30,509 research outputs found

    Efficient high-dimensional entanglement imaging with a compressive sensing, double-pixel camera

    Get PDF
    We implement a double-pixel, compressive sensing camera to efficiently characterize, at high resolution, the spatially entangled fields produced by spontaneous parametric downconversion. This technique leverages sparsity in spatial correlations between entangled photons to improve acquisition times over raster-scanning by a scaling factor up to n^2/log(n) for n-dimensional images. We image at resolutions up to 1024 dimensions per detector and demonstrate a channel capacity of 8.4 bits per photon. By comparing the classical mutual information in conjugate bases, we violate an entropic Einstein-Podolsky-Rosen separability criterion for all measured resolutions. More broadly, our result indicates compressive sensing can be especially effective for higher-order measurements on correlated systems.Comment: 10 pages, 7 figure

    Avalanche Photo-Detection for High Data Rate Applications

    Full text link
    Avalanche photo detection is commonly used in applications which require single photon sensitivity. We examine the limits of using avalanche photo diodes (APD) for characterising photon statistics at high data rates. To identify the regime of linear APD operation we employ a ps-pulsed diode laser with variable repetition rates between 0.5MHz and 80MHz. We modify the mean optical power of the coherent pulses by applying different levels of well-calibrated attenuation. The linearity at high repetition rates is limited by the APD dead time and a non-linear response arises at higher photon-numbers due to multiphoton events. Assuming Poissonian input light statistics we ascertain the effective mean photon-number of the incident light with high accuracy. Time multiplexed detectors (TMD) allow to accomplish photon- number resolution by photon chopping. This detection setup extends the linear response function to higher photon-numbers and statistical methods may be used to compensate for non-linearity. We investigated this effect, compare it to the single APD case and show the validity of the convolution treatment in the TMD data analysis.Comment: 16 pages, 5 figure

    From retrodiction to Bayesian quantum imaging

    Get PDF
    We employ quantum retrodiction to develop a robust Bayesian algorithm for reconstructing the intensity values of an image from sparse photocount data, while also accounting for detector noise in the form of dark counts. This method yields not only a reconstructed image but also provides the full probability distribution function for the intensity at each pixel. We use simulated as well as real data to illustrate both the applications of the algorithm and the analysis options that are only available when the full probability distribution functions are known. These include calculating Bayesian credible regions for each pixel intensity, allowing an objective assessment of the reliability of the reconstructed image intensity values

    Fiber-assisted detection with photon number resolution

    Full text link
    We report the development of a photon-number resolving detector based on a fiber-optical setup and a pair of standard avalanche photodiodes. The detector is capable of resolving individual photon numbers, and operates on the well-known principle by which a single mode input state is split into a large number (eight) of output modes. We reconstruct the photon statistics of weak coherent input light from experimental data, and show that there is a high probability of inferring the input photon number from a measurement of the number of detection events on a single run.Comment: 4 pages, 2 figures; Submitted for publicatio

    Low Timing Jitter Detector for Gigahertz Quantum Key Distribution

    Get PDF
    A superconducting single-photon detector based on a niobium nitride nanowire is demonstrated in an optical-fibre-based quantum key distribution test bed operating at a clock rate of 3.3 GHz and a transmission wavelength of 850 nm. The low jitter of the detector leads to significant reduction in the estimated quantum bit error rate and a resultant improvement in the secrecy efficiency compared to previous estimates made by use of silicon single-photon avalanche detectors.Comment: 11 pages, including 2 figure
    corecore