6 research outputs found

    Teaching and learning queueing theory concepts using tangible user interfaces

    Get PDF
    Tangible User Interfaces (TUI) have emerged in the past years as effective computing platforms that intertwine digital information and visualization with physical interactivity. Whilst successfully capitalizing on these properties within primary education to engage and educate children in an entertaining manner, TUI systems have seen limited deployment in more complex scenarios. To this end, this paper investigates the aptness and effectiveness of implementing TUI systems to enhance teaching and learning within higher educational institutes in order to aid the understanding of complex and abstract concepts. The proposal augments mere simulation processes by developing a table-top architecture to allow the real-time interaction and visualization of queuing theory concepts. The paper describes the deployment of the TUI framework within an undergraduate computer networks degree whereby the quantitative effectiveness of this system is assessed from a teaching and learning perspective within an engineering pedagogy

    DISCRETE-EVENT SIMULATION MODELS FOR DIDACTIC SUPPORT

    Get PDF
    This paper presents the evaluation of a discrete event simulation model designed to be used as a didactic aid instrument in classes of a technical course on high school. The simulation model was developed using the free version of the Arena software. Among the results obtained, it was found that applying this model as a didactic resource in classes has enabled an increase of quality in the students’ learning. This result was even more significant concerning students with average grades below 6. In these cases, with the help of the simulator, students of worse educational achievement obtained performance close to the ones that had average grades equal to or higher than 8

    Investigation and development of a tangible technology framework for highly complex and abstract concepts

    Get PDF
    The ubiquitous integration of computer-supported learning tools within the educational domain has led educators to continuously seek effective technological platforms for teaching and learning. Overcoming the inherent limitations of traditional educational approaches, interactive and tangible computing platforms have consequently garnered increased interest in the pursuit of embedding active learning pedagogies within curricula. However, whilst Tangible User Interface (TUI) systems have been successfully developed to edutain children in various research contexts, TUI architectures have seen limited deployment towards more advanced educational pursuits. Thus, in contrast to current domain research, this study investigates the effectiveness and suitability of adopting TUI systems for enhancing the learning experience of abstract and complex computational science and technology-based concepts within higher educational institutions (HEI)s. Based on the proposal of a contextually apt TUI architecture, the research describes the design and development of eight distinct TUI frameworks embodying innovate interactive paradigms through tabletop peripherals, graphical design factors, and active tangible manipulatives. These computationally coupled design elements are evaluated through summative and formative experimental methodologies for their ability to aid in the effective teaching and learning of diverse threshold concepts experienced in computational science. In addition, through the design and adoption of a technology acceptance model for educational technology (TAM4Edu), the suitability of TUI frameworks in HEI education is empirically evaluated across a myriad of determinants for modelling students’ behavioural intention. In light of the statistically significant results obtained in both academic knowledge gain (μ = 25.8%) and student satisfaction (μ = 12.7%), the study outlines the affordances provided through TUI design for various constituents of active learning theories and modalities. Thus, based on an empirical and pedagogical analyses, a set of design guidelines is defined within this research to direct the effective development of TUI design elements for teaching and learning abstract threshold concepts in HEI adaptations

    Problem Based Learning in Engineering Education

    Get PDF
    corecore