. In this thesis work, we focus on proposing transmission schemes for improving energy consumption for data transmission in IoT networks and as well as increasing average packet delivery ratio (PDR). Our target is to improve time slotted channel hopping (TSCH) mode that enables deterministic access and robust network. The focus is on dedicated and shared slots in TSCH. More specifically, we propose two MAC schemes; relevance- and aggregation-based scheduling for data transmission in IEEE 802.15.4e IoT networks. With relevance-based scheduling, the coordinator node builds and maintains communication in the network based on a historical data value of member nodes. On the other hand, aggregation-based scheduling iii enables the coordinator node to build and maintain communication by integrating multiple data inside a single frame payload at the source node before transmission. Further, the proposed schemes are implemented using network simulator version 3 (ns-3). We use Ubuntu 16.04.2 as the operating system for our implementation and performance evaluation. Numerical results for a few performance metrics including PDR, collision probability, delay, and energy consumption are obtained through extensive simulations. The superiority of the proposed schemes is demonstrated by comparing the simulation results with that of IEEE 802.15.4e TSCH standard under varies network scenario
    corecore