14 research outputs found

    Paradoxes of Fair Division

    Get PDF
    Two or more players are required to divide up a set of indivisible items that they can rank from best to worst. They may, as well, be able to indicate preferences over subsets, or packages, of items. The main criteria used to assess the fairness of a division are efficiency (Pareto-optimality) and envy-freeness. Other criteria are also suggested, including a Rawlsian criterion that the worst-off player be made as well off as possible and a scoring procedure, based on the Borda count, that helps to render allocations as equal as possible. Eight paradoxes, all of which involve unexpected conflicts among the criteria, are described and classified into three categories, reflecting (1) incompatibilities between efficiency and envy-freeness, (2) the failure of a unique efficient and envy-free division to satisfy other criteria, and (3) the desirability, on occasion, of dividing up items unequally. While troublesome, the paradoxes also indicate opportunities for achieving fair division, which will depend on the fairness criteria one deems important and the trade-offs one considers acceptable.FAIR DIVISION; ALLOCATION OF INDIVISIBLE ITEMS; ENVY-FREENESS; PARETO- OPTIMALITY; RAWLSIAN JUSTICE; BORDA COUNT.

    Better Ways to Cut a Cake - Revisited

    Get PDF
    Procedures to divide a cake among n people with n-1 cuts (the minimum number) are analyzed and compared. For 2 persons, cut-and-choose, while envy-free and efficient, limits the cutter to exactly 50% if he or she is ignorant of the chooser\u27s preferences, whereas the chooser can generally obtain more. By comparison, a new 2-person surplus procedure (SP\u27), which induces the players to be truthful in order to maximize their minimum allocations, leads to a proportionally equitable division of the surplus - the part that remains after each player receives 50% - by giving each person a certain proportion of the surplus as he or she values it. For n geq 3 persons, a new equitable procedure (EP) yields a maximally equitable division of a cake. This division gives all players the highest common value that they can achieve and induces truthfulness, but it may not be envy-free. The applicability of SP\u27 and EP to the fair division of a heterogeneous, divisible good, like land, is briefly discussed

    Dividing the Indivisible: Procedures for Allocating Cabinet Ministries to Political Parties in a Parliamentary System

    Get PDF
    Political parties in Northern Ireland recently used a divisor method of apportionment to choose, in sequence, ten cabinet ministries. If the parties have complete information about each others' preferences, we show that it may not be rational for them to act sincerely by choosing their most-preferred ministry that is available. One consequence of acting sophisticatedly is that the resulting allocation may not be Pareto-optimal, making all the parties worse off. Another is nonmonotonicty—choosing earlier may hurt rather than help a party. We introduce a mechanism that combines sequential choices with a structured form of trading that results in sincere choices for two parties. Although there are difficulties in extending this mechanism to more than two parties, other approaches are explored, such as permitting parties to making consecutive choices not prescribed by an apportionment method. But certain problems, such as eliminating envy, remain.Proportional Representation, apportionment, divisor methods, Sincere and Sophisticated Choices, Envy Free Allocations, Sports Drafts

    Dividing the Indivisible: Procedures for Allocating Cabinet Ministries to Political Parties in a Parliamentary System

    Get PDF
    Political parties in Northern Ireland recently used a divisor method of apportionment to choose, in sequence, ten cabinet ministries. If the parties have complete information about each others' preferences, we show that it may not be rational for them to act sincerely by choosing their most-preferred ministry that is available. One consequence of acting sophisticatedly is that the resulting allocation may not be Pareto-optimal, making all the parties worse off. Another is nonmonotonicty-choosing earlier may hurt rather than help a party. We introduce a mechanism that combines sequential choices with a structured form of trading that results in sincere choices for two parties. Although there are difficulties in extending this mechanism to more than two parties, other approaches are explored, such as permitting parties to making consecutive choices not prescribed by an apportionment method. But certain problems, such as eliminating envy, remain.APPORTIONMENT METHODS; CABINETS; SEQUENTIAL ALLOCATION; MECHANISM DESIGN; FAIRNESS

    Fair Allocation based on Diminishing Differences

    Full text link
    Ranking alternatives is a natural way for humans to explain their preferences. It is being used in many settings, such as school choice, course allocations and residency matches. In some cases, several `items' are given to each participant. Without having any information on the underlying cardinal utilities, arguing about fairness of allocation requires extending the ordinal item ranking to ordinal bundle ranking. The most commonly used such extension is stochastic dominance (SD), where a bundle X is preferred over a bundle Y if its score is better according to all additive score functions. SD is a very conservative extension, by which few allocations are necessarily fair while many allocations are possibly fair. We propose to make a natural assumption on the underlying cardinal utilities of the players, namely that the difference between two items at the top is larger than the difference between two items at the bottom. This assumption implies a preference extension which we call diminishing differences (DD), where X is preferred over Y if its score is better according to all additive score functions satisfying the DD assumption. We give a full characterization of allocations that are necessarily-proportional or possibly-proportional according to this assumption. Based on this characterization, we present a polynomial-time algorithm for finding a necessarily-DD-proportional allocation if it exists. Using simulations, we show that with high probability, a necessarily-proportional allocation does not exist but a necessarily-DD-proportional allocation exists, and moreover, that allocation is proportional according to the underlying cardinal utilities. We also consider chore allocation under the analogous condition --- increasing-differences.Comment: Revised version, based on very helpful suggestions of JAIR referees. Gaps in some proofs were filled, more experiments were done, and mor

    Fair division under ordinal preferences: Computing envy-free allocations of indivisible goods

    Get PDF
    Abstract We study the problem of fairly dividing a set of goods amongst a group of agents, when those agents have preferences that are ordinal relations over alternative bundles of goods (rather than utility functions) and when our knowledge of those preferences is incomplete. The incompleteness of the preferences stems from the fact that each agent reports their preferences by means of an expression of bounded size in a compact preference representation language. Specifically, we assume that each agent only provides a ranking of individual goods (rather than of bundles). In this context, we consider the algorithmic problem of deciding whether there exists an allocation that is possibly (or necessarily) envy-free, given the incomplete preference information available, if in addition some mild economic efficiency criteria need to be satisfied. We provide simple characterisations, giving rise to simple algorithms, for some instances of the problem, and computational complexity results, establishing the intractability of the problem, for others

    UvA-DARE (Digital Academic Repository) Fair Division under Ordinal Preferences: Computing Envy-Free Allocations of Indivisible Goods

    Get PDF
    Fair division under ordinal preferences: computing envy-free allocations of indivisible goods Bouveret, S.; Endriss, U.; Lang, J. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Abstract. We study the problem of fairly dividing a set of goods amongst a group of agents, when those agents have preferences that are ordinal relations over alternative bundles of goods (rather than utility functions) and when our knowledge of those preferences is incomplete. The incompleteness of the preferences stems from the fact that each agent reports their preferences by means of an expression of bounded size in a compact preference representation language. Specifically, we assume that each agent only provides a ranking of individual goods (rather than of bundles). In this context, we consider the algorithmic problem of deciding whether there exists an allocation that is possibly (or necessarily) envy-free, given the incomplete preference information available, if in addition some mild economic efficiency criteria need to be satisfied. We provide simple characterisations, giving rise to simple algorithms, for some instances of the problem, and computational complexity results, establishing the intractability of the problem, for others

    Fair Allocation based on Diminishing Differences

    Full text link
    corecore