228,393 research outputs found

    Allocation in Practice

    Full text link
    How do we allocate scarcere sources? How do we fairly allocate costs? These are two pressing challenges facing society today. I discuss two recent projects at NICTA concerning resource and cost allocation. In the first, we have been working with FoodBank Local, a social startup working in collaboration with food bank charities around the world to optimise the logistics of collecting and distributing donated food. Before we can distribute this food, we must decide how to allocate it to different charities and food kitchens. This gives rise to a fair division problem with several new dimensions, rarely considered in the literature. In the second, we have been looking at cost allocation within the distribution network of a large multinational company. This also has several new dimensions rarely considered in the literature.Comment: To appear in Proc. of 37th edition of the German Conference on Artificial Intelligence (KI 2014), Springer LNC

    Dividing bads under additive utilities

    Get PDF
    We compare the Egalitarian rule (aka Egalitarian Equivalent) and the Competitive rule (aka Comeptitive Equilibrium with Equal Incomes) to divide bads (chores). They are both welfarist: the competitive disutility profile(s) are the critical points of their Nash product on the set of efficient feasible profiles. The C rule is Envy Free, Maskin Monotonic, and has better incentives properties than the E rule. But, unlike the E rule, it can be wildly multivalued, admits no selection continuous in the utility and endowment parameters, and is harder to compute. Thus in the division of bads, unlike that of goods, no rule normatively dominates the other

    Competitive division of a mixed manna

    Get PDF
    A mixed manna contains goods (that everyone likes) and bads (that everyone dislikes), as well as items that are goods to some agents, but bads or satiated to others. If all items are goods and utility functions are homogeneous of degree 1 and concave (and monotone), the competitive division maximizes the Nash product of utilities (Gale–Eisenberg): hence it is welfarist (determined by the set of feasible utility profiles), unique, continuous, and easy to compute. We show that the competitive division of a mixed manna is still welfarist. If the zero utility profile is Pareto dominated, the competitive profile is strictly positive and still uniquely maximizes the product of utilities. If the zero profile is unfeasible (for instance, if all items are bads), the competitive profiles are strictly negative and are the critical points of the product of disutilities on the efficiency frontier. The latter allows for multiple competitive utility profiles, from which no single-valued selection can be continuous or resource monotonic. Thus the implementation of competitive fairness under linear preferences in interactive platforms like SPLIDDIT will be more difficult when the manna contains bads that overwhelm the goods

    Efficient Algorithms for Envy-Free Stick Division With Fewest Cuts

    Get PDF
    Given a set of n sticks of various (not necessarily different) lengths, what is the largest length so that we can cut k equally long pieces of this length from the given set of sticks? We analyze the structure of this problem and show that it essentially reduces to a single call of a selection algorithm; we thus obtain an optimal linear-time algorithm. This algorithm also solves the related envy-free stick-division problem, which Segal-Halevi, Hassidim, and Aumann (AAMAS, 2015) recently used as their central primitive operation for the first discrete and bounded envy-free cake cutting protocol with a proportionality guarantee when pieces can be put to waste.Comment: v3 adds more context about the proble
    • …
    corecore