7 research outputs found

    Multi-objective optimization of CNC turning parameters using genetic algorithm and performance evaluation of nanocomposite coated carbide inserts

    Get PDF
    Inconel 600 is a super alloy known for its properties like low thermal conductivity and work hard-ening. The work hardening property of this alloy makes it harder and harder during successive passes of the tool during machining. Therefore, machining of this type of material demands inno-vation in tool material, selection of proper combination of parameters and their levels for economical machining. Coated carbide tool inserts are most widely used for machining Inconel alloys. These inserts are coated with special materials by PVD or CVD technique to reduce flank wear, improve surface finish of machined components and increase the material removal rate (MRR). In this work carbide insert coated with nanocomposite coatings like AlTiN and TiAlSiN commercially known as Hyperlox and HSN2 were used and their performance during machining of Inconel 600 was studied. As improper selection of process parameter influences on the quality of products and productivity, it is important to identify the optimum combination of input process parameters. Most of the time the influence of the input process parameters on the output parameters like MRR, surface roughness and flank wear is studied independently. Information obtained through single objective optimization may not be sufficient because industries desire to optimize all the output parameters, simultaneously. Multi-objective optimization is the only solution to satisfy the requirements of industries and genetic algorithm based multi-objective optimization is adopted in this work in order to get the optimum combination of input process parameters to obtain maximum material removal rate, minimum surface roughness and minimum flank wear simultaneously

    SIMULACIÓN DEL DESGASTE DE HERRAMIENTA EN PROCESOS DE TORNEADO.

    Get PDF
    El presente trabajo, describe el desarrollo de una simulación con un modelo de elementos finitos basado en una aplicación del software ANSYS. El principal objetivo es identificar el desgaste producido en la herramienta de corte monofilo mediante la simulación de un proceso de torneado de metales. Se inicia con el diseño de la herramienta seguido de un análisis de elementos finitos en dos dimensiones para determinar los parámetros y condiciones requeridos en la simulación. Una vez se establecen los parámetros requeridos para el procesamiento se realiza un análisis en tres dimensiones. Posteriormente, se hace un estudio comparativo con imágenes obtenidas (mediante técnicas de visión artificial) del proceso real de desgate de herramienta, de esta manera se validan los resultados obtenidos en el proceso de simulación. Los principales factores comparados son: la influencia de un primer impacto, formación de viruta y la zona crítica que se ve influenciada por el desgaste

    Future research directions in the machining of Inconel 718

    Get PDF
    Inconel 718 is the most popular nickel-based superalloy, extensively used in aerospace, automotive and energy industries owing to its extraordinary thermomechanical properties. It is also notoriously a difficult-to-cut material, due to its short tool life and low productivity in machining operations. Despite significant progress in cutting tool technologies, the machining of Inconel 718 is still considered a grand challenge.This paper provides a comprehensive review of recent advances in machining Inconel 718. The progress in cutting tools’ materials, coatings, geometries and surface texturing for machining Inconel 718 is reviewed. The investigation is focused on the most adopted tool materials for machining of Inconel 718, namely Cubic Boron Nitrides (CBNs), ceramics and coated carbides. The thermal conductivity of cutting tool materials has been identified as a major parameter of interest. Process control, based on sensor data for monitoring the machining of Inconel 718 alloy and detecting surface anomalies and tool wear are reviewed and discussed. This has been identified as the major step towards realising real-time control for machining safety critical Inconel 718 components. Recent advances in various processes, e.g. turning, milling and drilling for machining Inconel 718 are investigated and discussed. Recent studies related to machining additively manufactured Inconel 718 are also discussed and compared with the wrought alloy. Finally, the state of current research is established, and future research directions proposed.<br/

    Future research directions in the machining of Inconel 718

    Get PDF
    Inconel 718 is the most popular nickel-based superalloy, extensively used in aerospace, automotive and energy industries owing to its extraordinary thermomechanical properties. It is also notoriously a difficult-to-cut material, due to its short tool life and low productivity in machining operations. Despite significant progress in cutting tool technologies, the machining of Inconel 718 is still considered a grand challenge.This paper provides a comprehensive review of recent advances in machining Inconel 718. The progress in cutting tools’ materials, coatings, geometries and surface texturing for machining Inconel 718 is reviewed. The investigation is focused on the most adopted tool materials for machining of Inconel 718, namely Cubic Boron Nitrides (CBNs), ceramics and coated carbides. The thermal conductivity of cutting tool materials has been identified as a major parameter of interest. Process control, based on sensor data for monitoring the machining of Inconel 718 alloy and detecting surface anomalies and tool wear are reviewed and discussed. This has been identified as the major step towards realising real-time control for machining safety critical Inconel 718 components. Recent advances in various processes, e.g. turning, milling and drilling for machining Inconel 718 are investigated and discussed. Recent studies related to machining additively manufactured Inconel 718 are also discussed and compared with the wrought alloy. Finally, the state of current research is established, and future research directions proposed.<br/

    Інструментальне забезпечення високошвидкісної лезової обробки жароміцних сплавів на нікелевій основі для авіадвигунобудування

    Get PDF
    Магістерська робота на тему: Інструментальне забезпечення високошвидкісної лезової обробки жароміцних сплавів на нікелевій основі для авіадвигунобудування» складається з 76 аркушів формату А4 та містить 25 ілюстрацій, 6 таблиць. Було використано 42 наукові статті, наукові роботи і дослідження різних університетів світу. Актуальність теми. Завдання сучасної механообробної промисловості в основному зосереджене на досягненні високої якості з точки зору точності компонентів, високої продуктивності та високої швидкості знімання металу. Необхідно змінити та покращити існуючі технології та розробити продукт за розумною ціною. Отже, дослідники розробили сучасні технології, такі як високошвидкісна обробка різанням, яка в порівнянні з традиційним різанням дозволяє підвищити ефективність, точність та якість оброблюваної деталі. Метою дослідження у цій магістерській роботі є дослідити особливості застосування високошвидкісної обробки різанням жароміцних сплавів на нікелевій основі, її інструментальне забезпечення й виявити тенденції подальшого удосконалення цієї технології. Задачами дослідження є: – дослідити загальні властивості сучасних жароміцних сплавів на нікелевій основі для авіадвигунобудування; – дослідити застосування сучасних інструментальних матеріалів для високошвидкісної обробки різанням жароміцних сплавів на нікелевій основі; – дослідити особливості процесу стосовно цілісності поверхневого шару оброблюваних матеріалів і стійкості інструмента для високошвидкісної обробки; – виявити тенденції подальшого удосконалення технології високошвидкісної обробки різанням жароміцних сплавів на нікелевій основі. Об’єктом дослідження цієї магістерської роботи є високошвидкісна обробка різанням жароміцних сплавів на нікелевій основі для авіадвигунобудування. Предметом дослідження є інструментальне забезпечення високошвидкісної лезової обробки жароміцних сплавів на нікелевій основі для авіадвигунобудування.Master's thesis on the topic: Tooling for high-speed blade processing of heat-resistant nickel-based alloys for aircraft engines "consists of 76 sheets of A4 format and contains 25 illustrations, 6 tables. 42 scientific articles, scientific works and researches of different universities of the world were used. Relevance of the topic. The task of the modern machining industry is mainly focused on achieving high quality in terms of component accuracy, high productivity and high speed of metal removal. Existing technologies need to be changed and improved and a product developed at a reasonable price. Thus, researchers have developed modern technologies, such as high-speed cutting, which in comparison with traditional cutting can improve the efficiency, accuracy and quality of the workpiece. The purpose research in this master's thesis is to investigate the features of high-speed cutting of heat-resistant nickel-based alloys, its tooling and identify trends in further improvement of this technology. Tasks of the study: - to study the general properties of modern heat-resistant nickel-based alloys for aircraft engines; - to investigate the use of modern tool materials for high-speed machining by cutting heat-resistant nickel-based alloys; - to investigate the features of the process in relation to the integrity of the surface layer of the processed materials and the stability of the tool for high-speed processing; - identify trends in further improving the technology of high-speed machining by cutting heat-resistant alloys on a nickel basis. The object of research of this master's thesis is high-speed cutting of heat-resistant nickel-based alloys for aircraft engines.Subject of study. The subject of the research is the instrumental provision of high-speed blade processing of heat-resistant nickel-based alloys for aircraft engine construction

    An experimental and simulation study on parametric analysis in turning of inconel 718 and GFRP composite using coated and uncoated tools

    Get PDF
    Process simulation is one of the important aspects in any manufacturing/production context because it generates the scenarios to gain insight into process performance in reasonable time and cost. With upcoming worldwide applications of Inconel 718 and Glass Fiber Reinforced Polymer (GFRP) composites, machining has become an important issue which needs to be investigated in detail. In turning of hard materials (such as Inconel 718), cutting tool environment features high-localized temperatures (~1000ºC) and high stress (~700 MPa) due to contact between cutting tool and work piece. The tool may experience repeated impact loads during interrupted cuts and the work piece chips may chemically interact with the tool materials. Therefore, the use of coated tool is preferred for turning of Inconel 718. It is observed that performance of machining process is influenced by different machining parameters such as spindle speed, depth of cut and feed rate as in case of turning. Material removal rate (MRR) and flank wear in turning of Inconel 718 using physical vapour deposition (PVD) and chemical vapour deposition (CVD) coated on carbide insert tool are reported. A simulation model based on finite element approach is proposed using DEFORM 3D software. The simulation results are validated with experimental results. The results indicate that simulation model can be effectively used to predict the flank wear and MRR in turning of Inconel 718. For simultaneous optimization of multiple responses, a fuzzy inference system (FIS) is used to convert multiple responses into a single equivalent response so that uncertainty and fuzziness in data can be addressed in an effective manner. The single response characteristics so generated is known as Multi Performance characteristic Index (MPCI). A non-linear empirical model has been developed using regression analysis between MPCI and process parameters. The optimal process parameters are obtained by a recent population-based optimization method known as imperialistic competitive algorithm (ICA). Analysis of variance (ANOVA) is performed to identify the most influencing factors for all the performance characteristics. The optimal conditions of process parameters during turning of Inconel 718 and GFRP composites are reported. It is observed that flank wear is combatively less when machined with PVD coated tool than CVD coated tool in turning of both Inconel 718 and GFRP composite
    corecore