29,413 research outputs found

    Parameters affecting ion intensities in transmission-mode Direct Analysis in Real-Time mass spectrometry

    Get PDF
    A survey of the effect of temperature, transmission module material and analysis time on ion intensities in transmission mode direct analysis in real time mass spectrometry is presented. Ion intensity profiles obtained for two related compounds are similar when analysed separately but are very different when analysed as a mixture

    Fundamental of cryogenics (for superconducting RF technology)

    Full text link
    This review briefly illustrates a few fundamental concepts of cryogenic engineering, the technological practice that allows reaching and maintaining the low-temperature operating conditions of the superconducting devices needed in particle accelerators. To limit the scope of the task, and not to duplicate coverage of cryogenic engineering concepts particularly relevant to superconducting magnets that can be found in previous CAS editions, the overview presented in this course focuses on superconducting radio-frequency cavities.Comment: 20 pages, contribution to the CAS - CERN Accelerator School: Course on High Power Hadron Machines; 24 May - 2 Jun 2011, Bilbao, Spai

    Suited for spacewalking: A teacher's guide with activities

    Get PDF
    This publication is an activity guide for teachers on spacesuits and spacewalking. It uses the intensive interest many children have in space exploration as a launching point for hands-on-opportunities. The guide begins with brief discussions of the space environment, the history of space walking, the Space Shuttle spacesuit, and working in space. These are followed by a series of activities that enable children to explore the space environment as well as the science and technology behind the functions of spacesuits. The activities are not rated for specific grade levels because they can be adapted for students of many ages. The guide concludes with a brief glossary as well as references and resources

    Benefits of slush hydrogen for space missions

    Get PDF
    A study was performed to quantify the benefits of using slush hydrogen instead of normal boiling point liquid hydrogen as a fuel for several space missions. Vehicles considered in the study included the Space Shuttle/Shuttle-C, LEO to GEO transfer vehicles, Lunar and Mars transfer vehicles, and cryogenic depots in low Earth orbit. The advantages of using slush hydrogen were expressed in terms of initial mass differences at a constant payload, payload differences at a constant tank volume, and increases in fuel storage time for cryogenic depots. Both chemical oxygen/hydrogen and hydrogen nuclear thermal rocket propulsion were considered in the study. The results indicated that slush hydrogen offers the potential for significant decreases in initial mass and increases in payload for most missions studied. These advantages increase as the mission difficulty, or energy, increases

    Study of zero-gravity, vapor/liquid separators

    Get PDF
    Heat exchange, mechanical separation, surface tension, and dielectrophoretic methods of separating vapor from liquid at zero gravity for vapor ventin

    A summary of existing and planned experiment hardware for low-gravity fluids research

    Get PDF
    An overview is presented of (1) existing ground-based, low gravity research facilities, with examples of hardware capabilities, and (2) existing and planned space-based research facilities, with examples of current and past flight hardware. Low-gravity, ground-based facilities, such as drop towers and aircraft, provide the experimenter with quick turnaround time, easy access to equipment, gravity levels ranging from 10(exp -2) to 10(exp -6) G, and low-gravity durations ranging from 2 to 30 sec. Currently, the only operational space-based facility is the Space Shuttle. The Shuttle's payload bay and middeck facilities are described. Existing and planned low-gravity fluids research facilities are also described with examples of experiments and hardware capabilities

    Assessment of CTF boiling transition and critical heat flux modeling capabilities using the OECD/NRC BFBT and PSBT benchmark databases

    Get PDF
    The need to refine models for best-estimate calculations, based on good-quality experimental data, has been expressed in many recent meetings in the field of nuclear applications. The modeling needs arising in this respect should not be limited to the currently available macroscopic methods but should be extended to next-generation analysis techniques that focus on more microscopic processes. One of the most valuable databases identified for the thermalhydraulics modeling was developed by the Nuclear Power Engineering Corporation (NUPEC), Japan. From 1987 to 1995, NUPEC performed steady-state and transient critical power and departure from nucleate boiling (DNB) test series based on the equivalent full-size mock-ups. Considering the reliability not only of the measured data, but also other relevant parameters such as the system pressure, inlet sub-cooling and rod surface temperature, these test series supplied the first substantial database for the development of truly mechanistic and consistent models for boiling transition and critical heat flux. Over the last few years the Pennsylvania State University (PSU) under the sponsorship of the U.S. Nuclear Regulatory Commission (NRC) has prepared, organized, conducted and summarized the OECD/NRC Full-size Fine-mesh Bundle Tests (BFBT) Benchmark. The international benchmark activities have been conducted in cooperation with the Nuclear Energy Agency/Organization for Economic Co-operation and Development (NEA/OECD) and Japan Nuclear Energy Safety (JNES) organization, Japan. Consequently, the JNES has made available the Boiling Water Reactor (BWR) NUPEC database for the purposes of the benchmark. Based on the success of the OECD/NRC BFBT benchmark the JNES has decided to release also the data based on the NUPEC Pressurized Water Reactor (PWR) subchannel and bundle tests for another follow-up international benchmark entitled OECD/NRC PWR Subchannel and Bundle Tests (PSBT) benchmark. This paper presents an application of the joint Penn State University/Technical University of Madrid (UPM) version of the well-known subchannel code COBRA-TF, namely CTF, to the critical power and departure from nucleate boiling (DNB) exercises of the OECD/NRC BFBT and PSBT benchmark

    The COLD-SAT Experiment for Cryogenic Fluid Management Technology

    Get PDF
    Future national space transportation missions will depend on the use of cryogenic fluid management technology development needs for these missions. In-space testing will be conducted in order to show low gravity cryogenic fluid management concepts and to acquire a technical data base. Liquid H2 is the preferred test fluid due to its propellant use. The design of COLD-SAT (Cryogenic On-orbit Liquid Depot Storage, Acquisition, and Transfer Satellite), an Expendable Launch Vehicle (ELV) launched orbital spacecraft that will perform subcritical liquid H2 storage and transfer experiments under low gravity conditions is studied. An Atlas launch vehicle will place COLD-SAT into a circular orbit, and the 3-axis controlled spacecraft bus will provide electric power, experiment control, and data management, attitude control, and propulsive accelerations for the experiments. Low levels of acceleration will provide data on the effects that low gravity might have on the heat and mass transfer processes used. The experiment module will contain 3 liquid H2 tanks; fluid transfer, pressurization and venting equipment; and instrumentation
    • 

    corecore