30,856 research outputs found

    Some observations on the logical foundations of inductive theorem proving

    Full text link
    In this paper we study the logical foundations of automated inductive theorem proving. To that aim we first develop a theoretical model that is centered around the difficulty of finding induction axioms which are sufficient for proving a goal. Based on this model, we then analyze the following aspects: the choice of a proof shape, the choice of an induction rule and the language of the induction formula. In particular, using model-theoretic techniques, we clarify the relationship between notions of inductiveness that have been considered in the literature on automated inductive theorem proving. This is a corrected version of the paper arXiv:1704.01930v5 published originally on Nov.~16, 2017

    A Direct Version of Veldman's Proof of Open Induction on Cantor Space via Delimited Control Operators

    Get PDF
    First, we reconstruct Wim Veldman's result that Open Induction on Cantor space can be derived from Double-negation Shift and Markov's Principle. In doing this, we notice that one has to use a countable choice axiom in the proof and that Markov's Principle is replaceable by slightly strengthening the Double-negation Shift schema. We show that this strengthened version of Double-negation Shift can nonetheless be derived in a constructive intermediate logic based on delimited control operators, extended with axioms for higher-type Heyting Arithmetic. We formalize the argument and thus obtain a proof term that directly derives Open Induction on Cantor space by the shift and reset delimited control operators of Danvy and Filinski

    Reverse mathematics and equivalents of the axiom of choice

    Full text link
    We study the reverse mathematics of countable analogues of several maximality principles that are equivalent to the axiom of choice in set theory. Among these are the principle asserting that every family of sets has a ⊆\subseteq-maximal subfamily with the finite intersection property and the principle asserting that if PP is a property of finite character then every set has a ⊆\subseteq-maximal subset of which PP holds. We show that these principles and their variations have a wide range of strengths in the context of second-order arithmetic, from being equivalent to Z2\mathsf{Z}_2 to being weaker than ACA0\mathsf{ACA}_0 and incomparable with WKL0\mathsf{WKL}_0. In particular, we identify a choice principle that, modulo Σ20\Sigma^0_2 induction, lies strictly below the atomic model theorem principle AMT\mathsf{AMT} and implies the omitting partial types principle OPT\mathsf{OPT}
    • …
    corecore