1,036 research outputs found

    Pulse interspersing in static multipath chip environments for Impulse Radio communications

    Get PDF
    Communications are becoming the bottleneck in the performance of Chip Multiprocessor (CMP). To address this issue, the use of wireless communications within a chip has been proposed, since they offer a low latency among nodes and high reconfigurability. The chip scenario has the particularity that is static, and the multipath can be known a priori. Within this context, we propose in this paper a simple yet very efficient modulation technique, based on Impulse Radio-On–Off-Keying (IR-OOK), which significantly optimizes the performance in Wireless Network-on-Chip (WNoC) as well as off-chip scenarios. This technique is based on interspersing information pulses among the reflected pulses in order to reduce the time between pulses, thus increasing the data rate. We prove that the final data rate can be considerably increased without increasing the hardware complexity of the transceiver.Peer ReviewedPostprint (published version

    IR-UWB for multiple-access with differential-detection receiver

    Get PDF
    Impulse-Radio Ultra-Wideband (IR-UWB) emerged as a new wireless technology because of its unique characteristics. Such characteristics are the ability to support rich-multimedia applications over short-ranges, the ability to share the available spectrum among multi-users, and the ability to design less complex transceivers for wireless communication systems functioning based on this technology. In this thesis a novel noncoherent IR-UWB receiver designed to support multiple-access is proposed. The transmitter of the proposed system employs the noncoherent bit-level differential phase-shift keying modulation combined with direct-sequence code division multiple-access. The system is investigated under the effect of the additive white Gaussian noise with multiple-access channel. The receiver implements bit-level differential-detection to recover information bits. Closed-form expression for the average probability of error in the proposed receiver while considering the channel effects is analytically derived. This receiver is compared against another existing coherent receiver in terms of bit error rate performance to confirm its practicality. The proposed receiver is characterized by its simple design requirements and its multiple-access efficiency
    • …
    corecore