1,078 research outputs found

    Comparison of System Call Representations for Intrusion Detection

    Full text link
    Over the years, artificial neural networks have been applied successfully in many areas including IT security. Yet, neural networks can only process continuous input data. This is particularly challenging for security-related non-continuous data like system calls. This work focuses on four different options to preprocess sequences of system calls so that they can be processed by neural networks. These input options are based on one-hot encoding and learning word2vec or GloVe representations of system calls. As an additional option, we analyze if the mapping of system calls to their respective kernel modules is an adequate generalization step for (a) replacing system calls or (b) enhancing system call data with additional information regarding their context. However, when performing such preprocessing steps it is important to ensure that no relevant information is lost during the process. The overall objective of system call based intrusion detection is to categorize sequences of system calls as benign or malicious behavior. Therefore, this scenario is used to evaluate the different input options as a classification task. The results show, that each of the four different methods is a valid option when preprocessing input data, but the use of kernel modules only is not recommended because too much information is being lost during the mapping process.Comment: 12 pages, 1 figure, submitted to CISIS 201

    Reduction of False Positives in Intrusion Detection Based on Extreme Learning Machine with Situation Awareness

    Get PDF
    Protecting computer networks from intrusions is more important than ever for our privacy, economy, and national security. Seemingly a month does not pass without news of a major data breach involving sensitive personal identity, financial, medical, trade secret, or national security data. Democratic processes can now be potentially compromised through breaches of electronic voting systems. As ever more devices, including medical machines, automobiles, and control systems for critical infrastructure are increasingly networked, human life is also more at risk from cyber-attacks. Research into Intrusion Detection Systems (IDSs) began several decades ago and IDSs are still a mainstay of computer and network protection and continue to evolve. However, detecting previously unseen, or zero-day, threats is still an elusive goal. Many commercial IDS deployments still use misuse detection based on known threat signatures. Systems utilizing anomaly detection have shown great promise to detect previously unseen threats in academic research. But their success has been limited in large part due to the excessive number of false positives that they produce. This research demonstrates that false positives can be better minimized, while maintaining detection accuracy, by combining Extreme Learning Machine (ELM) and Hidden Markov Models (HMM) as classifiers within the context of a situation awareness framework. This research was performed using the University of New South Wales - Network Based 2015 (UNSW-NB15) data set which is more representative of contemporary cyber-attack and normal network traffic than older data sets typically used in IDS research. It is shown that this approach provides better results than either HMM or ELM alone and with a lower False Positive Rate (FPR) than other comparable approaches that also used the UNSW-NB15 data set

    Application of a Layered Hidden Markov Model in the Detection of Network Attacks

    Get PDF
    Network-based attacks against computer systems are a common and increasing problem. Attackers continue to increase the sophistication and complexity of their attacks with the goal of removing sensitive data or disrupting operations. Attack detection technology works very well for the detection of known attacks using a signature-based intrusion detection system. However, attackers can utilize attacks that are undetectable to those signature-based systems whether they are truly new attacks or modified versions of known attacks. Anomaly-based intrusion detection systems approach the problem of attack detection by detecting when traffic differs from a learned baseline. In the case of this research, the focus was on a relatively new area known as payload anomaly detection. In payload anomaly detection, the system focuses exclusively on the payload of packets and learns the normal contents of those payloads. When a payload\u27s contents differ from the norm, an anomaly is detected and may be a potential attack. A risk with anomaly-based detection mechanisms is they suffer from high false positive rates which reduce their effectiveness. This research built upon previous research in payload anomaly detection by combining multiple techniques of detection in a layered approach. The layers of the system included a high-level navigation layer, a request payload analysis layer, and a request-response analysis layer. The system was tested using the test data provided by some earlier payload anomaly detection systems as well as new data sets. The results of the experiments showed that by combining these layers of detection into a single system, there were higher detection rates and lower false positive rates

    Shallow and deep networks intrusion detection system : a taxonomy and survey

    Get PDF
    Intrusion detection has attracted a considerable interest from researchers and industries. The community, after many years of research, still faces the problem of building reliable and efficient IDS that are capable of handling large quantities of data, with changing patterns in real time situations. The work presented in this manuscript classifies intrusion detection systems (IDS). Moreover, a taxonomy and survey of shallow and deep networks intrusion detection systems is presented based on previous and current works. This taxonomy and survey reviews machine learning techniques and their performance in detecting anomalies. Feature selection which influences the effectiveness of machine learning (ML) IDS is discussed to explain the role of feature selection in the classification and training phase of ML IDS. Finally, a discussion of the false and true positive alarm rates is presented to help researchers model reliable and efficient machine learning based intrusion detection systems

    Comprehensive Security Framework for Global Threats Analysis

    Get PDF
    Cyber criminality activities are changing and becoming more and more professional. With the growth of financial flows through the Internet and the Information System (IS), new kinds of thread arise involving complex scenarios spread within multiple IS components. The IS information modeling and Behavioral Analysis are becoming new solutions to normalize the IS information and counter these new threads. This paper presents a framework which details the principal and necessary steps for monitoring an IS. We present the architecture of the framework, i.e. an ontology of activities carried out within an IS to model security information and User Behavioral analysis. The results of the performed experiments on real data show that the modeling is effective to reduce the amount of events by 91%. The User Behavioral Analysis on uniform modeled data is also effective, detecting more than 80% of legitimate actions of attack scenarios

    Intrusion detection using probabilistic graphical models

    Get PDF
    Modern computer systems are plagued by security vulnerabilities and flaws on many levels. Those vulnerabilities and flaws are discovered and exploited by attackers for their various intrusion purposes, such as eavesdropping, data modification, identity spoofing, password based attack, and denial of service attack, etc. The security of our computer systems and data is always at risk because of the open society of the internet. Due to the rapid growth of the internet applications, intrusion detection and prevention have become increasingly important research topics, in order to protect networking systems, such as the Web servers, database servers, cloud servers and so on, from threats. In this thesis, we attempt to build more efficient Intrusion Detection System through three different approaches, from different perspectives and based on different situations. Firstly, we propose Bayesian Model Averaging of Bayesian Network (BNMA) Classifiers for intrusion detection. In this work, we compare our BNMA classifier with Bayesian Network classifier and Naive Bayes classifier, which were shown be good models for detecting intrusion with reasonable accuracy and efficiency in the literature. From the experiment results, we see that BNMA can be more efficient and reliable than its competitors, i.e., the Bayesian network classifier and Naive Bayesian Network classifier, for all different sizes of training dataset. The advantage of BNMA is more pronounced when the training dataset size is small. Secondly, we introduce the Situational Data Model as a method for collecting dataset to train intrusion detection models. Unlike previously discussed static features as in the KDD CUP 99 data, which were collected without time stamps, Situational Data are collected in chronological sequence. Therefore, they can capture not only the dependency relationships among different features, but also relationships of values collected over time for the same features. The experiment results show that the intrusion detection model trained by Situational Dataset outperforms that trained by action-only sequences. Thirdly, we introduce the Situation Aware with Conditional Random Fields Intrusion Detection System (SA-CRF-IDS). The SA-CRF-IDS is trained by probabilistic graphical model Conditional Random Fields (CRF) over the Situational Dataset. The experiment results show that the CRF outperforms HMM with significantly better detection accuracy, and better ROC curve when we run the experiment on the non-Situational dataset. On the other hand, the two training methods have very similar performance when the Situational Dataset is adopted
    • …
    corecore