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Abstract

Two or more players are required to divide up a set of indivisible items that they

can rank from best to worst.  They may, as well, be able to indicate preferences over

subsets, or packages, of items.  The main criteria used to assess the fairness of a division

are efficiency (Pareto-optimality) and envy-freeness.  Other criteria are also suggested,

including a Rawlsian criterion that the worst-off player be made as well off as possible

and a scoring procedure, based on the Borda count, that helps to render allocations as

equal as possible.

Eight paradoxes, all of which involve unexpected conflicts among the criteria, are

described and classified into three categories, reflecting (1) incompatibilities between

efficiency and envy-freeness, (2) the failure of a unique efficient and envy-free division

to satisfy other criteria, and (3) the desirability, on occasion, of dividing up items

unequally. While troublesome, the paradoxes also indicate opportunities for achieving

fair division, which will depend on the fairness criteria one deems important and the

trade-offs one considers acceptable.

JEL Classification:  D61, D63.

Keywords:  Fair division; allocation of indivisible items; envy-freeness; Pareto-

                   optimality; Rawlsian justice; Borda count.
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Paradoxes of Fair Division1

Steven J. Brams, Paul H. Edelman, and Peter C. Fishburn

1.  INTRODUCTION

Paradoxes, if they do not define a field, render its problems intriguing and often

perplexing, especially insofar as the paradoxes remain unresolved.  Voting theory, for

example, has been greatly stimulated by the Condorcet paradox, which is the discovery

by the Marquis de Condorcet (1785) that there may be no alternative that is preferred by a

majority to every other alternative, producing so-called cyclical majorities.  Its modern

extension and generalization is Arrow’s (1951) theorem, which says, roughly speaking,

that a certain set of reasonable conditions for aggregating individual preferences into

some social choice are inconsistent.

In the last fifty years, hundreds of books and thousands of articles have been

written about these and related social-choice paradoxes and theorems, as well as their

ramifications for voting and democracy.   Nurmi (1999) provides a good survey and

classification of voting paradoxes, as well as offering advice on “how to deal with them.”

There is also an enormous literature on fairness, justice, and equality, and

numerous suggestions on how to rectify the absence of these properties or attenuate their

erosion.  But paradoxes do not frame the study of fairness in the same way that they have

inspired social-choice theory.

                                                

1 Steven J. Brams acknowledges the support of the C. V. Starr Center for Applied
Economics at New York University.  Research by Paul H. Edelman was done while he
was in the School of Mathematics, University of Minnesota.
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To be sure, the notion that justice and order may be incompatible, or that maximin

justice à la Rawls (1971) undercuts the motivation of individuals to strive to do their best,

underscores the possible trade-offs in making societies more free and egalitarian.  For

example, an egalitarian society may require strictures on free choice to ward off anarchy;

rewarding the worst-off members of a society may deaden competition among the most

able if their added value is siphoned off to others.

Obstacles like these that stand in the way of creating a just society are hardly

surprising.  They are not paradoxes in the strong sense of constituting a logical

contradiction between equally valid principles.  Here we use paradox in a weaker sense—

as a conflict among fairness conditions that one might expect to be compatible.  Because

we are surprised to discover this conflict, it is “nonobvious,” as one of us labeled a

collection of paradoxes he assembled about politics (Brams, 1976; see also Fishburn,

1974, and Fishburn and Brams, 1983).

The fair-division paradoxes we present here all concern how to divide up a set of

indivisible items among two or more players.  In some paradoxes, we assume the players

can do no more than rank the items from best to worst; in others, we assume they can, in

addition, indicate preferences over subsets, or packages, of items.

The main criteria we invoke in assessing the fairness of a division of the items are

efficiency (there is no other division better for everybody, or better for some players and

not worse for the others) and envy-freeness (each player likes its allocation at least as

much as those that the other players receive, so it does not envy anybody else), but we
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also consider other properties in evaluating the fairness of a division of the items.

Because the items are indivisible, no splitting of them between players is allowed.2

Our paradoxes demonstrate the opportunities as well as the limitations of fair

division.  Thus, for example, while the only division of items in which one player never

envies the allocation of another may be nonexistent or inefficient, we note that there is

always an efficient and envy-free division for two players—even when they value all

items the same—as long as they do not rank all subsets of items the same.  We also show

that fair division may entail an unequal division of the items.

We divide the paradoxes into three categories:

1.  The conflict between efficiency and envy-freeness (paradoxes 1 and 2);

2.  The failure of a unique efficient and envy-free division to satisfy other fair-

      division criteria (paradoxes 3 and 4);

3.  The desirability, on occasion, of dividing items unequally (paradoxes 5, 6, 7, 8).

While the paradoxes highlight difficulties in creating “fair shares” for everybody,

they by no means render the task impossible.  Rather, they show how dependent fair

division is on the fairness criteria one deems important and the trade-offs one considers

acceptable.  Put another way, achieving fairness requires some consensus on the ground

rules (i.e., criteria) and some delicacy in applying them (to facilitate trade-offs when the

criteria conflict).

                                                

2 Fair-division procedures that allow for the splitting or sharing of (divisible) goods are
discussed in, among other places, Young (1994), Moulin (1995), Robertson and Webb
(1998), and Brams and Taylor (1996, 1999).
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We mention three technical points before we proceed to specific examples.  First,

we assume that players cannot compensate each other with side payments—the division

is only of the indivisible items.  Second, all players have positive values for every item.

Third, a player prefers one set S of items to a different set T  if (i) S has as many items as

T and (ii) for every item t in T and not in S, there is a distinct item s in S and not T that the

player prefers to t.  For example, if a player ranks items 1 through 4 in order of

decreasing preference 1234, we assume that he or she prefers the set {1,2} to {2,3}, and

{1,3} to {2,4}, whereas the comparison between {1,4} and {2,3} could go either way.

2.  EFFICIENCY AND ENVY-FREENESS:  THEY MAY BE INCOMPATIBLE

1.  A unique envy-free division may be inefficient.  Suppose there is a set of

three players, {A, B, C}, that must divide a set of six indivisible items, {1, 2, 3, 4, 5, 6}.

Assume the players strictly rank the items from best to worst as follows:

Example I

A:  1 2 3 4 5 6

B:  4 3 2 1 5 6

C:  5 1 2 6 3 4

The unique envy-free allocation to (A, B, C) is ({1,3}, {2,4}, {5,6}), or for simplicity

(13, 24, 56), whereby A and B get their 1st and 3rd-best items, and C gets its 1st and 4th-

best items.  Clearly, A prefers its allocation to that of B (which are A’s 2nd and 4th-best

items) and that of C (A’s two worst items).  Likewise, B and C prefer their allocations to

those of the other two players.  Consequently, the division (13, 24, 56) is envy-free:  all
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players prefer their allocations to those of the other two players, so no player is envious

of any other.

Compare this division with (12, 34, 56), whereby A and B receive their two best

items, and C receives, as before, its 1st and 4th-best items.  This division Pareto-

dominates (13, 24, 56), because two of the three players (A and B) prefer the former

allocation, whereas both allocations give player C the same two items (56).

It is easy to see that (12, 34, 56) is Pareto-optimal, or efficient:  no player can do

better with some other division without some other player or players doing worse, or at

least not better.  This is apparent from the fact that the only way A or B, which get their

two best items, can do better is to receive an additional item from one of the two other

players— assuming all items have some positive value for the players—but this will

necessarily hurt the player who then receives fewer than its present two items.  Whereas

C can do better without receiving a third item if it receives item 1 or 2 in place of item 6,

this substitution would necessarily hurt A, which will do worse if it receives item 6 for

item 1 or 2.

The problem with efficient allocation (12, 34, 56) is that it is not assuredly envy-

free.  In particular, C will envy A’s  allocation of 12 (2nd and 3rd-best items for C) if it

prefers these two items to its present allocation of 56 (1st and 4th-best items for C).  In

the absence of information about C’s preferences for subsets of items, therefore, we

cannot say that efficient allocation (12, 34, 56) is envy-free.3

                                                

3 Henceforth we will mean by “envy-free” a division such that, no matter how the players
value subsets of items consistent with their rankings, no player prefers any other player’s
allocation to its own.  If a division is not envy-free, we call it “envy-possible” if a
player’s allocation may make it envious of another player, depending on how it values
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But the real bite of paradox 1 stems from the fact that not only is inefficient

division (13, 24, 56) envy-free, but it is uniquely so—there is no other division, including

an efficient one, that guarantees envy-freeness.  To show this in Example I, note first that

an envy-free division must give each player its best item; if not, then a player might

prefer a division, like envy-free division (13, 24, 56) or efficient division (12, 34, 56),

that does give each player its best item, rendering the division that does not envy-possible

or envy-ensuring.  Second, even if each player receives its best item, this allocation

cannot be the only item it receives, because then the player might envy any player that

receives two or more items, whatever these items are.

By this reasoning, then, the only possible envy-free divisions in Example I are

those in which each player receives two items, including its top choice.  It is easy to

check that no efficient division is envy-free.4  Similarly, one can check that no inefficient

division, except (13, 24, 56) that gives each player two items—including its best—is

envy-free, making this division uniquely envy-free.

2.  There may be no envy-free division, even when all players have different

preference rankings.  While it is bad enough when the only envy-free division is

inefficient (paradox 1), it seems even worse when there is no envy-free division.   This is

                                                                                                                                                
subsets of items (illustrated by the example in the text).  It is “envy-ensuring” if it causes
envy, independent of how the players value subsets of items.  In effect, a division that is
envy-possible has the potential to cause envy.  By comparison, an envy-ensuring division
always causes envy, and an envy-free division never causes envy.

4 We previously showed that division (12, 34, 56) is not envy-free.  As another example,
consider efficient division (16, 34, 25).  Whereas neither B nor C envies each other or A,
A might envy either B’s 34 or C’s 25 allocations, making this division envy-possible.
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trivial to show when players rank items the same.  For example, if two players both prefer

item 1 to item 2, then the player that gets item 2 will envy the player that gets item 1.

In the following example, each of three players has a different ranking of three

items:

Example II

A:  1 2 3

B:  1 3 2

C:  2 1 3

There are three divisions of (A, B, C) that are efficient—(1, 3, 2), (2, 1, 3), and (3, 1, 2)—

in which at least one player gets its best item.   It is evident that none is envy-free,

because the player that gets item 1 in each (A or B) will be envied by at least one of the

other two players.  For instance, in the case of the division (2, 1, 3), both A and C will

envy B.

Can an inefficient division be envy-free, as was the case in Example I?   It is not

hard to see that this situation cannot occur in Example II for the reason given above:  the

player that gets item 1 will be envied.  But in the case of an inefficient division, “trading

up to efficiency” reduces the amount of envy.  For example, consider inefficient division

(2, 3, 1), in which each player receives its 2nd choice.  Because A envies C, B envies C,

and C envies A, a trade of items 1 and 2 between A and C is possible.  It yields efficient

division (1, 3, 2), in which only B envies A.

Besides (2, 3, 1), the other two inefficient divisions—(1, 2, 3) and (3, 2, 1)—also

allow for “trading up to efficiency.”  In the first, a trade of items 2 and 3 between B and
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C yields efficient division (1, 3, 2); in the second, a trade of items 1 and 2 between B and

C yields efficient division (3, 1, 2).  Three-way trades are also possible.  For instance,

starting from inefficient division (3, 2, 1), a three-way trade, whereby A sends item 3 to

B, B sends item 2 to C, and C sends item 1 to A, yields efficient division (1, 3, 2).

Trading up to efficiency is also possible in Example I:  by exchanging items 2 and

3, A and B can turn inefficient division (13, 24, 56) into efficient division (12, 34, 56).

As in Example II, however, no efficient division is envy-free.  The difference between

Examples I and II is that Example II does not admit even an inefficient envy-free

division.

3.  UNIQUE EFFICIENT AND ENVY-FREE DIVISIONS:

THEIR INCOMPATIBILITY WITH OTHER CRITERIA

3.  A unique efficient and envy-free division may lose in voting to an efficient

and envy-possible division.   So far we have shown that efficiency and envy-freeness

may part company either by there being no envy-free division that is also efficient

(Example I), or no envy-free division at all (Example II).  But when these properties

coincide, and there is both an efficient and an envy-free division, it may not be the choice

of a majority of players, as illustrated by the following example:

Example III

A:  1 2 3 4 5 6

B:  5 6 2 1 4 3

C:  3 6 5 4 1 2
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There are three efficient divisions in which (A, B, C) each get two items:  (12, 56,

34); (12, 45, 36); and (14, 25, 36).  However, only the third division, (14, 25, 36), is

envy-free.  Whereas C might envy B’s 56 allocation in the first division, and B might

envy A’s 12 allocation in the second division, no player envies another player’s

allocation in (14, 25, 36).

But observe that both A and B prefer the first division, (12, 56, 34), to the envy-free

third division, (14, 25, 36), because they get their top two items in the first division; only

C gets its top two items in (14, 25, 36).  Hence, the first division would defeat the envy-

free third division, (14, 25, 36), by simple majority rule.

The situation is not so clear-cut when we compare the second division, (12, 45, 36),

with the envy-free (14, 25, 36).  In fact, there would be a tie vote:  C would be

indifferent, because it gets its top two items, 36, in each division; A would prefer the

second division (top two items versus 1st and 4th-best items); and B would prefer the

envy-free division, (14, 25, 36) (1st and 3rd-best items versus 1st and 5th-best items).

Thus, if there were a vote, the unique envy-free division, (14, 25, 36), would lose to

the envy-possible division, (12, 56, 34), and it would tie with the other envy-possible

division, (12, 45, 36).  If there were approval voting (Brams and Fishburn, 1983), and A,

B, and C voted only for the divisions that give each player its two best items, then the

envy-free  division, (14, 25, 36), would get 1 vote, compared to 2 votes each for both of

the envy-possible divisions, (12, 56, 34) and (12, 45, 36).  In sum, players will choose an

envy-possible over the unique envy-free division, (14, 25, 36), in either pairwise

comparisons or approval voting.
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4.  Neither a Rawlsian criterion nor the Borda count may choose a unique

efficient and envy-free division.

Besides using voting to select an efficient division, consider the following Rawlsian

(maximin) criterion to distinguish among efficient divisions:  choose the division that

maximizes the minimum rank of items that players receive, making a worst-off player as

well off as possible.  To illustrate in Example III, envy-possible division (12, 45, 36)

gives a 5th-best item to B, whereas each of the two other divisions gives a player, at

worst, a 4th-best item.  Between the latter two divisions, the envy-possible division, (12,

56, 34) is, arguably, better than the envy-free division, (14, 25, 36), because it gives the

other two players—those that do not get a 4th-best item—their two best items, whereas

envy-free division (14, 25, 36) does not give B its two best items.5

The Borda count would also give the nod to the envy-possible division, (12, 56, 34),

compared not only with the envy-free division, (14, 25, 36), but also with the other envy-

possible division, (12, 45, 36).  Awarding 6 points for obtaining a best item, 5 points for

obtaining a 2nd-best item, . . ., 1 point for obtaining a worst item in Example III, the latter

two divisions give the players a total of 30 points, whereas envy-possible division (12,

56, 34) gives the players a total of 31 points.6  Hence, an envy-possible division beats the

unique envy-free division, based on both the Rawlsian criterion and the Borda count.

                                                

5 This might be considered a second-order application of the Rawlsian criterion:  if, for
two divisions, players rank the worst items a player receives the same, choose the
division that gives them the best of their next-worst items, etc.  This is an example of a
lexicographic decision rule, whereby outcomes are ordered on the basis of a most
important criterion; if that is not determinative, use a next-most important criterion, and
so on.

6 The standard scoring rules for the Borda count in this 6-item example would give 5
points to a best item, 4 points to a 2nd best item, . . ., 0 points to a worst item.  We depart
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4.  THE DESIRABILITY OF UNEQUAL DIVISIONS (SOMETIMES)

5.  An unequal division of items may be preferred by all players to an equal

division.  In section 3 we showed that neither (i) pairwise comparison voting or approval

voting (paradox 3), nor (ii) a Rawlsian criterion or the Borda count (paradox 4), always

selects a unique efficient and envy-free division.  In the following example, there is also a

unique efficient and envy-free division—involving an equal division of the items—but

there may be grounds for choosing an efficient but unequal envy-possible division:

Example IV

A:  1 2 3 4

B:  2 3 4 1

It is not difficult to show that (13, 24) is the only efficient and envy-free division.

Two other equal divisions, (12, 34) and (14, 23), while better for one player and worse

for the other, are envy-possible and therefore not envy-free.

The aforementioned three equal divisions all give total Borda scores of 12 to their

players.  If we eliminate the envy-possible division, (14, 23), on the grounds that it fails

the Rawlsian criterion by giving A its worst item (item 4), then the comparison reduces to

that between envy-free division, (13, 24), and envy-possible division, (12, 34).

                                                                                                                                                
slightly from this standard scoring rule to ensure that each player obtains some positive
value for all items, including its worst choice, as assumed earlier.
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Curiously, it is possible that both A and B prefer the unequal envy-possible

division, (134, 2), to the equal envy-possible division, (12, 34).7  Thus, unequal divisions

might actually be better for all players than equal divisions.

Ruling out equal division (12, 34) in such a situation, let us compare (134, 2) with

the envy-free (equal) division (13, 24).  Clearly, (134, 2) is better than (13, 24) for A, but

it is worse for B.

This leaves open the question of which of these two divisions, involving an equal

and an unequal division of the items, comes closer to giving the two players “fair shares.”

As the next paradox shows, an unequal division may actually be more egalitarian—as

measured by Borda scores—than an equal division.

6.  An unequal division of items may (i) maximize the minimum Borda scores

of players and (ii) maximize the sum of Borda scores.  In paradox 5, we showed that

an unequal but envy-possible division of items may compare favorably with an equal and

envy-free division.  To make this kind of comparison more precise, consider the

following example:

Example V

A:  1 2 3 4 5 6 7 8 9

B:  3 1 2 4 5 6 7 8 9

C:  4 1 2 3 6 5 7 8 9

                                                

7 This is true if A prefers 34 to 2, and B prefers 2 to 34.
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There are exactly two unequal divisions, (12, 357, 4689) and (12, 3589, 467), that

maximize the minimum Borda scores of players, which are (17, 17, 17) for both

divisions.  On the other hand, there are two equal divisions, (129, 357, 468) and (129,

358, 467), that maximize the minimum Borda scores of players, which are (18, 17, 16)

for the first division and (18, 16, 17) for the second division.  The sum of the Borda

scores in each case is 51, which, it can be shown, is the maximal sum among all possible

divisions (equal or unequal).

Notice that the worst-off player in the two unequal divisions garners 17 points (so

does the best-off player, because the Borda scores of all players are the same), whereas

the worst-off player in the two equal divisions receives fewer points (16).  By the

Rawlsian criterion, based on Borda scores, therefore, the unequal divisions are more

egalitarian.

None of the four equal or unequal divisions is envy-free—all are envy-possible or

envy-ensuring.  Likewise, all four divisions are “efficient-possible” in the sense that there

may be a more efficient division, but this is not guaranteed.  Take, for example, the

unequal division (12, 357, 4689).  B or C might prefer A’s 12 allocation, just as A might

prefer B’s or C’s allocation, so a trade could make two, or even all three, players better

off.  Unlike our previous examples, in which divisions called “efficient” were all

“efficient-ensuring” (i.e., there were no trades that could improve the lot of all traders,

however players valued subsets of items), this is not the case in Example V.

The Rawlsian criterion, based on Borda scores, seems a reasonable one to

distinguish among all efficient-possible and envy-possible divisions.  In Example V, it is

not only unequal divisions that do best on this criterion, but these divisions also
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maximize the sum of Borda scores, which might be considered a measure of the overall

utility or welfare of the players.

7.  An unequal division of items may (i) maximize the sum of Borda scores

(maxsum) but not (ii) maximize the minimum Borda score (maximin).  There was no

conflict between maxsum and maximin in Example V—two unequal divisions satisfied

both of these properties.  But as the next example illustrates, this need not be the case:

Example VI

A:  1 2 6 4 3 5

B:  3 4 5 1 2 6

C:  6 2 1 4 3 5

There are two unequal maxsum divisions, (12, 345, 6) and (1, 345, 26), whose

Borda scores are, respectively, (11, 15, 6) and (6, 15, 11).  Each gives a total Borda score

of  32, and a  minimum score for a player of 6.

By contrast, there are two equal maximin divisions, (12, 35, 46) and (14, 35, 26),

whose Borda scores are, respectively, (11, 10, 9) and (9, 10, 11).  Each gives a total

Borda score of 30, and a minimum score for a player of 9.

Presumably, the egalitarian would choose one of the two (equal) maximin

divisions to ensure players of a minimum score of 9.  The utilitarian would choose one of

the two (unequal) maxsum divisions to ensure the greatest total score of 32.

Unfortunately, the total Borda scores  of maxsum and maximin divisions may be

arbitrarily far apart (Brams, Edelman, and Fishburn, 2000).  We believe that when there
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is a difference, as in Example VI, maximin generally gives the fairer division by

guaranteeing that the Borda score of the worst-off player is as great as possible.8

Although maximin may require an unequal division of the items (Example V), the

opposite can also be true (Example VI).  By the same token, maxsum divisions can be the

product of either equal or unequal divisions (both kinds give the same maxsum in

Example V).

Incidentally, it is easily seen that the smallest example for which there is a

divergence between maximin and maxsum is that in which two players must divide three

items, with the players having preference rankings 123 and 132.  Maxsum is 7, given by

divisions (12, 3) and (2, 13),  but the maximin divisions, (1, 23) and (23, 1), which each

give Borda scores of (3, 3), have a lower total score of 6.

The maximin divisions, nevertheless, would seem to be fairer than the maxsum

divisions, in which the player that gets a single item receives a Borda score of only 2.

As we will show in our final paradox, however, the maximin division may be quite

implausible, depending on how players value subsets.

8.  If There Are Envy-Free Divisions, None May Be Maximin.  In the following

example, there are two players but an odd number of items, so no equal division of the

items is possible:

                                                

8 To be sure, assuming that the differences in ranks are all equal, as Borda scoring does,
is a simplification.  If cardinal utilities could be elicited that reflect the players’ intensities
of preference, then they—instead of rank scores—could be used to equalize, insofar as
possible, players’ satisfaction with a division of the items.  For fair-division bidding
schemes that incorporate cardinal information, see Brams and Taylor (1996, 1999),
Brams and Kilgour (2000), and Haake, Raith, and Su (2000).
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Example VII

A:  1 2 3 4 5

B:  1 2 3 4 5

Because the players rank the items exactly the same, all divisions are efficient, making

the choice of a fairest one appear to be difficult.

Only six divisions, however, are what Brams and Fishburn (1999) call

undominated splits:

(1, 2345);      (12, 345);      (13, 245);      (14, 235);      (15, 234);      (145, 23).

These divisions are those in which, in the absence of information about preferences over

subsets, either of the two allocations might be preferred by a player, making each

undominated.  All these divisions, therefore, are envy-possible.

The maximin divisions are (13, 245) and (14, 235), which give Borda scores of,

respectively, (8, 7) and (7, 8) to the players.  But neither division might be envy-free if,

say, both players prefer 13 to 245 and 14 to 235.  These preferences imply that both

players prefer 12 to 345 in the second division, (12, 345), and 145 to 23 in the sixth

division, (145, 23), precluding these divisions, as well, from being envy-free.

But given these preferences of A and B, it is possible that each player would prefer

a different allocation in the other two divisions, making them envy-free.  For example, A

might prefer 1 in the first division and 15 in the fifth, whereas B might prefer the

complements:  2345 in the first, and 234 in the fifth.

In none of our previous examples with envy-free divisions was such a division not

maximin.  But as we have just illustrated, there may be several envy-free divisions, none
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of which is maximin.  This divergence points to the limitation of maximin as a criterion

for choosing divisions, because Borda scoring may not reflect the intensity of player

preferences that can be better gleaned from player preferences over subsets.

5.  CONCLUSIONS

The eight paradoxes pinpoint difficulties in dividing up indivisible items so that

each player feels satisfied, in some sense, with its allocation.  The first two paradoxes

illustrated that efficient and envy-free divisions may be incompatible because the only

envy-free division may be inefficient, or there may be no envy-free division at all.

Both of these paradoxes require at least three players (Edelman and Fishburn,

2000).  When there are only two players, even when they rank items exactly the same, it

turns out that efficient and envy-free divisions can always be found, except when the

players have the same preferences over all subsets of items (Brams and Fishburn, 1999).

But the existence of even a unique efficient and envy-free division may not be

chosen by the players for other reasons.  In particular, such a division will not necessarily

be selected when players vote for the division or divisions that they prefer.  Also, a

unique efficient and envy-free division will not necessarily be the division that

maximizes the minimum rank of items that players receive, so the Rawlsian criterion of

making the worst-off player as well off as possible may not single it out.

As a way of measuring the value of allocations to find those divisions that are most

egalitarian, we used Borda scoring, based on player rankings of the items.  We showed

that the division that maximizes the minimum Borda scores of players (the maximin

division) may not necessarily be the one that maximizes the total Borda score of all
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players (the maxsum division), indicating the possible conflict between egalitarian and

utilitarian outcomes.

This difference may show up when there are as few as two players dividing up

three items, making it impossible to divide the items equally between the players.  But

even when this is possible, unequal divisions of items may be the only ones that satisfy

the maximin criterion.  While indicating a preference for this criterion over the maxsum

criterion when the two clash, we illustrated how maximin divisions may fail badly in

finding envy-free divisions.   Indeed, there may be no overlap between maximin and

envy-free divisions.

Our purpose is not just to indicate the pitfalls of fair division by exhibiting

paradoxes that can occur.  There are also opportunities, but these depend on the judicious

application of selection criteria when not all criteria can be satisfied simultaneously.

Several recent papers have suggested constructive procedures for finding the most

plausible candidates for fair division of a set of indivisible items (Brams and Fishburn,

1999; Fishburn and Edelman, 2000; Brams, Edelman, and Fishburn, 2000; Herreiner and

Puppe, 2000).  We find this direction promising, because it is potentially applicable to

ameliorating, if not solving, practical problems of fair division—ranging from the

splitting of the marital property in a divorce to the determination of the boundaries in an

international dispute.  But some trade-offs are ineradicable, as the paradoxes demonstrate,

and how best to handle them is by no means evident.
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