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Abstract. Two new infinite series of imprimitive 5-class association schemes are constructed. The first series
of schemes arises from forming, in a special manner, two edge-disjoint copies of the coset graph of a binary
Kasami code (double error-correcting BCH code). The second series of schemes is formally dual to the first. The
construction applies vector space duality to obtain a fission scheme of a subscheme of the Cameron-Seidel 3-class
scheme of linked symmetric designs derived from Kerdock sets and quadratic fornG B2y
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1. Codes and Schemes

In what follows we will freely use standard terminology and results from algebraic combi-
natorics, especially coding theory and association schemes. Among the many good texts
available, we mention [10] for coding and [1] for schemes. Chapter 11 of [1] is an extensive
presentation of the “coset graph” construction of distance-regular graphs. Given a linear
g-ary codeC of lengthn, i.e. a subspace of = GF(q)", one defines theoset graph
I'(C) by taking as vertices the cosets@©fin V, and joining two cosets when they have
representatives at Hamming distance one. Under certain restrictive assumptfor{sfon
Thms. 11.1.6 and 11.1.13 in [1]), the coset grafily) is distance-regular.

One particular series of linear binary codes is pertinent to this paper. For a positive integer
t, the Kasami code K consists of all subsetS of G F(2%+1)\{0} such that) ", or =
> csr® = 0. These are also known as double error-correcting BCH codes. Note that, by
identifying each subs&with its characteristic vector, one may thinkkf as a binary code
of length 2+ — 1. The coset graphi(K;) (let's call it a Kasami graph) is distance-regular
of diameter three ([1], Thm. 11.2.1). In slightly different language, we have a metric 3-class
association scheme with relatiofg, I'>» andI's, wherel'; has the same vertex set2&)
and two vertices are adjacentlin if and only if they have distandein the Kasami graph.

ProPoOsSITION1 The Kasami graph’(K;) has the following equivalent description. The
vertices are all ordered pairs of elements in GF+1). Two distinct ordered pairga, x)
and (b, y) are adjacent if and only if a- b = (x + y)3.
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Proof. The vertices of"(K;) are the distinct cosetS+ K; of K; (viewed as a subspace
of a binary vector space of dimensiod2 — 1), whereS ranges over all subsets of
G F(221)\{0}. To each cose®+ K;, assign the ordered paip_, .13, Y, .sr) of field
elements. The definition d; implies that this map is well defined. The verification that
this map is a graph isomorphism (betwdetK;) and the other description) is routine and
left to the reader. ]

Let us change notation and wri = I'(Ky); sot is fixed and in the background. Define
another graplG, as follows. It has the same vertex set@g namely all ordered pairs
of elements ofs F(22+1). Two distinct ordered pair&, x) and(b, y) are adjacent itG,
if and only ifa +b = xy(x + y). Note that sinc&x + y)° = xy(x +y) + x% + y3,
the involution(a, x) — (a + x3, x) is an isomorphism betwee®; andG,. Furthermore,
since cubing is a bijection oB F(22+1), it follows easily thatG; andG, have no edges in
common. Indeed, what we have here is a remarkably nice edge-disjoint placement of two
copies of the Kasami graph: their adjacency matrices commute, and they are two of the
relations in a 5-class association scheme. The precise result is the following. Recall that
Tr(z) =z+22+...+ 7% is the trace map fron® F(22+1) onto G F(2).

THEOREM2 Define five relations on the set of ordered pairs of elements of28 ) as
follows. For distinct pairga, x) and (b, y), the possible relations are

Gy : x#yanda+b=x+y)?
Gy : x#y and a+b=xy(x+Yy);

a+b
Gs ! X#Vy,a+b#(x Sand Tr{——— | =1,
3 #Y.,a+b#X+Yy) ((x+y)3)

a+b
Gy @ X ,a—+ b £ xy(x and Tr| ——= ) =0;
4 #Y.a+b#Xy(X+Yy) ((x+y)3>

Gs : x=y anda#h.

Then the relations G together with the identity relation £ form an association scheme.

Theorem 2 will be proved in several steps. Before doing so, we remark that there is a more
general version of the binary Kasami code (cf. [1], p. 358); namely, one may replace the
cubing map by — x5+%, wheres = 2f andGC D(f, 2t +1) = 1. The above construction
of a 5-class scheme extends to this more general case, wherénandG, are defined
by the equationg + b = (x + y)**t anda + b = xy(x*~! + y51), etc.. But no new
“scheme parameters” are obtained in this way; and we felt it would be better, both for ease
of presentation and readability, to confine ourselves to thesasg.

LEMMA 3 Given d # 0 and e in a finite field of characteristic two, then the equation
Z?> 4+ dz+ e = 0 has (two) roots if and only if Teed=?) = 0.

Lemma 3 is a standard result, and so its proof is omitted.
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LEMMA 4
(i) Gsequalsl'z(Ky), i.e. itis the distance-two graph of the Kasami graph G

(i) Similarly, G4 is the distance-two graph of 5

Proof. The arguments for (i) and (ii) are essentially the same, so we only prove (i). Let
(a, x) and(b, y) be two distinct vertices, and suppose that they have a common neighbour
(¢, 2) in G;. This means that the two equatians ¢ = (x+z)® andb+c¢ = (y+2)% hold.
Adding these equations and rearranging yi€lds y)z> + (x + y)?z+a+b+x3+y3 = 0.

If x = y then this forcea = b and so(a, x) = (b, y), contrary to our assumption; so

X +y # 0. By Lemma 3 the above quadraticamas (two) solutions if and only if

a+b+x3+y3 a+b Xy
O=Tr|——— 2 | =Tr TrH+Tr| ——|.
[ x+y)? } [<x+y>3} I [x2+y2}

Note thatTr(1) = 1, sinceGF(2%*1) is an extension of5 F(2) of odd degree; also

2
Tr [#”yz] =Tr [%zytyz] =Tr [Fyy]+Tr [(%) ] = 0, sinceTr(w?) = Tr(w)? =

Tr(w) ingeneral and sdr(w)+ Tr(w?) = 0. Thus the quadratix + y)z% + (X + y)%z+
a+b+x3+y3 =0hastwo rootzif and only ifx # yandTr [ ath ] = 1. Observe that

(x+y)*
if a4+ b = (x+y)3, then the quadratic has the two roats: x andz = y (and conversely);
but these do not correspond to true common neighbouis af) and(b, y), since loops are
not allowed inG;. We may thus conclude that the distinct verti¢asx) and (b, y) have

(two) common neighbours iG1 ifand only ifx # y, a+ b # (x + y)3andTr [;j&]

equals 1. This is precisely the relati®z. ]

Let A; be the adjacency matrix of the gra. The assertion that th&;’s form an
association scheme is equivalent to saying that the real linear span &f'thiorms an
algebra, i.e. each produg A, equaIsZE:0 pikj A for suitable non-negative integepﬁ ,
called the intersection parameters. Thus to establish Theorem 2 we need to compute these
products, or at least prove somehow thatmhés exist. Lemma 4 is a step in this direction:
it easily implies thatA? = (221 — 1)1 + 2Azand A3 = (22+1 — 1)1 + 2A,. Also, since
G; andGg are relations in the three-class association scheme of a Kasami graph, it follows
that A; Az and A% are linear combinations d&’s, and similarly so aré\, A4 and Aﬁ.

LEMMA 5 AjA = ApAL = Az + Ay + As.

Proof. Writing ax instead of(a, x) etc. for simplicity, we have

(Al A2)ax,by = Z(Al)ax,cz( A2)cz by

cz

= #(c,20:a+c=(x+2°% and b+c=yzy+2).

Adding these two equations and rearranging leads#® = (z+x + y)3 + (x + y)3 + x5
Since cubing is a bijection, we see that given x) and (b, y) there exists a unique
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satisfying the previous equation. This means tAaf; is a (0, 1)-matrix and the off-
diagonal zero entries o4 A, correspond to those paita, x) and(b, y) wherez = x or
z = yis the solution to the cubic. Now it easily follows thatA, = J — | — Aj — Ay =
Az + A4 + As. The argument foA A; is the same. [ |

LEMMA 6 Foralli, A Asis alinear combination of &s, i.e. the intersection parameters
pk, exist.

Proof. SinceGs has such a simple structure (it is a disjoint union of cliques of equal size),
this is quite easy to check and so we omit the details. [ |

There is now enough information to complete the proof of Theorem 2. For example,
why is AjA; a linear combination ofAc's? We saw just before Lemma 5 thaf =
(2241 — 1l +2A, or Ay = (A3 — (g — DI) whereq = 2%*1. HenceAiAs =
F(AAZ— (@ —DA) = 3((I— 1 — AL — A A, — (g — D)Ay) by Lemma 5. Applying
Lemmas 4 and 5 once again yields the desired result. The remaining products go similarly,
which proves Theorem 2.

2. The Eigenmatrices and Lattice of Fusion Schemes

The eigenmatrix of the 5-class scheme described in Theorem 2 is

1 2a+l_g pA+l_g (22_1y22*t1_1) (2%-1)(22*+1-1) 2&A+1_7
1 21 1 (2 41)? 2241 -1
p_ 1 -1 -2 —2241 (2'+1)? -1
1 24g -1 (2'-1)? —2241 -1
1 -1 2+1_g —2241 (2t-1)? -1
1 -1 -1 —2241 2241 2H_g

and the dual eigenmatri is

1 AltapE2ttlagy  tlptigy2tlag) ity @+l oLt g2ty 241
1 2tE-p@Eitiig -2ty 21ty @ty 212ty -1
1 -tlat-g S tt-p @ty 2@+ @ty
1 2@y 2@ty 21ty 212ty -1
1 -ot1et-1) 21t 4y -2ty 21ty -1

1 -2t1at-g) -2t1at-g) -2t -2t1atyy 22+l

The derivation of these eigenmatrices is not difficult, given the following information.
The two sets of graphi$Gg, G, Gz, G, U G4 U Gs} and{Go, G2, G4, G1 U Gz U Gs} are
3-class fusion schemes of our 5-class scheme; indeed they are the schemes of the Kasami
graphsG; andG,, respectively. The eigenmatrices of these 3-class schemes are known,
cf. [3]; in conjunction with some elementary computations this yields the eigenmaRices
andQ above.

There are other fusion schemes of our 5-class scheme besides the two given above. The
complete list of fusion schemes is given in Figure 1, which is presented as a sublattice of
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135)24 12345 245/13

13[2/4[5 2411)3|5

\/

112]3|4|5
Figure 1. The lattice of fusion schemes.

the lattice of partitions of a 5-element set. For examplé243” corresponds to the fusion
schemg Gy, G1 U Gz, G2 U Gy, Gs}. Recall ([6], p. 184) that fusion schemes of a given
scheme correspond to certain row-equitable partitions of the eigennfgtspecifically,
these are partitions @&t into blocks such that each block has constant row sums (and the first
row and first column oP each appear as singleton cells in the row and column partitions
corresponding to the block partition). Thus one can find all fusion schemes by a careful
inspection ofP.

We shall not comment on all of the schemes in Figure 1, but one of them, nani@b12
is particularly noteworthy.

PROPOSITION7
(i) The schem¢Gg, G1 U Gy, G3 U Gy, Gs} is a quotient of the underlying scheme of the
distance-regular graph constructed in [2].

(i) Conversely, given any 5-class association scheme having the same parameters as those
of Theorem 2, then, letting;Aand A denote the adjacency matrices of the two connected
relations of valencp?+! — 1, the matrix

_ Aq I + Ao
M_|:I+Az A }

is the adjacency matrix of an antipodal distance-regular graph having the same pa-
rameters as those of [2].

Proof.

() Omitted; thisis quite easy given the explicitdescription of the graphsin [2]. Incidentally,
we recommend [7] for a deep study of quotient schemes.



94 DE CAEN AND VAN DAM

(i) Omitted; we should stress that this is simply a matter of the intersection parameters
being what they should be, and so is independent of any explicit construction such as
that of this paper. O

If Bis an association scheme with eigenmafiand dual eigenmatriQ, then another
schemeB* is calledformally dualto B if it has eigenmatrixQ (and dual eigenmatri®).
This notion is due to Delsarte [5], who showed that in the case of a translation s¢heme
there is an explicit duality transform betweBrand a dual schemB*; indeed, this is the
familiar duality between a finite abelian group and its character group. In general, itappears
that a formally dual pais andB* need not be structurally related. Now/fis the 5-class
scheme of our Theorem 2 (or any scheme with the same parameters), then the existence
of a formally dual schemB8* appears feasible. By this we mean that the dual intersection
parametersqi‘} of B, which must be nonnegative reals according to the Krein conditions,
are in fact nonnegative integers and so could be the intersection parameters of some scheme
B* (which must then be formally dual t8). In the second half of the present paper we
will construct such a scheme. Note that our earlier construction via Kasami graphs is not a
translation scheme (this follows from Proposition 7 and the results in [2]), although it seems
tantalizingly close to one (e.g., the fusioni3245 and ®|135 are each translation schemes).
Thus one needs another approach; our construction will make use of quadratic forms and
Kerdock sets oveG F(2). To motivate this approach we make the following remark. The
schemes constructed in [2] are formally dual to the Cameron-Seidel scheme [4] of linked
symmetric designs derived from quadratic forms and Kerdock setd®W¢®). Since, by
Proposition 7 above, the fusion schem¢325 is a quotient of the scheme of [2], and since
“quotient scheme” and “subscheme” are dual concepts, it seemed natural to us to try and
construct a formal dual to the 345 fusion scheme by locating a suitable subscheme of
the Cameron-Seidel scheme. This is precisely how our construction proceeds; furthermore,
by a natural fissionning method (here “natural” is in reference to vector space duality) we
obtain a 5-class formal dual to our original 5-class scheme.

3. Schemes and Kerdock Sets

We begin with a brisk review of some basic concepts; our primary source is Cameron
and Seidel [4], but see also Chapter 26 of Van Lint and Wilson [11]. L&k a (finite-
dimensional) vector space ov@rF(2). A quadratic formis a mapQ : V — GF(2) such
thatQ(0) = 0 and

Bx,y) := Q(x+y) + Q) + Q(y)

is bilinear. Note thaB must be alternating, i.eB(x, x) = 0 for all x. In this situation

we say thatQ lies overB and sometimes writ€ : B. An arbitrary symmetric bilinear
form B(x, y) is said to be non-singular if the only vecterfor which B(x, y) = 0 for

all y is x = 0. An alternating bilinear form cannot be non-singular uni¢skas even
dimension; thus in what follows we will suppose that dim = 2t + 2 for a positive
integert. (Of course this notation is chosen so as to agree with the first part of this paper.)
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A quadratic form is called non-singular if its associated bilinear form is non-singular. Such
a quadratic fornQ has a type( (Q) = %1, whereQ has precisely2+! + x (Q)2! zeroes.

The projective quadrics associated to non-singular quadratic formgwitht-1 are called
hyperbolic, those witty = —1 elliptic.

Let Sbe a set of alternating bilinear forms ¥n If the sum of any two distinct members of
Sis non-singular, the®is called a non-singular set. Itis not hard to show tean have at
most 2'+1 members; when equality hol@s called &Kerdock set The first construction of
such maximal sets was given (for 8)lby Kerdock [9]; whence the nomenclature. Kantor
[8] gives a recent survey of Kerdock sets and their relation to finite geometry. We now
proceed to the construction of some 5-class association schemes.

THEOREM8 In a vector space V of dimensi@h+ 2 over G K2), fix a vectorv in V and a
linear form L on V such that w) = 1. Let S be a Kerdock set of alternating forms on V.
Define a system of relations as follows. The vertex set consists of all ordered a3,
where Be S, Q lies over B and @) = 0. For distinct pairs(B, Q) and (B’, Q’), the
possible relations are

Ri : B#B,x(Q+Q)=-1 and x(Q+Q +L)=-1
R : B#B,x(Q+Q)=-1 and x(Q+ Q' + L) =+1;
R : B#B,x(Q+Q)=+1 and x(Q+ Q +L)=+1;
Ry : B#B,x(Q+Q)=+1 and x(Q+Q +L)=-1
Rs : B=B and Q# Q.

Then the relations Rtogether with the identity relationdRform an association scheme.
This scheme is formally dual to the association scheme of Theorem 2.

The proof of Theorem 8 is rather laborious; we will present in detail several of the harder
computations and skip most of the easier ones. Following Cameron and Seidel [4], our
work will be facilitated by the use of a certain Gram matrix indexed by all quadratic forms
onV. LetF be the 2'+2-dimensional rational vector space consisting of all rational-valued
functions on V. To each quadratic for@ onV associate the functio® in F defined by
Qx) = 2771(=1)9™, The definition ofy presented earlier for non-singular quadratic
forms extends to all quadratic forms (cf. [4], Prop. 2). Lettiagb) denote the standard
inner product oiF, we have thatQ, Q') = 271y (Q+ Q') for all quadratic form<Q and
Q' (cf. [4], Prop. 3). This observation is a key tool in proving Theorem 8, since it suggests
that the computation of intersection parameters for the relati®orsan be expressed as
certain (colossal) sums ¢f1)’s and(—1)’s; for example, the above equation of Cameron
and Seidel may be written as

x(Q+Q)=271) (-1

xeV

Let G be the Gram matrix for all quadratic forms & thusGgq o equals(Q, Q). For
each alternating bilinear forrB, there are 2+2? quadratic forms that lie oveB; thus G
has a natural block partitiofGi; ), whereG;; is the 2'+2 x 22+2 submatrix ofG whose
rows correspond to the quadratic for@s. B; and the columns correspond to tQe: B;.
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Further, eacl@;; has the decomposition

_ | Gij Dij
G = [ Dij G ]

where the row and column indices of the upper left block correspond to those quadratic
forms (overB; andB; respectively) that vanish at (Recall that is a distinguished non-

zero vector used to define the vertex set in Theorem 8). SPhee = O if and only if

(Q+ L)(v) = 1 (wherelL is the distinguished linear form in Theorem 8), it is notationally
sound to list row and column indices f@;; as follows: if Q1, Qa, ... is some listing of

the quadratic forms that vanish@atthen we should list the forms that don’t vanishvats

Q1, Q2, ... also, with the understanding that in this rar@ecorresponds t), + L. This

is probably the most coherent notation for discussing matrix products suChBg, as

we shall do in the sequel. Note that in the above block decompositid®;foit is indeed

true that the upper-left and lower-right blocks are equal to each other; this corresponds to
the identity

(m’ m) — 2*3*2Z(_l)(Q+L)(X)+(Q’+L)(X)

xeV

— 22 Z(_l) Q(x)+Q' (%)

xeV
= (Q. Q).
Similarly, it is clear that the upper-right and lower-left blocks3f are equal to each other.

This 2 x 2 block decomposition of eadh;; induces a corresponding-22 decomposition
of all of G, which we write as

CD
G- [ cr } .
Let us writeE = C o D, the entrywise product @ andD. A typical entry ofE is thus

— 44 Z (—1)QM+QO+Q+QW+LY)
X,yeV

Eq.o =Cq.oDq.o

We are now almost ready to embark on a series of calculations that will establish The-
orem 8. First we need to clarify the precise connection between the Gram Gaduixi
the relations defined in the statement of Theorem 8. Since our construction only uses the
alternating bilinear forms;, i = 1 to 2**1, in some given Kerdock s&, we restrictG to
the principal submatrix corresponding to all quadratic forms lying over jusBtlsein S;
but we use the same symbdls C, D andE for these submatrices.

PROPOSITIONS Let A be the adjacency matrix of relation; Rescribed in Theorem 8,
i=0,...,5 Then:

Ay = 23 —1—Ay)—274C ~1)- 21D + 22E,
Ay = 23 —1—Ay)—274C—1)+2ID - 22E,
As = 2J -1 —As) +271C — 1)+ 271D + 22E,

Ay = 2d-1-A)+2HC—1)-2"'D-2"E.
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Proof. Recall that, by the fundamental identity of Cameron and Seidel ([4], Prop. 3),
(Q, Q) =21 (Q+Q), and hence in our notatid®g o = 271 (Q+Q), Do =
Zitil)( (Q+Q +L)and heanQ,Qr = CQ,Qr DQ.Qf = 27372)( (Q+ QN x(Q+ Q' +L).
Given this and the definition of thg s, it is now straightforward to verify the above matrix
identities; we leave this to the reader. ]

ProOPOSITION10
(i) (As+1)C =C(As+1)=J; (As+1)D = D(As+1) = (As+1)E=E(As+1) =0

(i) JIC=CJ=22*13,JD=DJ=JE=EJ=0;
(i) C2=22C+3J;D?=2%C - 1J;CD=DC = 2%D;
(vy CE=EC=3iD;DE=ED=31C-222J;

(v) B2=—-2"23(As+ 1) + 1.

It is clear from Propositions 9 and 10 how to go about obtaining expressions for the
productsA; A; as linear combinations of th&.’s; we will not carry out the very tedious
details. Also we will only prove some parts of Proposition 10; our sample will cover all of
the types of cancellative arguments that arise in these computations. We start with an easy
one, namely the first equations in Proposition 10(i) and (ii). For this it clearly suffices to
show that eaclt;; has row sums one. It's easy to sh@y = | for all i; wheni # j, fix
Q' : B; and observe that the sum of the entries of@eow of C;; equals

Z(@, Q) = 27272 Z Z(_l)Q/(X)JrQ(x)

QB Q:Bj xeV
— &2 Z(_l) Q'(x) Z(_l)Q(X)'
xeV QB

Now if x = 0 orv then} .5 (— 1)Q™ = 22+1: recall that we only sum over thog that
vanish aw. If x isnot 0 orv thenZ g (— 1)Q™® = 0, which can be seen by fixing a linear
form ¢ such thapp(x) = 1, ¢ (v) = 0 and noting that the involutio® — Q + ¢ pairs the
Q’s that vanish ak with those that don’t. Thus we have

Y Q. Q=222 2?0 4 (-] =1,
Q:B;

as desired.

Next we tackle the first equation in Proposition 10(iii). For the block matrices we have
(CHi = >, Cij Cjk, where this sum has’?? terms, one for each alternating for in
the Kerdock seS. If Q' : B; andQ” : By are given, we compute

CiCie.or = Y (Ci)a.oCika.qr
QZBj

— o—4-4 Z Z(_]_)Q'(XH-Q(X) Z(_l)Q(Y)-FQ”(y)

Q:Bj xeV yev
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— 44 Z(_l) Q'(x)+Q"(Y) Z (_1)Q(X)+Q(Y)
X,y Q:B;
— p—4-4 Z(_l)Q’(X)JrQ”(y)JrBj *.y) Z(—l)Q(X+y)~
X,y Q:B;
Observe thatik+y = 0 andx+Yy # v, then there exists a linear fogrwith ¢ (X +y) = 1
and¢ (v) = 0, from which it follows as before th@Q:BJ (—1)Q+Y) = 0. Hence,

CiiCikg.or = 2—2—32[(_1)Q’<x>+Q”<x> +(_1)Q’<x>+Q”<x+u>+Bi(x,w]

xeV

= JCo.g + 2723 ) (- B,
X

Summing this over al] we get
(CZ)Q’,Q” — 22tCQ’,Q” + 2—2t—3 (_1)Q'(X)+Q”(X+U) (_1) B (X,v).
Zearer

LEMMA 11 If x # Oand x# v, then B(x, v) equalsO and 1 equally often, as Branges
over a Kerdock set.

Proof. Each linear formp; (y) := B;(y, v) is well defined on the quotient spa¢{0, v}.
Letx; = X, X, ..., Xa+1 be a basis o¥ /{0, v}. Observe that th€2t + 1) x 22+1 array
Mi; = B;j(x, v) consists of all distinct binary columns of height 2 1; for, if two
columns, say thé'" andk'", were identical that would imply tha; + By is singular, a
contradiction. But then it follows that each row bF has exactly 2 zeroes and? ones.
]

Continuing our calculation of?, we infer from Lemma 11 that
(CYHo.or = 2Cqq + 1 [(_1)Q’(0)+Q”(v) + (_1)Q”(0)+Q’(v)]
= 2Co0 + 7
sinceQ’ andQ” are arbitrary quadratic forms vanishingate have obtained the sought-for
equatiorC? = 22C+1J. We note in passing that the second equation in Proposition 10(jii)
does not have a typographical error: there is a certain asymmetry beGneeD .
Two more parts of Proposition 10 will be proved in detail, namely the first equation of

(iv) and then (v). As withC?, we will calculateC E on each block(C E)jx = Zj Cij Ejx.
For eachQ’ : B; andQ” : B¢ we have, sinc&e = C o D,
CiiEx)e.or = Y Cq.oCo.eDag
Q:B;
— 66 Z Z(_DQ’(XHQ(X) Z(_l)Q(y)JrQ”(y) Z(_l)Q(Z)+Q”(Z)+L(Z)

Q:Bj xeV yeV zeV
2—6t—6 Z(_1)Q/(X>+Q”<y>+Q”(Z>+L(Z) Z(_DQ(XHQWHQ(Z)

XY,z Q:B;
— —6t—6 Z(_1)Q/<x)+Q”<y)+Q”(Z)+L(Z)+B, (%Y)+B; (x+Y.2) Z(_l)Q(x+y+Z)_

XY,z Q:B;
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Now if X + Yy + z # 0 andx + y + z # v, then (by an argument used twice already) it
follows that the inner sum ove : B; vanishes. Hence the above expression is equal to
2—4t-5 Z(_l)Q/(X)+Q”(X)+L(X)+L(y)+BJk(x,y)[1 — (=1) B0y
X,y

where we have seéBjc := B; + By for convenience; and replacingby y + x yields the
slightly simpler expression

2—4t—5 (_1)Q/(X)+Q”(X) (_1)L(y)+BJk(X:Y)[1 _ (_1)Bjk(YvU)].
Doy

We now analyze the inner summation oyefthinking of x as fixed). IfBjk(y,v) =0
then 1— (—1)Bx¥» equals zero, and so we need only consider the inner summation over
thosey's whereBj (y, v) = 1, hence the summation becomes

2 Z (_1)L(Y)+Bjk(><,y).

Y:Bjk(y.v)=1

But now observe that this sum usually vanishes: if the linear fo(y) 4+ Bjx(x, y), as a
function ofy, is not the zero form, and if the linear formsy) + By (X, y) andBjx (v, y)

are not equal forms, then it is not hard to see that the above summation vanishes. For the
two exceptional cases we need the following lemma.

LEMMA 12

(i) For each non-singular alternating form B, there exists a unique XV such that
B(x,y) = L(y) forall y. When B= By, with j # k let us denote this unique x by x

(i) Fork fixed the sefx;x}, as j # k varies over the indices of a Kerdock set, equals the
set of non- zero vectors in the kernel of L.

Proof.

(i) Leftto the reader.

(if) Clearly eachxjx is non-zero and lies in the kernel bf On the other hand, for distinct
j’s (say j1 and j,) the corresponding;k’s are distinct, otherwise one would easily
derive the contradiction tha;, + B;, is singular. Since a Kerdock set has the same
number of elements as Kerwe are done. |

We may now wrap up our computation 6fE. Using Lemma 12(i) it is straightforward
to check that everything reduces to

(Cij Ejk)Q’,Q” — 2—2t—3[(_1)Q'(Xjk)+Q”(Xjk) _ (_1)Q/(Xjk+v)+Q”(Xjk+U)]
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whenj # k; and whenj = k we haveC;; Ej; = 0, sinceE;; itself is zero. Therefore

(C E)Q/ o = 2—2t-3 Z [(_1)Q’(x,k)+Q”(xjk) _ (_1)Q’(x,-k+v)+Q”(x,-k+u)]
jij#k
— 23 Z [(_1)(Q’+Q”)(y) _ (_1)(Q’+Q”)(Y+v)]
0z£yekerL
(by Lemma 12(ii))
— 272t73 Z [(_1)(Q’+Q”+L)(y) + (_1)(Q’+Q”+L)(y+v)]
O0#£yekerL
—2t—3 '+Q"+L 1 .
-2 Z(_l)(Q +Q"+L)(Y) — EDQ’,Q" :
yeVv

and so finallyC E = 1D. Because of symmetry we ha#C = CE = 3D also.

Finally, we shall work out the last identity stated in Proposition 10. As before we have
to compute block-matrix products;; Ejx. If i = j or j = k then this product is the
zero matrix. So we may assume tha# j andj # k; if Q' : B andQ” : By then
28t+8(Eij Ejk)Q/,QH equals

Z Z (—1)Q+QE0+QM+QWH+LY+R@D+Q"@+Q(w)+Q" w)+L (w)

Q:Bj X,y,zw

- Z (—1) QM +LW+Q"@+Q"(w)+L (w) Z(_l)Q<X)+Q<y)+Q(Z)+Q(w>.
X,Y,Z,w Q:B;

Note thatQ(x) + Q(Y) + Q(2) + Q(w) = QX+ Y+ 2Z+w) + Bj(X, y) + Bj(x +Y, 2) +
Bj(x+y + z, w) for eachQ : B;; and, by a previous argumentxf y +z+ w # 0 and
X+ Y+ z+4+w # v then the sum of minus one to the pow@(x + y + z+ w), summed over
Q : B, vanishes. Thus we are left with only= x+y+zorw = x+y+z+v; after some
elementary manipulations, and writifgy, = B; + By as before, puttin®' := Q' + Q”
and replacing by z+ x + y one is led to the following expression fot*2’(E;; Ejk) o', o'

Z(_1)Q*(x>+Q*(y)+L<y>+Bjk(x,y> Z(_l)L(z)+Bik(x+y,z>[1 — (=1)Br@vy,

X,y z

Similarly to the analysis for the produ€tE, one finds that, for giver andy, the inner sum
overz vanishes unless the linear formequalsBjk (x + y, -) or equalsBjx(x +y + v, -).
Recalling the vectok;, from Lemma 12, it is then routine to show that the previous
expression fo(Eij Ejk) o, o- boils down to
2_4t_5 Z(—l)QT(X)-FQf(X-FXjk)[l + (_1)Bk(X+Xjk-U)+Bjk(X,U)]
xeV

— 2*4t*5(_1)QT(Xjk) Z(_l)Bik(x-Xjk)[l + (_1)Bij (X,v)+Bik(Xjk,v)].
X

We now claim that ifi # k then this last sum over vanishes. Indeed, this sum clearly
equals

2 Z(_l) Bik (X, Xjk)
X
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wherex is restricted to the range whelg (x, v) = Bjx (X, v). Therefore, unless the (non-
zero) linear formsB;k (-, Xjx) andB;; (-, v) are equal, the sum must be zero. But indeed the
forms in question ar@ot equal, for if so we derive the contradiction8 Bjj (v, v) =
Bik (v, Xjk) = Bjj (v, Xjk) + Bjk (v, Xjx) = Bij (v, Xjx) + L(v) = Bix(Xjk, Xjx) + 1= 1.

Thus we have shown thaE;; Ej)q.or = 0if i # k. (Recall thai # j andj # k was
assumed at the outset.)il& k then

(BijEji)g.gr = 2775(=1) Q00 31+ (—1)B *]
X
— 2—2’[—3(_1)QT(X“)'
Hence, ifQ’ and Q” lie over the same alternating forB, then

(EYq.00 = Y _(EjEig.or

J

— 2—2t—3 Z(_l)QT(X“ )
i

=22 Y (=DR'Y (by Lemma 12(ii))

0#£yekerl
[ —223, if Q"0 (.e.Q # Q")
22432+l _ 1) if Q' = Q.

This easily yieldsE? = —272~3(As + |) + 1, as desired.

The dual version of Proposition 7(ii) is the following.

PrOPOSITION13 Given any 5-class association scheme having the same parameters as
those of Theorem 8, then the matrix

M| Art A2 Act As
CLATA A A

is the incidence matrix of a systen28f+1 — 1 linked symmetri@-(22+2, 22+1_2t 22t_ot)
designs (i.e., it is the adjacency matrix of one of the graphs in a 3-class association scheme
with the same parameters as the Cameron-Seidel scheme).

Proof. This s, like Proposition 7(ii), just a matter of parameters. [ |

4. Concluding Remarks

Whent = 1 the schemes described in Theorem 2 and Theorem 8 have the same parameters;
in other words the eigenmatricd® and Q coincide and we have a formally self-dual
situation. Presumably our two constructions yield isomorphic schemes in this case, but we
have not checked it. (After seeing a first draft of this paper, Rudi Mathon informed us that,
whent = 1, a scheme with these parameters has also been implicitly constructed by himself
and Anne Penfold Street; see p. 102 of [12].) Note that viherl the Kasami coset graph
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is essentially unique; indeed the graph parameters are that of the folded 7-cube, which is
uniquely determined by its intersection array ([1], Thm. 9.2.7). When 2 there are
several distinct binary Kasami codes (as remarked after the statement of our Theorem 2);
from the work in [2] and Proposition 7 it follows that the resulting 5-class schemes are
not isomorphic. In the same vein, it is known that when21 is composite there are
inequivalent Kerdock sets (cf. [8], 83.9). These may well yield non-isomorphic 5-class
schemes, but we have not pursued the matter.

Itis known that formally dual pairs of association schemes have the same lattice of fusion
schemes (cf. [6], bottom of p. 185). Hence the schemes of our Theorem 8 have the fusion
schemes sketched in Figure 1; we were careful to list the relaRoisthe correct order,

i.e., note that 11235 is nota fusion scheme, whereas|3425 and 1®45 are so.
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