114 research outputs found

    Global Exponential Stability of Almost Periodic Solution for Neutral-Type Cohen-Grossberg Shunting Inhibitory Cellular Neural Networks with Distributed Delays and Impulses

    Get PDF
    A kind of neutral-type Cohen-Grossberg shunting inhibitory cellular neural networks with distributed delays and impulses is considered. Firstly, by using the theory of impulsive differential equations and the contracting mapping principle, the existence and uniqueness of the almost periodic solution for the above system are obtained. Secondly, by constructing a suitable Lyapunov functional, the global exponential stability of the unique almost periodic solution is also investigated. The work in this paper improves and extends some results in recent years. As an application, an example and numerical simulations are presented to demonstrate the feasibility and effectiveness of the main results

    Stability analysis for periodic solutions of fuzzy shunting inhibitory CNNs with delays

    Get PDF
    https://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-019-2321-z#rightslinkWe consider fuzzy shunting inhibitory cellular neural networks (FSICNNs) with time-varying coefficients and constant delays. By virtue of continuation theorem of coincidence degree theory and Cauchy–Schwartz inequality, we prove the existence of periodic solutions for FSICNNs. Furthermore, by employing a suitable Lyapunov functional we establish sufficient criteria which ensure global exponential stability of the periodic solutions. Numerical simulations that support the theoretical discussions are depicted

    Periodic Solutions for Shunting Inhibitory Cellular Neural Networks of Neutral Type with Time-Varying Delays in the Leakage Term on Time Scales

    Get PDF
    A class of shunting inhibitory cellular neural networks of neutral type with time-varying delays in the leakage term on time scales is proposed. Based on the exponential dichotomy of linear dynamic equations on time scales, fixed point theorems, and calculus on time scales we obtain some sufficient conditions for the existence and global exponential stability of periodic solutions for that class of neural networks. The results of this paper are completely new and complementary to the previously known results even if the time scale =ℝ or ℤ. Moreover, we present illustrative numerical examples to show the feasibility of our results

    Global Exponential Stability of Almost Periodic Solutions for SICNNs with Continuously Distributed Leakage Delays

    Get PDF
    Shunting inhibitory cellular neural networks (SICNNs) are considered with the introduction of continuously distributed delays in the leakage (or forgetting) terms. By using the Lyapunov functional method and differential inequality techniques, some sufficient conditions for the existence and exponential stability of almost periodic solutions are established. Our results complement with some recent ones

    Mean almost periodicity and moment exponential stability of discrete-time stochastic shunting inhibitory cellular neural networks with time delays

    Get PDF
    summary:By using the semi-discrete method of differential equations, a new version of discrete analogue of stochastic shunting inhibitory cellular neural networks (SICNNs) is formulated, which gives a more accurate characterization for continuous-time stochastic SICNNs than that by Euler scheme. Firstly, the existence of the 2th mean almost periodic sequence solution of the discrete-time stochastic SICNNs is investigated with the help of Minkowski inequality, Hölder inequality and Krasnoselskii's fixed point theorem. Secondly, the moment global exponential stability of the discrete-time stochastic SICNNs is also studied by using some analytical skills and the proof of contradiction. Finally, two examples are given to demonstrate that our results are feasible. By numerical simulations, we discuss the effect of stochastic perturbation on the almost periodicity and global exponential stability of the discrete-time stochastic SICNNs

    Further analysis of stability of uncertain neural networks with multiple time delays

    Get PDF
    This paper studies the robust stability of uncertain neural networks with multiple time delays with respect to the class of nondecreasing activation functions. By using the Lyapunov functional and homeomorphism mapping theorems, we derive a new delay-independent sufficient condition the existence, uniqueness, and global asymptotic stability of the equilibrium point for delayed neural networks with uncertain network parameters. The condition obtained for the robust stability establishes a matrix-norm relationship between the network parameters of the neural system, and therefore it can easily be verified. We also present some constructive numerical examples to compare the proposed result with results in the previously published corresponding literature. These comparative examples show that our new condition can be considered as an alternative result to the previous corresponding literature results as it defines a new set of network parameters ensuring the robust stability of delayed neural networks.Publisher's Versio
    corecore