164 research outputs found

    A linear construction for certain Kerdock and Preparata codes

    Full text link
    The Nordstrom-Robinson, Kerdock, and (slightly modified) Pre\- parata codes are shown to be linear over \ZZ_4, the integers mod 4\bmod~4. The Kerdock and Preparata codes are duals over \ZZ_4, and the Nordstrom-Robinson code is self-dual. All these codes are just extended cyclic codes over \ZZ_4. This provides a simple definition for these codes and explains why their Hamming weight distributions are dual to each other. First- and second-order Reed-Muller codes are also linear codes over \ZZ_4, but Hamming codes in general are not, nor is the Golay code.Comment: 5 page

    Accurate detection of moving targets via random sensor arrays and Kerdock codes

    Full text link
    The detection and parameter estimation of moving targets is one of the most important tasks in radar. Arrays of randomly distributed antennas have been popular for this purpose for about half a century. Yet, surprisingly little rigorous mathematical theory exists for random arrays that addresses fundamental question such as how many targets can be recovered, at what resolution, at which noise level, and with which algorithm. In a different line of research in radar, mathematicians and engineers have invested significant effort into the design of radar transmission waveforms which satisfy various desirable properties. In this paper we bring these two seemingly unrelated areas together. Using tools from compressive sensing we derive a theoretical framework for the recovery of targets in the azimuth-range-Doppler domain via random antennas arrays. In one manifestation of our theory we use Kerdock codes as transmission waveforms and exploit some of their peculiar properties in our analysis. Our paper provides two main contributions: (i) We derive the first rigorous mathematical theory for the detection of moving targets using random sensor arrays. (ii) The transmitted waveforms satisfy a variety of properties that are very desirable and important from a practical viewpoint. Thus our approach does not just lead to useful theoretical insights, but is also of practical importance. Various extensions of our results are derived and numerical simulations confirming our theory are presented

    Kerdock Codes Determine Unitary 2-Designs

    Get PDF
    The non-linear binary Kerdock codes are known to be Gray images of certain extended cyclic codes of length N=2mN = 2^m over Z4\mathbb{Z}_4. We show that exponentiating these Z4\mathbb{Z}_4-valued codewords by ı1\imath \triangleq \sqrt{-1} produces stabilizer states, that are quantum states obtained using only Clifford unitaries. These states are also the common eigenvectors of commuting Hermitian matrices forming maximal commutative subgroups (MCS) of the Pauli group. We use this quantum description to simplify the derivation of the classical weight distribution of Kerdock codes. Next, we organize the stabilizer states to form N+1N+1 mutually unbiased bases and prove that automorphisms of the Kerdock code permute their corresponding MCS, thereby forming a subgroup of the Clifford group. When represented as symplectic matrices, this subgroup is isomorphic to the projective special linear group PSL(2,N2,N). We show that this automorphism group acts transitively on the Pauli matrices, which implies that the ensemble is Pauli mixing and hence forms a unitary 22-design. The Kerdock design described here was originally discovered by Cleve et al. (arXiv:1501.04592), but the connection to classical codes is new which simplifies its description and translation to circuits significantly. Sampling from the design is straightforward, the translation to circuits uses only Clifford gates, and the process does not require ancillary qubits. Finally, we also develop algorithms for optimizing the synthesis of unitary 22-designs on encoded qubits, i.e., to construct logical unitary 22-designs. Software implementations are available at https://github.com/nrenga/symplectic-arxiv18a, which we use to provide empirical gate complexities for up to 1616 qubits.Comment: 16 pages double-column, 4 figures, and some circuits. Accepted to 2019 Intl. Symp. Inf. Theory (ISIT), and PDF of the 5-page ISIT version is included in the arXiv packag

    Symplectic spreads, planar functions and mutually unbiased bases

    Full text link
    In this paper we give explicit descriptions of complete sets of mutually unbiased bases (MUBs) and orthogonal decompositions of special Lie algebras sln(C)sl_n(\mathbb{C}) obtained from commutative and symplectic semifields, and from some other non-semifield symplectic spreads. Relations between various constructions are also studied. We show that the automorphism group of a complete set of MUBs is isomorphic to the automorphism group of the corresponding orthogonal decomposition of the Lie algebra sln(C)sl_n(\mathbb{C}). In the case of symplectic spreads this automorphism group is determined by the automorphism group of the spread. By using the new notion of pseudo-planar functions over fields of characteristic two we give new explicit constructions of complete sets of MUBs.Comment: 20 page
    corecore