66,327 research outputs found

    Random graphs with a given degree sequence

    Full text link
    Large graphs are sometimes studied through their degree sequences (power law or regular graphs). We study graphs that are uniformly chosen with a given degree sequence. Under mild conditions, it is shown that sequences of such graphs have graph limits in the sense of Lov\'{a}sz and Szegedy with identifiable limits. This allows simple determination of other features such as the number of triangles. The argument proceeds by studying a natural exponential model having the degree sequence as a sufficient statistic. The maximum likelihood estimate (MLE) of the parameters is shown to be unique and consistent with high probability. Thus nn parameters can be consistently estimated based on a sample of size one. A fast, provably convergent, algorithm for the MLE is derived. These ingredients combine to prove the graph limit theorem. Along the way, a continuous version of the Erd\H{o}s--Gallai characterization of degree sequences is derived.Comment: Published in at http://dx.doi.org/10.1214/10-AAP728 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Maximal entropy random networks with given degree distribution

    Full text link
    Using a maximum entropy principle to assign a statistical weight to any graph, we introduce a model of random graphs with arbitrary degree distribution in the framework of standard statistical mechanics. We compute the free energy and the distribution of connected components. We determine the size of the percolation cluster above the percolation threshold. The conditional degree distribution on the percolation cluster is also given. We briefly present the analogous discussion for oriented graphs, giving for example the percolation criterion.Comment: 22 pages, LateX, no figur

    One-class classifiers based on entropic spanning graphs

    Get PDF
    One-class classifiers offer valuable tools to assess the presence of outliers in data. In this paper, we propose a design methodology for one-class classifiers based on entropic spanning graphs. Our approach takes into account the possibility to process also non-numeric data by means of an embedding procedure. The spanning graph is learned on the embedded input data and the outcoming partition of vertices defines the classifier. The final partition is derived by exploiting a criterion based on mutual information minimization. Here, we compute the mutual information by using a convenient formulation provided in terms of the α\alpha-Jensen difference. Once training is completed, in order to associate a confidence level with the classifier decision, a graph-based fuzzy model is constructed. The fuzzification process is based only on topological information of the vertices of the entropic spanning graph. As such, the proposed one-class classifier is suitable also for data characterized by complex geometric structures. We provide experiments on well-known benchmarks containing both feature vectors and labeled graphs. In addition, we apply the method to the protein solubility recognition problem by considering several representations for the input samples. Experimental results demonstrate the effectiveness and versatility of the proposed method with respect to other state-of-the-art approaches.Comment: Extended and revised version of the paper "One-Class Classification Through Mutual Information Minimization" presented at the 2016 IEEE IJCNN, Vancouver, Canad
    corecore