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Shunting inhibitory cellular neural networks (SICNNs) are considered with the introduction of continuously distributed delays in
the leakage (or forgetting) terms. By using the Lyapunov functional method and differential inequality techniques, some sufficient
conditions for the existence and exponential stability of almost periodic solutions are established. Our results complement with
some recent ones.

1. Introduction

It is well known that a neural network usually has a spatial
nature due to the presence of an amount of parallel pathways
of a variety of axon sizes and lengths; it is desired to model
them by introducing continuously distributed delays over
a certain duration of time [1–4]. In particular, shunting
inhibitory cellular neural networks (SICNNs) with continu-
ously distributed delays can be described by
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∞
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(1)

where 𝐶
𝑖𝑗
denotes the cell at the (𝑖, 𝑗) position of the lattice.

The 𝑟-neighborhood𝑁
𝑟
(𝑖, 𝑗) of is given as

𝑁
𝑟
(𝑖, 𝑗) = {𝐶

𝑘𝑙
: max (|𝑘 − 𝑖| ,





𝑙 − 𝑗





) ≤ 𝑟,

1 ≤ 𝑘 ≤ 𝑚, 1 ≤ 𝑙 ≤ 𝑛} ,

(2)

where 𝑁
𝑞
(𝑖, 𝑗) is similarly specified, 𝑥

𝑖𝑗
is the activity of

the cell 𝐶
𝑖𝑗
, 𝐿
𝑖𝑗
(𝑡) is the external input to 𝐶

𝑖𝑗
, the constant

𝑎
𝑖𝑗
> 0 represents the passive decay rate of the cell activity,

𝐶
𝑘𝑙

𝑖𝑗
(𝑡) and 𝐵

𝑘𝑙

𝑖𝑗
(𝑡) are the connection or coupling strengths of

postsynaptic activity of the cell transmitted to the cell 𝐶
𝑖𝑗
,

the activity functions 𝑓(⋅) and 𝑔(⋅) are continuous functions
representing the output or firing rate of the cell𝐶

𝑘𝑙
, and 𝜏(𝑡) ≥

0 corresponds to the transmission delay.
Since SICNNs (1) have been introduced as a new cellular

neural networks (CNNs) in Bouzerdout and Pinter in [5–
7], it has been extensively applied in psychophysics, speech,
perception, robotics, adaptive pattern recognition, vision,
and image processing. Hence, there have been extensive
results on the problem of the existence and stability of the
equilibrium point, periodic and almost periodic solutions of
SICNNswith continuously distributed delays in the literature.
We refer the reader to [8–12] and references cited therein.
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As pointed out in Gopalsamy [13], the first term in each
of the right side of (1) corresponds to a stabilizing negative
feedback of the system which acts instantaneously without
time delay; these terms are variously known as “forgettin”
or leakage terms (see, e.g., Kosko [14] and Haykin [15]). It
is known from the literature on population dynamics and
neural networks dynamics (see Gopalsamy [16]) that time
delays in the stabilizing negative feedback terms will have a
tendency to destabilize a system. Therefore, the authors of
[17–21] dealt with the existence and stability of equilibrium
and periodic solutions for neuron networks model involving
leakage delays. Since leakage delays can have a destabilizing
influence on the dynamical behaviors of neural networks
and the incorporation of time delays in the leakage terms
are usually not easy to handle, it necessary to investigate
leakage delay effects on the stability of neural networks. On
the other hand, as pointed out in [22, 23], periodically varying
environment and almost periodically varying environment
are foundations for the theory of nature selection. Compared
with periodic effects, almost periodic effects are more fre-
quent. Hence, the effects of the almost periodic environment
on the evolutionary theory have been the object of intensive
analysis by numerous authors, and some of these results can
be found in [8, 9, 11] and references cited therein. However,
to the best of our knowledge, few authors have considered
the existence and exponential stability of almost periodic
solutions of SICNNs with continuously distributed delays in
the leakage terms. Motivated by the above discussions, in this
present paper, we will consider the following SICNNs with
continuously distributed leakage delays:
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∞
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(𝑡 − 𝑢)) 𝑑𝑢𝑥

𝑖𝑗
(𝑡)

+ 𝐿
𝑖𝑗
(𝑡) ,

(3)

where 𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛, 𝑎
𝑖𝑗
: 𝑅 → (0 +∞), 𝜏 :

𝑅 → [0 +∞), and 𝐿
𝑖𝑗
, 𝐶
𝑘𝑙

𝑖𝑗
, 𝐵
𝑘𝑙

𝑖𝑗
: 𝑅 → 𝑅 are almost periodic

functions, 𝜏(𝑡) denotes transmission delay, the leakage delay
kernels ℎ

𝑖𝑗
: [0,∞) → [0,∞) are continuous and integrable,

respectively, and the delay kernels𝐾
𝑖𝑗
: [0,∞) → [0,∞) are

continuous and integrable.
The main purpose of this paper is to give the conditions

for the existence and exponential stability of the almost
periodic solutions for system (3). By applying the Lyapunov
functional method and differential inequality techniques, we
derive some new sufficient conditions ensuring the existence,
uniqueness, and exponential stability of the almost periodic
solution for system (3), which are new and complement
previously known results. Moreover, an example is also
provided to illustrate the effectiveness of our results.

Throughout this paper, for 𝑖𝑗 ∈ 𝐽 := {11, 12, . . . , 1𝑛,

21, 22, . . . , 2𝑛, . . . , 𝑚1,𝑚2, . . . , 𝑚𝑛}, delay kernels ℎ
𝑖
(𝑠) and

𝐾
𝑖𝑗
(𝑢) are continuous functions, and there exist constants 𝑎+

𝑖𝑗

and 𝜂+
𝑖𝑗
such that

𝑎
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𝑡∈𝑅

𝑎
𝑖𝑗
(𝑡) , 𝜂

+
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= ∫

∞

0

𝑠ℎ
𝑖𝑗
(𝑠) 𝑑𝑠. (4)

From the theory of almost periodic functions in [22, 23], it
follows that, for any 𝜖 > 0, it is possible to find a real number
𝑙 = 𝑙(𝜖) > 0, for any interval with length 𝑙(𝜖), and there exists
a number 𝛿 = 𝛿(𝜖) in this interval such that
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(5)

for all 𝑡 ∈ 𝑅, 𝑘𝑙, 𝑖𝑗 ∈ 𝐽.
We set

{𝑥
𝑖𝑗
(𝑡)} = (𝑥

11
(𝑡) , . . . , 𝑥

1𝑛
(𝑡) , . . . , 𝑥

𝑖1
(𝑡) , . . . , 𝑥
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(𝑡) , . . . ,

𝑥
𝑚1

(𝑡) , . . . , 𝑥
𝑚𝑛
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.

(6)

For any 𝑥(𝑡) = {𝑥
𝑖𝑗
(𝑡)} ∈ 𝑅

𝑚×𝑛, we define the norm ‖𝑥(𝑡)‖ =

max
(𝑖,𝑗)

{|𝑥
𝑖𝑗
(𝑡)|}. We also assume that the following condi-

tions (𝑇
1
) and (𝑇

2
) hold.

(𝑇
1
)𝑓 : 𝑅 → 𝑅 and 𝑔 : 𝑅 → 𝑅 are nonincreasing

functions on [0, +∞), and there exist constants𝑀
𝑓
,𝑀
𝑔
, 𝜇
𝑓
,

and 𝜇
𝑔
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≤ 𝜇
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𝑓
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𝑔
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𝑔 (𝑢)





≤ 𝑀
𝑔
,

∀𝑢, V ∈ 𝑅.

(7)
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2
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+
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− ∑
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and there exist positive constants 𝜂 and 𝜆 such that
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∫
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(𝑢)






𝑑𝑢𝑀
𝑔

1

1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

< −𝜂,

(9)

where 𝑡 ≥ 0, and (𝐿
𝑖𝑗
/𝛿
𝑖𝑗
)
+
= sup

𝑡∈𝑅
|𝐿
𝑖𝑗
(𝑡)/𝛿
𝑖𝑗
(𝑡)|.

The initial conditions associatedwith system (3) are of the
form

𝑥
𝑖𝑗
(𝑠) = 𝜑

𝑖𝑗
(𝑠) , 𝑠 ∈ (−∞, 0] , 𝑖𝑗 ∈ 𝐽, (10)

where 𝜑
𝑖𝑗
(⋅) denotes real-valued bounded continuous func-

tion defined on (−∞, 0].

Definition 1 (see [22, 23]). Let 𝑢(𝑡) : 𝑅 → 𝑅
𝑚×𝑛 be contin-

uous in 𝑡. 𝑢(𝑡) is said to be almost periodic on 𝑅 if, for any
𝜀 > 0, the set 𝑇(𝑢, 𝜀) = {𝛿 : ‖𝑢(𝑡 + 𝛿) − 𝑢(𝑡)‖ < 𝜀, ∀𝑡 ∈ 𝑅}

is relatively dense; that is, for any 𝜀 > 0, it is possible to find
a real number 𝑙 = 𝑙(𝜀) > 0, for any interval with length 𝑙(𝜀),
and there exists a number 𝛿 = 𝛿(𝜀) in this interval such that
‖𝑢(𝑡 + 𝛿) − 𝑢(𝑡)‖ < 𝜀, for all 𝑡 ∈ 𝑅.

The remaining part of this paper is organized as follows.
In Section 2, we will derive some new sufficient conditions
for checking the existence of bounded solutions. In Section 3,
we present some new sufficient conditions for the existence,
uniqueness and exponential stability of the positive almost
periodic solution of (3). In Section 4, we will give some
examples and remarks to illustrate our results obtained in
previous sections.

2. Preliminary Results

The following lemmas will be useful to prove ourmain results
in Section 3.

Lemma 2. Let (𝑇
1
) and (𝑇

2
) hold. Suppose that 𝑥(𝑡) = {𝑥

𝑖𝑗
(𝑡)}

is a solution of system (3) with initial conditions

𝑥
𝑖𝑗
(𝑠) = 𝜑

𝑖𝑗
(𝑠) ,










𝜑
𝑖𝑗
(𝑡) − ∫

∞

0

ℎ
𝑖𝑗
(𝑠) ∫

𝑡

𝑡−𝑠

𝑎
𝑖𝑗
(𝜃) 𝜑
𝑖𝑗
(𝜃) 𝑑𝜃 𝑑𝑠










< (

𝐿
𝑖𝑗

𝛿
𝑖𝑗

)

+

,

(11)

where 𝑠, 𝑡 ∈ (−∞, 0], 𝑖𝑗 ∈ 𝐽. Then









𝑥
𝑖𝑗
(𝑡) − ∫

∞

0

ℎ
𝑖𝑗
(𝑠) ∫

𝑡

𝑡−𝑠

𝑎
𝑖𝑗
(𝜃) 𝑥
𝑖𝑗
(𝜃) 𝑑𝜃 𝑑𝑠










≤ (

𝐿
𝑖𝑗

𝛿
𝑖𝑗

)

+

, ∀𝑡 ≥ 0, 𝑖𝑗 ∈ 𝐽,

(12)






𝑥
𝑖𝑗
(𝑡)






≤

1

1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

(

𝐿
𝑖𝑗

𝛿
𝑖𝑗

)

+

, ∀𝑡 ≥ 0, 𝑖𝑗 ∈ 𝐽. (13)

Proof. Assume, by way of contradiction, that (12) does not
hold. Then, there exist 𝑖𝑗 ∈ 𝐽, 𝛾 > (𝐿

𝑖𝑗
/𝛿
𝑖𝑗
)
+, and 𝑡

∗
> 0 such

that





𝑋
𝑖𝑗
(𝑡
∗
)






= 𝛾,






𝑋
𝑖𝑗
(𝑡)






< 𝛾, ∀𝑡 ∈ (−∞, 𝑡

∗
) , (14)

where

𝑋
𝑖𝑗
(𝑡) = 𝑥

𝑖𝑗
(𝑡) − ∫

∞

0

ℎ
𝑖𝑗
(𝑠) ∫

𝑡

𝑡−𝑠

𝑎
𝑖𝑗
(𝜃) 𝑥
𝑖𝑗
(𝜃) 𝑑𝜃 𝑑𝑠. (15)

It follows that





𝑥
𝑖𝑗
(𝑡)







≤










𝑥
𝑖𝑗
(𝑡) − ∫

∞

0

ℎ
𝑖𝑗
(𝑠) ∫

𝑡

𝑡−𝑠

𝑎
𝑖𝑗
(𝜃) 𝑥
𝑖𝑗
(𝜃) 𝑑𝜃 𝑑𝑠










+










∫

∞

0

ℎ
𝑖𝑗
(𝑠) ∫

𝑡

𝑡−𝑠

𝑎
𝑖𝑗
(𝜃) 𝑥
𝑖𝑗
(𝜃) 𝑑𝜃 𝑑𝑠










≤ 𝛾 + 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗
sup
𝑠∈(−∞,𝑡∗]






𝑥
𝑖𝑗
(𝑠)






, ∀𝑡 ∈ (−∞, 𝑡

∗
] .

(16)
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Consequently, in view of (16) and the fact 𝑎+
𝑖𝑗
𝜂
+

𝑖𝑗
< 1 (𝑖𝑗 ∈ 𝐽),

we have





𝑥
𝑖𝑗
(𝑡)






≤ sup
𝑠∈(−∞,𝑡∗]






𝑥
𝑖𝑗
(𝑠)







≤

1

1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

𝛾, ∀𝑡 ∈ (−∞, 𝑡
∗
] .

(17)

From system (3), we derive

𝑑

𝑑𝑡

(𝑥
𝑖𝑗
(𝑡) − ∫

∞

0

ℎ
𝑖𝑗
(𝑠) ∫

𝑡

𝑡−𝑠

𝑎
𝑖𝑗
(𝜃) 𝑥
𝑖𝑗
(𝜃) 𝑑𝜃 𝑑𝑠)

= 𝑥


𝑖𝑗
(𝑡) − 𝑎

𝑖𝑗
(𝑡) ∫

∞

0

ℎ
𝑖𝑗
(𝑠) 𝑑𝑠𝑥

𝑖𝑗
(𝑡)

+ ∫

∞

0

ℎ
𝑖𝑗
(𝑠) 𝑎
𝑖𝑗
(𝑡 − 𝑠) 𝑥

𝑖𝑗
(𝑡 − 𝑠) 𝑑𝑠

= −𝑎
𝑖𝑗
(𝑡) ∫

∞

0

ℎ
𝑖𝑗
(𝑠) 𝑑𝑠

× (𝑥
𝑖𝑗
(𝑡)

−∫

∞

0

ℎ
𝑖𝑗
(𝑠) ∫

𝑡

𝑡−𝑠

𝑎
𝑖𝑗
(𝜃) 𝑥
𝑖𝑗
(𝜃) 𝑑𝜃 𝑑𝑠)

− 𝑎
𝑖𝑗
(𝑡) ∫

∞

0

ℎ
𝑖𝑗
(𝑠) 𝑑𝑠 ∫

∞

0

ℎ
𝑖𝑗
(𝑠)

× ∫

𝑡

𝑡−𝑠

𝑎
𝑖𝑗
(𝜃) 𝑥
𝑖𝑗
(𝜃) 𝑑𝜃 𝑑𝑠

− ∫

∞

0

ℎ
𝑖𝑗
(𝑠) [𝑎
𝑖𝑗
(𝑡) − 𝑎

𝑖𝑗
(𝑡 − 𝑠)] 𝑥

𝑖𝑗
(𝑡 − 𝑠) 𝑑𝑠

− ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝑡) 𝑓 (𝑥

𝑘𝑙
(𝑡 − 𝜏 (𝑡))) 𝑥

𝑖𝑗
(𝑡)

− ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝑡) ∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝑥

𝑘𝑙
(𝑡 − 𝑢)) 𝑑𝑢𝑥

𝑖𝑗
(𝑡)

+ 𝐿
𝑖𝑗
(𝑡) , 𝑖𝑗 ∈ 𝐽.

(18)

Calculating the upper left derivative of |𝑋
𝑖𝑗
(𝑡)|, together

with (14), (17), (18), (𝑇
1
), and (𝑇

2
), we obtain

0 ≤ 𝐷
− 



𝑋
𝑖𝑗
(𝑡
∗
)







≤ − 𝑎
𝑖𝑗
(𝑡
∗
) ∫

∞

0

ℎ
𝑖𝑗
(𝑠) 𝑑𝑠






𝑋
𝑖𝑗
(𝑡
∗
)







+










−𝑎
𝑖𝑗
(𝑡
∗
) ∫

∞

0

ℎ
𝑖𝑗
(𝑠) 𝑑𝑠 ∫

∞

0

ℎ
𝑖𝑗
(𝑠)

× ∫

𝑡∗

𝑡∗−𝑠

𝑎
𝑖𝑗
(𝜃) 𝑥
𝑖𝑗
(𝜃) 𝑑𝜃 𝑑𝑠

− ∫

∞

0

ℎ
𝑖𝑗
(𝑠) [𝑎
𝑖𝑗
(𝑡
∗
) − 𝑎
𝑖𝑗
(𝑡
∗
− 𝑠)] 𝑥

𝑖𝑗
(𝑡
∗
− 𝑠) 𝑑𝑠

− ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝑡
∗
) 𝑓 (𝑥

𝑘𝑙
(𝑡
∗
− 𝜏 (𝑡
∗
))) 𝑥
𝑖𝑗
(𝑡
∗
)

− ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝑡
∗
)

× ∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝑥

𝑘𝑙
(𝑡
∗
− 𝑢)) 𝑑𝑢𝑥

𝑖𝑗
(𝑡
∗
)

+𝐿
𝑖𝑗
(𝑡
∗
)










≤ − 𝑎
𝑖𝑗
(𝑡
∗
) ∫

∞

0

ℎ
𝑖𝑗
(𝑠) 𝑑𝑠𝛾 + 𝑎

𝑖𝑗
(𝑡
∗
)

× ∫

∞

0

ℎ
𝑖𝑗
(𝑠) 𝑑𝑠𝑎

+

𝑖𝑗
𝜂
+

𝑖𝑗

1

1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

𝛾

+ ∫

∞

0

ℎ
𝑖𝑗
(𝑠)






𝑎
𝑖𝑗
(𝑡
∗
) − 𝑎
𝑖𝑗
(𝑡
∗
− 𝑠)






𝑑𝑠

𝛾

1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

+ ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)






𝐶
𝑘𝑙

𝑖𝑗
(𝑡
∗
)






𝑀
𝑓

1

1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

𝛾

+ ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)






𝐵
𝑘𝑙

𝑖𝑗
(𝑡
∗
)






∫

∞

0






𝐾
𝑖𝑗
(𝑢)






𝑑𝑢𝑀
𝑔

1

1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

𝛾

+






𝐿
𝑖𝑗
(𝑡
∗
)







=

{

{

{

− [𝑎
𝑖𝑗
(𝑡
∗
) ∫

∞

0

ℎ
𝑖𝑗
(𝑠) 𝑑𝑠 (1 − 2𝑎

+

𝑖𝑗
𝜂
+

𝑖𝑗
)

−∫

∞

0

ℎ
𝑖𝑗
(𝑠)






𝑎
𝑖𝑗
(𝑡
∗
) − 𝑎
𝑖𝑗
(𝑡
∗
− 𝑠)






𝑑𝑠]

+ ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)






𝐶
𝑘𝑙

𝑖𝑗
(𝑡
∗
)






𝑀
𝑓

+ ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)






𝐵
𝑘𝑙

𝑖𝑗
(𝑡
∗
)






∫

∞

0






𝐾
𝑖𝑗
(𝑢)






𝑑𝑢𝑀
𝑔

}

}

}

1

1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

𝛾

+






𝐿
𝑖𝑗
(𝑡
∗
)







≤ − 𝛿
𝑖𝑗
(𝑡
∗
) [𝛾 − (

𝐿
𝑖𝑗

𝛿
𝑖𝑗

)

+

]

< 0.

(19)

It is a contradiction and shows that (12) holds. Then, using a
similar argument as in the proof of (16) and (17), we can show
that (13) holds. The proof of Lemma 2 is now completed.

Remark 3. In view of the boundedness of this solution, from
the theory of functional differential equations with infinite
delay in [21], it follows that the solution of system (3) with
initial conditions (11) can be defined on [0,∞).
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Lemma 4. Suppose that (𝑇
1
) and (𝑇

2
) hold. Moreover, assume

that 𝑥(𝑡) = {𝑥
𝑖𝑗
(𝑡)} is a solution of system (3) with initial

function 𝜑
𝑖𝑗
(⋅) satisfying (11), and 𝜑

𝑖𝑗
(⋅) is bounded continuous

on (−∞, 0]. Then, for any 𝜖 > 0, there exists 𝑙 = 𝑙(𝜖) > 0, such
that every interval [𝛼, 𝛼 + 𝑙] contains at least one number 𝛿 for
which there exists𝑁 > 0 which satisfies

‖𝑥 (𝑡 + 𝛿) − 𝑥 (𝑡)‖ ≤ 𝜖, ∀𝑡 > 𝑁. (20)

Proof. For 𝑖𝑗 ∈ 𝐽, set

𝜖
𝑖𝑗
(𝛿, 𝑡) = − [𝑎

𝑖𝑗
(𝑡 + 𝛿) − 𝑎

𝑖𝑗
(𝑡)]

× ∫

∞

0

ℎ
𝑖𝑗
(𝑠) 𝑥
𝑖𝑗
(𝑡 + 𝛿 − 𝑠) 𝑑𝑠

− ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

[𝐶
𝑘𝑙

𝑖𝑗
(𝑡 + 𝛿) − 𝐶

𝑘𝑙

𝑖𝑗
(𝑡)]

× (𝑓 (𝑥
𝑘𝑙
(𝑡 − 𝜏 (𝑡 + 𝛿) + 𝛿)) 𝑥

𝑖𝑗
(𝑡 + 𝛿))

− ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝑡) [𝑓 (𝑥

𝑘𝑙
(𝑡 − 𝜏 (𝑡 + 𝛿) + 𝛿))

−𝑓 (𝑥
𝑘𝑙
(𝑡 − 𝜏 (𝑡) + 𝛿) )]

× 𝑥
𝑖𝑗
(𝑡 + 𝛿)

− ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)

[𝐵
𝑘𝑙

𝑖𝑗
(𝑡 + 𝛿) − 𝐵

𝑘𝑙

𝑖𝑗
(𝑡)]

× ∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝑥

𝑘𝑙
(𝑡 + 𝛿 − 𝑢)) 𝑑𝑢𝑥

𝑖𝑗
(𝑡 + 𝛿)

+ [𝐿
𝑖𝑗
(𝑡 + 𝛿) − 𝐿

𝑖𝑗
(𝑡)] .

(21)

By Lemma 2, the solution 𝑥(𝑡) = {𝑥
𝑖𝑗
(𝑡)} is bounded and






𝑥
𝑖𝑗
(𝑡)






≤

1

1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

(

𝐿
𝑖𝑗

𝛿
𝑖𝑗

)

+

, ∀𝑡 ∈ [0, +∞) , 𝑖𝑗 ∈ 𝐽. (22)

Thus, the right side of (3) is also bounded, which implies that
𝑥(𝑡) is uniformly continuous on 𝑅. From (5), for any 𝜖 > 0,
there exists 𝑙 = 𝑙(𝜖) > 0, such that every interval [𝛼, 𝛼+ 𝑙], 𝛼 ∈

𝑅, contains a 𝛿 for which






𝜖
𝑖𝑗
(𝛿, 𝑡)






≤

1

2

𝜂min
�̃�𝑗∈𝐽

{1 − 𝑎
+

�̃�𝑗
𝜂
+

�̃�𝑗
} 𝜖, where 𝑖𝑗 ∈ 𝐽, 𝑡 ∈ 𝑅.

(23)

Let 𝑁
0
≥ 0 be sufficiently large such that 𝑡 + 𝛿 ≥ 0, for

𝑡 ≥ 𝑁
0
, and denote 𝑢

𝑖𝑗
(𝑡) = 𝑥

𝑖𝑗
(𝑡 + 𝛿) − 𝑥

𝑖𝑗
(𝑡). We obtain

𝑑𝑢
𝑖𝑗
(𝑡)

𝑑𝑡

= − 𝑎
𝑖𝑗
(𝑡) ∫

∞

0

ℎ
𝑖𝑗
(𝑠) 𝑢
𝑖𝑗
(𝑡 − 𝑠) 𝑑𝑠

− ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝑡) (𝑓 (𝑥

𝑘𝑙
(𝑡 − 𝜏 (𝑡) + 𝛿))

−𝑓 (𝑥
𝑘𝑙
(𝑡 − 𝜏 (𝑡))))

× 𝑥
𝑖𝑗
(𝑡 + 𝛿)

− ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝑡) 𝑓 (𝑥

𝑘𝑙
(𝑡 − 𝜏 (𝑡)))

⋅ (𝑥
𝑖𝑗
(𝑡 + 𝛿) − 𝑥

𝑖𝑗
(𝑡))

− ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝑡) ∫

∞

0

𝐾
𝑖𝑗
(𝑢)

× (𝑔 (𝑥
𝑘𝑙
(𝑡 + 𝛿 − 𝑢))

−𝑔 (𝑥
𝑘𝑙
(𝑡 − 𝑢))) 𝑑𝑢𝑥

𝑖𝑗
(𝑡 + 𝛿)

− ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝑡) ∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝑥

𝑘𝑙
(𝑡 − 𝑢)) 𝑑𝑢

⋅ (𝑥
𝑖𝑗
(𝑡 + 𝛿) − 𝑥

𝑖𝑗
(𝑡)) + 𝜖

𝑖𝑗
(𝛿, 𝑡) ,

∀𝑡 ≥ 𝑁
0
, 𝑖𝑗 ∈ 𝐽,

(24)

which yields

𝑑

𝑑𝑡

(𝑒
𝜆𝑡
𝑢
𝑖𝑗
(𝑡) − ∫

∞

0

ℎ
𝑖𝑗
(𝑠) ∫

𝑡

𝑡−𝑠

𝑎
𝑖𝑗
(𝜃) 𝑒
𝜆𝜃
𝑢
𝑖𝑗
(𝜃) 𝑑𝜃 𝑑𝑠)

= 𝜆𝑒
𝜆𝑡
𝑢
𝑖𝑗
(𝑡) + 𝑒

𝜆𝑡
𝑢


𝑖𝑗
(𝑡)

− 𝑎
𝑖𝑗
(𝑡) ∫

∞

0

ℎ
𝑖𝑗
(𝑠) 𝑑𝑠𝑒

𝜆𝑡
𝑢
𝑖𝑗
(𝑡)

+ ∫

∞

0

ℎ
𝑖𝑗
(𝑠) 𝑎
𝑖𝑗
(𝑡 − 𝑠) 𝑒

𝜆(𝑡−𝑠)
𝑢
𝑖𝑗
(𝑡 − 𝑠) 𝑑𝑠

= −(𝑎
𝑖𝑗
(𝑡) ∫

∞

0

ℎ
𝑖𝑗
(𝑠) 𝑑𝑠 − 𝜆)

× (𝑒
𝜆𝑡
𝑢
𝑖𝑗
(𝑡) − ∫

∞

0

ℎ
𝑖𝑗
(𝑠) ∫

𝑡

𝑡−𝑠

𝑎
𝑖𝑗
(𝜃) 𝑒
𝜆𝜃
𝑢
𝑖𝑗
(𝜃) 𝑑𝜃 𝑑𝑠)

− (𝑎
𝑖𝑗
(𝑡) ∫

∞

0

ℎ
𝑖𝑗
(𝑠) 𝑑𝑠 − 𝜆)∫

∞

0

ℎ
𝑖𝑗
(𝑠)

× ∫

𝑡

𝑡−𝑠

𝑎
𝑖𝑗
(𝜃) 𝑒
𝜆𝜃
𝑢
𝑖𝑗
(𝜃) 𝑑𝜃 𝑑𝑠

− ∫

∞

0

ℎ
𝑖𝑗
(𝑠) [𝑎
𝑖𝑗
(𝑡) 𝑒
𝜆𝑠
− 𝑎
𝑖𝑗
(𝑡 − 𝑠)]

× 𝑒
𝜆(𝑡−𝑠)

𝑢
𝑖𝑗
(𝑡 − 𝑠) 𝑑𝑠



6 Abstract and Applied Analysis

+ 𝑒
𝜆𝑡
{

{

{

− ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝑡)

× (𝑓 (𝑥
𝑘𝑙
(𝑡 − 𝜏 (𝑡) + 𝛿))

−𝑓 (𝑥
𝑘𝑙
(𝑡 − 𝜏 (𝑡)))) 𝑥

𝑖𝑗
(𝑡 + 𝛿)

− ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝑡) 𝑓 (𝑥

𝑘𝑙
(𝑡 − 𝜏 (𝑡)))

⋅ (𝑥
𝑖𝑗
(𝑡 + 𝛿) − 𝑥

𝑖𝑗
(𝑡))

− ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝑡) ∫

∞

0

𝐾
𝑖𝑗
(𝑢)

× (𝑔 (𝑥
𝑘𝑙
(𝑡 + 𝛿 − 𝑢))

−𝑔 (𝑥
𝑘𝑙
(𝑡 − 𝑢))) 𝑑𝑢𝑥

𝑖𝑗
(𝑡 + 𝛿)

− ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝑡) ∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝑥

𝑘𝑙
(𝑡 − 𝑢)) 𝑑𝑢

⋅ (𝑥
𝑖𝑗
(𝑡 + 𝛿) − 𝑥

𝑖𝑗
(𝑡)) + 𝜖

𝑖𝑗
(𝛿, 𝑡)

}

}

}

,

∀𝑡 ≥ 𝑁
0
, 𝑖𝑗 ∈ 𝐽.

(25)

Set

𝑈 (𝑡) = {𝑈
𝑖𝑗
(𝑡)} , (26)

where

𝑈
𝑖𝑗
(𝑡) = 𝑒

𝜆𝑡
𝑢
𝑖𝑗
(𝑡)

− ∫

∞

0

ℎ
𝑖𝑗
(𝑠) ∫

𝑡

𝑡−𝑠

𝑎
𝑖𝑗
(𝜃) 𝑒
𝜆𝜃
𝑢
𝑖𝑗
(𝜃) 𝑑𝜃 𝑑𝑠, 𝑖𝑗 ∈ 𝐽.

(27)

Let (𝑖𝑗)
𝑡
be such an index that






𝑈
(𝑖𝑗)𝑡

(𝑡)






= ‖𝑈 (𝑡)‖ . (28)

Calculating the upper left derivative of |𝑈
(𝑖𝑗)𝑠

(𝑠)| along (25),
we have

𝐷
−
(






𝑈
(𝑖𝑗)𝑠

(𝑠)






)





𝑠=𝑡

≤ −(𝑎
(𝑖𝑗)𝑡

(𝑡) ∫

∞

0

ℎ
(𝑖𝑗)𝑡

(𝑠) 𝑑𝑠 − 𝜆)






𝑈
(𝑖𝑗)𝑡

(𝑡)







+













− (𝑎
(𝑖𝑗)𝑡

(𝑡) ∫

∞

0

ℎ
(𝑖𝑗)𝑡

(𝑠) 𝑑𝑠 − 𝜆)∫

∞

0

ℎ
(𝑖𝑗)𝑡

(𝑠)

× ∫

𝑡

𝑡−𝑠

𝑎
(𝑖𝑗)𝑡

(𝜃) 𝑒
𝜆𝜃
𝑢
(𝑖𝑗)𝑡

(𝜃) 𝑑𝜃 𝑑𝑠

− ∫

∞

0

ℎ
(𝑖𝑗)𝑡

(𝑠) [𝑎
(𝑖𝑗)𝑡

(𝑡) 𝑒
𝜆𝑠
− 𝑎
(𝑖𝑗)𝑡

(𝑡 − 𝑠)]

× 𝑒
𝜆(𝑡−𝑠)

𝑢
(𝑖𝑗)𝑡

(𝑡 − 𝑠) 𝑑𝑠

+ 𝑒
𝜆𝑡
{

{

{

− ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)𝑡

𝐶
𝑘𝑙

(𝑖𝑗)𝑡
(𝑡)

× (𝑓 (𝑥
𝑘𝑙
(𝑡 − 𝜏 (𝑡) + 𝛿))

−𝑓 (𝑥
𝑘𝑙
(𝑡 − 𝜏 (𝑡))))

× 𝑥
(𝑖𝑗)𝑡

(𝑡 + 𝛿)

− ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)𝑡

𝐶
𝑘𝑙

(𝑖𝑗)𝑡
(𝑡) 𝑓 (𝑥

𝑘𝑙
(𝑡 − 𝜏 (𝑡)))

⋅ (𝑥
(𝑖𝑗)𝑡

(𝑡 + 𝛿) − 𝑥
(𝑖𝑗)𝑡

(𝑡))

− ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)𝑡

𝐵
𝑘𝑙

(𝑖𝑗)𝑡
(𝑡)

× ∫

∞

0

𝐾
(𝑖𝑗)𝑡

(𝑢)

× (𝑔 (𝑥
𝑘𝑙
(𝑡 + 𝛿 − 𝑢))

−𝑔 (𝑥
𝑘𝑙
(𝑡 − 𝑢))) 𝑑𝑢𝑥

(𝑖𝑗)𝑡
(𝑡 + 𝛿)

− ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)𝑡

𝐵
𝑘𝑙

(𝑖𝑗)𝑡
(𝑡)

× ∫

∞

0

𝐾
(𝑖𝑗)𝑡

(𝑢) 𝑔 (𝑥
𝑘𝑙
(𝑡 − 𝑢)) 𝑑𝑢

⋅ (𝑥
(𝑖𝑗)𝑡

(𝑡 + 𝛿) − 𝑥
(𝑖𝑗)𝑡

(𝑡)) + 𝜖
(𝑖𝑗)𝑡

(𝛿, 𝑡)

}

}

}














.

(29)

Let

𝑀(𝑡) = sup
𝑠≤𝑡

{‖𝑈 (𝑠)‖} . (30)

It is obvious that ‖𝑈(𝑡)‖ ≤ 𝑀(𝑡), and𝑀(𝑡) is nondecreasing.
In particular,

𝑒
𝜆𝜌 



𝑢
𝑖𝑗
(𝜌)







≤











𝑒
𝜆𝜌
𝑢
𝑖𝑗
(𝜌) − ∫

∞

0

ℎ
𝑖𝑗
(𝑠) ∫

𝜌

𝜌−𝑠

𝑎
𝑖𝑗
(𝜃) 𝑒
𝜆𝜃
𝑢
𝑖𝑗
(𝜃) 𝑑𝜃 𝑑𝑠











+











∫

∞

0

ℎ
𝑖𝑗
(𝑠) ∫

𝜌

𝜌−𝑠

𝑎
𝑖𝑗
(𝜃) 𝑒
𝜆𝜃
𝑢
𝑖𝑗
(𝜃) 𝑑𝜃 𝑑𝑠











≤ 𝑀 (𝑡)

+ 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗
sup
𝜃∈(−∞,𝑡]

𝑒
𝜆𝜃 



𝑢
𝑖𝑗
(𝜃)






, ∀𝑡 ≥ 𝜌, 𝑖𝑗 ∈ 𝐽.

(31)
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Consequently, in view of (31) and the fact 𝑎+
𝑖𝑗
𝜂
+

𝑖𝑗
< 1 (𝑖𝑗 ∈ 𝐽),

we have

𝑒
𝜆𝑠 



𝑢
𝑖𝑗
(𝑠)






≤ sup
𝜃∈(−∞,𝑡]

𝑒
𝜆𝜃 



𝑢
𝑖𝑗
(𝜃)







≤

𝑀 (𝑡)

1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

, where 𝑠 ∈ (−∞, 𝑡] , 𝑖𝑗 ∈ 𝐽.

(32)

Now, we consider two cases.

Case (i). If

𝑀(𝑡) > ‖𝑈 (𝑡)‖ , ∀𝑡 ≥ 𝑁
0
, (33)

then, we claim that

𝑀(𝑡) ≡ 𝑀(𝑁
0
) is a constant, ∀𝑡 ≥ 𝑁

0
. (34)

Assume, by way of contradiction, that (34) does not hold.
Then, there exists 𝑡

1
> 𝑁
0
, such that𝑀(𝑡

1
) > 𝑀(𝑁

0
), since

‖𝑈 (𝑡)‖ ≤ 𝑀(𝑁
0
) , ∀𝑡 ≤ 𝑁

0
. (35)

There must exist 𝛽 ∈ (𝑁
0
, 𝑡
1
) such that





𝑈 (𝛽)





= 𝑀(𝑡

1
) ≥ 𝑀(𝛽) , (36)

which contradicts (33). This contradiction implies that (34)
holds. It follows from (32) that there exists 𝑡

2
> 𝑁
0
such that

‖𝑢 (𝑡)‖ = max
𝑖𝑗∈𝐽






𝑢
𝑖𝑗
(𝑡)







≤ max
𝑖𝑗∈𝐽

𝑒
−𝜆𝑡

𝑀(𝑡)

1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

= max
𝑖𝑗∈𝐽

𝑒
−𝜆𝑡

𝑀(𝑁
0
)

1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

< 𝜖, ∀𝑡 ≥ 𝑡
2
.

(37)

Case (ii). If there is such a point 𝑡
0
≥ 𝑁
0
that𝑀(𝑡

0
) = ‖𝑈(𝑡

0
)‖,

then, in view of (8), (22), (23), (29), (32), (𝑇
1
), and (𝑇

2
), we

get

0 ≤ 𝐷
−
(






𝑈
(𝑖𝑗)𝑠

(𝑠)






)





𝑠=𝑡0

≤ − (𝑎
(𝑖𝑗)𝑡0

(𝑡
0
) ∫

∞

0

ℎ
(𝑖𝑗)𝑡0

(𝑠) 𝑑𝑠 − 𝜆)








𝑈
(𝑖𝑗)𝑡0

(𝑡
0
)








+ (𝑎
(𝑖𝑗)𝑡0

(𝑡
0
) ∫

∞

0

ℎ
(𝑖𝑗)𝑡0

(𝑠) 𝑑𝑠 − 𝜆)∫

∞

0

ℎ
(𝑖𝑗)𝑡0

(𝑠)

× ∫

𝑡0

𝑡0−𝑠

𝑎
+

(𝑖𝑗)𝑡0

𝑒
𝜆𝜃







𝑢
(𝑖𝑗)𝑡0

(𝜃)








𝑑𝜃 𝑑𝑠

+ ∫

∞

0

ℎ
(𝑖𝑗)𝑡0

(𝑠)








𝑎
(𝑖𝑗)𝑡0

(𝑡
0
) 𝑒
𝜆𝑠
− 𝑎
(𝑖𝑗)𝑡0

(𝑡
0
− 𝑠)








× 𝑒
𝜆(𝑡0−𝑠)








𝑢
(𝑖𝑗)𝑡0

(𝑡
0
− 𝑠)








𝑑𝑠

+ ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)𝑡0








𝐶
𝑘𝑙

(𝑖𝑗)𝑡0

(𝑡
0
)








𝑒
𝜆𝑡0

×




𝑓 (𝑥
𝑘𝑙
(𝑡
0
− 𝜏 (𝑡
0
) + 𝛿)) − 𝑓 (𝑥

𝑘𝑙
(𝑡
0
− 𝜏 (𝑡
0
)))






×








𝑥
(𝑖𝑗)𝑡0

(𝑡
0
+ 𝛿)








+ ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)𝑡0








𝐶
𝑘𝑙

(𝑖𝑗)𝑡0

(𝑡
0
)












𝑓 (𝑥
𝑘𝑙
(𝑡
0
− 𝜏 (𝑡
0
)))






⋅ 𝑒
𝜆𝑡0








𝑥
(𝑖𝑗)𝑡0

(𝑡
0
+ 𝛿) − 𝑥

(𝑖𝑗)𝑡0

(𝑡
0
)








+ ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)𝑡0








𝐵
𝑘𝑙

(𝑖𝑗)𝑡0

(𝑡
0
)








× ∫

∞

0








𝐾
(𝑖𝑗)𝑡0

(𝑢)








× 𝑒
𝜆𝑡0 



𝑔 (𝑥
𝑘𝑙
(𝑡
0
+ 𝛿 − 𝑢)) − 𝑔 (𝑥

𝑘𝑙
(𝑡
0
− 𝑢))





𝑑𝑢

×








𝑥
(𝑖𝑗)𝑡0

(𝑡
0
+ 𝛿)








+ ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)𝑡0








𝐵
𝑘𝑙

(𝑖𝑗)𝑡0

(𝑡
0
)








× ∫

∞

0








𝐾
(𝑖𝑗)𝑡0

(𝑢)












𝑔 (𝑥
𝑘𝑙
(𝑡
0
− 𝑢))





𝑑𝑢

⋅ 𝑒
𝜆𝑡0








𝑥
(𝑖𝑗)𝑡0

(𝑡
0
+ 𝛿) − 𝑥

(𝑖𝑗)𝑡0

(𝑡
0
)








+








𝜖
(𝑖𝑗)𝑡0

(𝛿, 𝑡
0
)








𝑒
𝜆𝑡0

≤ − (𝑎
(𝑖𝑗)𝑡0

(𝑡
0
) ∫

∞

0

ℎ
(𝑖𝑗)𝑡0

(𝑠) 𝑑𝑠 − 𝜆)𝑀(𝑡
0
)

+ (𝑎
(𝑖𝑗)𝑡0

(𝑡
0
) ∫

∞

0

ℎ
(𝑖𝑗)𝑡0

(𝑠) 𝑑𝑠 − 𝜆) 𝑎
+

(𝑖𝑗)𝑡0

𝜂
+

(𝑖𝑗)𝑡0

×

𝑀(𝑡
0
)

1 − 𝑎
+

(𝑖𝑗)𝑡0

𝜂
+

(𝑖𝑗)𝑡0

+ ∫

∞

0

ℎ
(𝑖𝑗)𝑡0

(𝑠)








𝑎
(𝑖𝑗)𝑡0

(𝑡
0
) 𝑒
𝜆𝑠
− 𝑎
(𝑖𝑗)𝑡0

(𝑡
0
− 𝑠)








𝑑𝑠

×

𝑀(𝑡
0
)

1 − 𝑎
+

(𝑖𝑗)𝑡0

𝜂
+

(𝑖𝑗)𝑡0

+ ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)𝑡0








𝐶
𝑘𝑙

(𝑖𝑗)𝑡0

(𝑡
0
)








× 𝜇
𝑓
𝑒
𝜆𝜏(𝑡0)

𝑒
𝜆(𝑡0−𝜏(𝑡0)) 



𝑢
𝑘𝑙
(𝑡
0
− 𝜏 (𝑡
0
))





×

1

1 − 𝑎
+

(𝑖𝑗)𝑡0

𝜂
+

(𝑖𝑗)𝑡0

(

𝐿
(𝑖𝑗)𝑡0

𝛿
(𝑖𝑗)𝑡0

)

+

+ ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)𝑡0








𝐶
𝑘𝑙

(𝑖𝑗)𝑡0

(𝑡
0
)








𝑀
𝑓
𝑒
𝜆𝑡0








𝑢
(𝑖𝑗)𝑡0

(𝑡
0
)
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+ ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)𝑡0








𝐵
𝑘𝑙

(𝑖𝑗)𝑡0

(𝑡
0
)








× ∫

∞

0

𝑒
𝜆𝑢







𝐾
(𝑖𝑗)𝑡0

(𝑢)








𝜇
𝑔
𝑒
𝜆(𝑡0−𝑢) 



𝑢
𝑘𝑙
(𝑡
0
− 𝑢)





𝑑𝑢

×

1

1 − 𝑎
+

(𝑖𝑗)𝑡0

𝜂
+

(𝑖𝑗)𝑡0

(

𝐿
(𝑖𝑗)𝑡0

𝛿
(𝑖𝑗)𝑡0

)

+

+ ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)𝑡0








𝐵
𝑘𝑙

(𝑖𝑗)𝑡0

(𝑡
0
)








× ∫

∞

0








𝐾
(𝑖𝑗)𝑡0

(𝑢)








𝑑𝑢𝑀
𝑔
𝑒
𝜆𝑡0








𝑢
(𝑖𝑗)𝑡0

(𝑡
0
)








+








𝜖
(𝑖𝑗)𝑡0

(𝛿, 𝑡
0
)








𝑒
𝜆𝑡0

≤

{

{

{

− [(𝑎
(𝑖𝑗)𝑡0

(𝑡
0
) ∫

∞

0

ℎ
(𝑖𝑗)𝑡0

(𝑠) 𝑑𝑠 − 𝜆)

× (1 − 2𝑎
+

(𝑖𝑗)𝑡0

𝜂
+

(𝑖𝑗)𝑡0

)

−∫

∞

0

ℎ
(𝑖𝑗)𝑡0

(𝑠)








𝑎
(𝑖𝑗)𝑡0

(𝑡
0
) 𝑒
𝜆𝑠
− 𝑎
(𝑖𝑗)𝑡0

(𝑡
0
− 𝑠)








𝑑𝑠]

×

1

1 − 𝑎
+

(𝑖𝑗)𝑡0

𝜂
+

(𝑖𝑗)𝑡0

+ ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)𝑡0








𝐶
𝑘𝑙

(𝑖𝑗)𝑡0

(𝑡
0
)








𝜇
𝑓
𝑒
𝜆𝜏(𝑡0)

×

1

1 − 𝑎
+

𝑘𝑙
𝜂
+

𝑘𝑙

1

1 − 𝑎
+

(𝑖𝑗)𝑡0

𝜂
+

(𝑖𝑗)𝑡0

(

𝐿
(𝑖𝑗)𝑡0

𝛿
(𝑖𝑗)𝑡0

)

+

+ ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)𝑡0








𝐶
𝑘𝑙

(𝑖𝑗)𝑡0

(𝑡
0
)








𝑀
𝑓

1

1 − 𝑎
+

(𝑖𝑗)𝑡0

𝜂
+

(𝑖𝑗)𝑡0

+ ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)𝑡0








𝐵
𝑘𝑙

(𝑖𝑗)𝑡0

(𝑡
0
)








∫

∞

0

𝑒
𝜆𝑢







𝐾
(𝑖𝑗)𝑡0

(𝑢)








𝑑𝑢

× 𝜇
𝑔

1

1 − 𝑎
+

𝑘𝑙
𝜂
+

𝑘𝑙

1

1 − 𝑎
+

(𝑖𝑗)𝑡0

𝜂
+

(𝑖𝑗)𝑡0

(

𝐿
(𝑖𝑗)𝑡0

𝛿
(𝑖𝑗)𝑡0

)

+

+ ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)𝑡0








𝐵
𝑘𝑙

(𝑖𝑗)𝑡0

(𝑡
0
)








× ∫

∞

0








𝐾
(𝑖𝑗)𝑡0

(𝑢)








𝑑𝑢𝑀
𝑔

1

1 − 𝑎
+

(𝑖𝑗)𝑡0

𝜂
+

(𝑖𝑗)𝑡0

}

}

}

𝑀(𝑡
0
)

+ 𝜂min
𝑖𝑗∈𝐽

{1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗
} 𝜖𝑒
𝜆𝑡0

< − 𝜂𝑀(𝑡
0
) + 𝜂min

𝑖𝑗∈𝐽

{1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗
} 𝜖𝑒
𝜆𝑡0
,

(38)

which yields that




𝑈 (𝑡
0
)




= 𝑀(𝑡

0
) < min
𝑖𝑗∈𝐽

{1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗
} 𝜖𝑒
𝜆𝑡0
,





𝑢 (𝑡
0
)




≤ max
𝑖𝑗∈𝐽

𝑒
−𝜆𝑡0

𝑀(𝑡
0
)

1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

< 𝜖.

(39)

For any 𝑡 > 𝑡
0
, by the same approach used in the proof of

(39), we have

‖𝑈 (𝑡)‖ = 𝑀 (𝑡) < min
𝑖𝑗∈𝐽

{1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗
} 𝜖𝑒
𝜆𝑡
,

‖𝑢 (𝑡)‖ < 𝜖,

if 𝑀(𝑡) = ‖𝑈 (𝑡)‖ .

(40)

On the other hand, if 𝑀(𝑡) > ‖𝑈(𝑡)‖ and 𝑡 > 𝑡
0
, we can

choose 𝑡
0
≤ 𝑡
3
< 𝑡 such that

𝑀(𝑡
3
) =





𝑈 (𝑡
3
)




, 𝑀 (𝑠) > ‖𝑈 (𝑠)‖ , ∀𝑠 ∈ (𝑡

3
, 𝑡] ,

(41)

which, together with (40), yields that

𝑀(𝑡
3
) =





𝑈 (𝑡
3
)




< min
𝑖𝑗∈𝐽

{1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗
} 𝜖𝑒
𝜆𝑡3
,





𝑢 (𝑡
3
)




< 𝜖.

(42)

Using a similar argument as in the proof of Case (i), we can
show that

𝑀(𝑠) ≡ 𝑀(𝑡
3
) is a constant, ∀𝑠 ∈ (𝑡

3
, 𝑡] , (43)

which implies that

‖𝑢 (𝑡)‖ ≤ max
𝑖𝑗∈𝐽

𝑒
−𝜆𝑡

𝑀(𝑡)

1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

= max
𝑖𝑗∈𝐽

𝑒
−𝜆𝑡

𝑀(𝑡
3
)

1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

< max
𝑖𝑗∈𝐽

𝑒
−𝜆𝑡min
𝑖𝑗∈𝐽

{1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗
} 𝜖𝑒
𝜆𝑡3

1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

< 𝜖.

(44)

In summary, there must exist 𝑁 > max{𝑡
0
, 𝑁
0
, 𝑡
2
} such

that ‖𝑢(𝑡)‖ ≤ 𝜖 holds, for all 𝑡 > 𝑁. The proof of Lemma 4 is
now complete.

3. Main Results

In this section, we establish some results for the existence,
uniqueness, and exponential stability of the almost periodic
solution of (3).

Theorem 5. Suppose that (𝑇
1
) and (𝑇

2
) are satisfied. Then

system (3) has exactly one almost periodic solution 𝑍
∗
(𝑡).

Moreover, 𝑍∗(𝑡) is globally exponentially stable.
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Proof. Let V(𝑡) = {V
𝑖𝑗
(𝑡)} be a solution of system (3) with

initial function 𝜑
V
𝑖𝑗
(⋅) satisfying (11), and (𝜑

V
𝑖𝑗
(⋅))
 is bounded

continuous on (−∞, 0].
Set

𝜖
𝑖𝑗,𝑘

(𝑡) = − [𝑎
𝑖𝑗
(𝑡 + 𝑡
𝑘
) − 𝑎
𝑖𝑗
(𝑡)]

× ∫

∞

0

ℎ
𝑖𝑗
(𝑠) V
𝑖𝑗
(𝑡 + 𝑡
𝑘
− 𝑠) 𝑑𝑠

− ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

[𝐶
𝑘𝑙

𝑖𝑗
(𝑡 + 𝑡
𝑘
) − 𝐶
𝑘𝑙

𝑖𝑗
(𝑡)]

× (𝑓 (𝑥
𝑘𝑙
(𝑡 − 𝜏 (𝑡 + 𝑡

𝑘
) + 𝑡
𝑘
))) 𝑥
𝑖𝑗
(𝑡 + 𝑡
𝑘
)

− ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝑡)

× [𝑓 (𝑥
𝑘𝑙
(𝑡 − 𝜏 (𝑡 + 𝑡

𝑘
) + 𝑡
𝑘
))

−𝑓 (𝑥
𝑘𝑙
(𝑡 − 𝜏 (𝑡) + 𝑡

𝑘
))]

× 𝑥
𝑖𝑗
(𝑡 + 𝑡
𝑘
)

− ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)

[𝐵
𝑘𝑙

𝑖𝑗
(𝑡 + 𝑡
𝑘
) − 𝐵
𝑘𝑙

𝑖𝑗
(𝑡)]

× ∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝑥

𝑘𝑙
(𝑡 + 𝑡
𝑘
− 𝑢)) 𝑑𝑢𝑥

𝑖𝑗
(𝑡 + 𝑡
𝑘
)

+ [𝐿
𝑖𝑗
(𝑡 + 𝑡
𝑘
) − 𝐿
𝑖𝑗
(𝑡)] , 𝑖𝑗 ∈ 𝐽,

(45)

where {𝑡
𝑘
} is any sequence of real numbers. By Lemma 2, the

solution V(𝑡) is bounded and






V
𝑖𝑗
(𝑡)






≤

1

1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

(

𝐿
𝑖𝑗

𝛿
𝑖𝑗

)

+

, ∀𝑡 ∈ 𝑅, 𝑖𝑗 ∈ 𝐽, (46)

which implies that the right side of (3) is also bounded, and
V(𝑡) is a bounded function on 𝑅. Thus, V(𝑡) is uniformly
continuous on 𝑅. Then, from the almost periodicity of
𝑎
𝑖𝑗
, 𝜏, 𝐶
𝑘𝑙

𝑖𝑗
, and 𝐵𝑘𝑙

𝑖𝑗
, we can select a sequence {𝑡

𝑘
} → +∞ such

that





𝑎
𝑖𝑗
(𝑡 + 𝑡
𝑘
) − 𝑎
𝑖𝑗
(𝑡)






≤

1

𝑘

,






𝐶
𝑘𝑙

𝑖𝑗
(𝑡 + 𝑡
𝑘
) − 𝐶
𝑘𝑙

𝑖𝑗
(𝑡)






≤

1

𝑘

,






𝐵
𝑘𝑙

𝑖𝑗
(𝑡 + 𝑡
𝑘
) − 𝐵
𝑘𝑙

𝑖𝑗
(𝑡)






≤

1

𝑘

,





𝜏 (𝑡 + 𝑡

𝑘
) − 𝜏 (𝑡)





≤

1

𝑘

,






𝜖
𝑖𝑗,𝑘

(𝑡)






≤

1

𝑘

,

(47)

for all 𝑖𝑗, 𝑘𝑙 ∈ 𝐽, 𝑡 ∈ 𝑅.
Since {V(𝑡 + 𝑡

𝑘
)}
+∞

𝑘=1
is uniformly bounded and equiuni-

formly continuous, by theArzala-Ascoli Lemma anddiagonal

selection principle, we can choose a subsequence {𝑡
𝑘𝑗
} of

{𝑡
𝑘
}, such that V (𝑡 + 𝑡

𝑘𝑗
) (for convenience, we still denote

by V (𝑡 + 𝑡
𝑘
)) uniformly converges to a continuous function

𝑍
∗
(𝑡) = {𝑥

∗

𝑖𝑗
(𝑡)} on any compact set of 𝑅, and






𝑥
∗

𝑖𝑗
(𝑡)






≤

1

1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

(

𝐿
𝑖𝑗

𝛿
𝑖𝑗

)

+

, ∀𝑡 ∈ 𝑅, 𝑖𝑗 ∈ 𝐽. (48)

Now, we prove that 𝑍∗(𝑡) is a solution of (3). In fact, for
any 𝑡 > 0 and Δ𝑡 ∈ 𝑅, from (47), we have

𝑥
∗

𝑖𝑗
(𝑡 + Δ𝑡) − 𝑥

∗

𝑖𝑗
(𝑡)

= lim
𝑘→+∞

[V
𝑖𝑗
(𝑡 + Δ𝑡 + 𝑡

𝑘
) − V
𝑖𝑗
(𝑡 + 𝑡
𝑘
)]

= lim
𝑘→+∞

∫

𝑡+Δ𝑡

𝑡

{ − 𝑎
𝑖𝑗
(𝜇 + 𝑡

𝑘
)

× ∫

∞

0

ℎ
𝑖𝑗
(𝑠) V
𝑖𝑗
(𝜇 + 𝑡

𝑘
− 𝑠) 𝑑𝑠

− ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝜇 + 𝑡

𝑘
)

× 𝑓 (V
𝑘𝑙
(𝜇 + 𝑡

𝑘
− 𝜏 (𝜇 + 𝑡

𝑘
)))

× V
𝑖𝑗
(𝜇 + 𝑡

𝑘
)

− ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝜇 + 𝑡

𝑘
)

× ∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔

× (V
𝑘𝑙
(𝜇 + 𝑡

𝑘
− 𝑢)) 𝑑𝑢

× V
𝑖𝑗
(𝜇 + 𝑡

𝑘
)

+𝐿
𝑖𝑗
(𝜇 + 𝑡

𝑘
) } 𝑑𝜇

= lim
𝑘→+∞

∫

𝑡+Δ𝑡

𝑡

{−𝑎
𝑖𝑗
(𝜇) ∫

∞

0

ℎ
𝑖𝑗
(𝑠) V
𝑖𝑗
(𝜇 + 𝑡

𝑘
− 𝑠) 𝑑𝑠

− ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝜇) 𝑓

× (V
𝑘𝑙
(𝜇 − 𝜏 (𝜇) + 𝑡

𝑘
))

× V
𝑖𝑗
(𝜇 + 𝑡

𝑘
)

− ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝜇)

× ∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (V

𝑘𝑙
(𝜇 + 𝑡

𝑘
− 𝑢))

× 𝑑𝑢V
𝑖𝑗
(𝜇 + 𝑡

𝑘
)

+𝐿
𝑖𝑗
(𝜇) + 𝜖

𝑖𝑗,𝑘
(𝜇) } 𝑑𝜇
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= ∫

𝑡+Δ𝑡

𝑡

{−𝑎
𝑖𝑗
(𝜇) ∫

∞

0

ℎ
𝑖𝑗
(𝑠) 𝑥
∗

𝑖𝑗
(𝜇 − 𝑠) 𝑑𝑠

− ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝜇) 𝑓 (𝑥

∗

𝑘𝑙
(𝜇 − 𝜏 (𝜇))) 𝑥

∗

𝑖𝑗
(𝜇)

− ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝜇)

× ∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝑥

∗

𝑘𝑙
(𝜇 − 𝑢)) 𝑑𝑢𝑥

∗

𝑖𝑗
(𝜇)

+𝐿
𝑖𝑗
(𝜇) } 𝑑𝜇

+ lim
𝑘→+∞

∫

𝑡+Δ𝑡

𝑡

𝜖
𝑖𝑗,𝑘

(𝜇) 𝑑𝜇

= ∫

𝑡+Δ𝑡

𝑡

{−𝑎
𝑖𝑗
(𝜇) ∫

∞

0

ℎ
𝑖𝑗
(𝑠) 𝑥
∗

𝑖𝑗
(𝜇 − 𝑠) 𝑑𝑠

− ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝜇) 𝑓 (𝑥

∗

𝑘𝑙
(𝜇 − 𝜏 (𝜇))) 𝑥

∗

𝑖𝑗
(𝜇)

− ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝜇)

× ∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝑥

∗

𝑘𝑙
(𝜇 − 𝑢)) 𝑑𝑢𝑥

∗

𝑖𝑗
(𝜇)

+𝐿
𝑖𝑗
(𝜇) } 𝑑𝜇,

(49)

which implies that

𝑑

𝑑𝑡

{𝑥
∗

𝑖𝑗
(𝑡)} = − 𝑎

𝑖𝑗
(𝑡) ∫

∞

0

ℎ
𝑖𝑗
(𝑠) 𝑥
∗

𝑖𝑗
(𝑡 − 𝑠) 𝑑𝑠

− ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝑡) 𝑓 (𝑥

∗

𝑘𝑙
(𝑡 − 𝜏 (𝑡))) 𝑥

∗

𝑖𝑗
(𝑡)

− ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝑡)

× ∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝑥

∗

𝑘𝑙
(𝑡 − 𝑢)) 𝑑𝑢𝑥

∗

𝑖𝑗
(𝑡)

+ 𝐿
𝑖𝑗
(𝑡) , 𝑖𝑗 ∈ 𝐽.

(50)

Therefore, 𝑍∗(𝑡) is a solution of (3).
Secondly, we prove that 𝑍

∗
(𝑡) is an almost periodic

solution of (3). From Lemma 4, for any 𝜀 > 0, there exists
𝑙 = 𝑙(𝜀) > 0, such that every interval [𝛼, 𝛼+ 𝑙] contains at least
one number 𝛿 for which there exists𝑁 > 0 which satisfies






V
𝑖𝑗
(𝑡 + 𝛿) − V

𝑖𝑗
(𝑡)






≤ 𝜀, ∀𝑡 > 𝑁, 𝑖𝑗 ∈ 𝐽. (51)

Then, for any fixed 𝑠 ∈ 𝑅, we can find a sufficiently large
positive integer𝑁

1
> 𝑁 such that, for any 𝑘 > 𝑁

1
,

𝑠 + 𝑡
𝑘
> 𝑁,






V
𝑖𝑗
(𝑠 + 𝑡
𝑘
+ 𝛿) − V

𝑖𝑗
(𝑠 + 𝑡
𝑘
)






≤ 𝜀, 𝑖𝑗 ∈ 𝐽.

(52)

Let 𝑘 → +∞; we obtain






𝑥
∗

𝑖𝑗
(𝑠 + 𝛿) − 𝑥

∗

𝑖𝑗
(𝑠)






≤ 𝜀, 𝑖𝑗 ∈ 𝐽, (53)

which implies that𝑍∗(𝑡) is an almost periodic solution of (3).
Finally, we prove that 𝑍

∗
(𝑡) is globally exponentially

stable.
Let 𝑍∗(𝑡) = {𝑥

∗

𝑖𝑗
(𝑡)} be the positive almost periodic

solution of system (3) with initial value 𝜑
∗

= {𝜑
∗

𝑖𝑗
(𝑡)} and

𝑍(𝑡) = {𝑥
𝑖𝑗
(𝑡)} an arbitrary solution of system (3) with initial

value 𝜑 = {𝜑
𝑖𝑗
(𝑡)}, and set 𝑦(𝑡) = {𝑦

𝑖𝑗
(𝑡)} = {𝑥

𝑖𝑗
(𝑡) − 𝑥

∗

𝑖𝑗
(𝑡)} =

𝑍(𝑡) − 𝑍
∗
(𝑡). Then

𝑦


𝑖𝑗
(𝑡) = − 𝑎

𝑖𝑗
(𝑡) ∫

∞

0

ℎ
𝑖𝑗
(𝑠) 𝑦
𝑖𝑗
(𝑡 − 𝑠) 𝑑𝑠

− ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝑡)

× [𝑓 (𝑥
𝑘𝑙
(𝑡 − 𝜏 (𝑡))) 𝑥

𝑖𝑗
(𝑡)

−𝑓 (𝑥
∗

𝑘𝑙
(𝑡 − 𝜏 (𝑡))) 𝑥

∗

𝑖𝑗
(𝑡)]

− ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝑡)

× [∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝑥

𝑘𝑙
(𝑡 − 𝑢)) 𝑑𝑢𝑥

𝑖𝑗
(𝑡)

−∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝑥

∗

𝑘𝑙
(𝑡 − 𝑢)) 𝑑𝑢𝑥

∗

𝑖𝑗
(𝑡)] ,

(54)

which yields

𝑑

𝑑𝑡

(𝑒
𝜆𝑡
𝑦
𝑖𝑗
(𝑡) − ∫

∞

0

ℎ
𝑖𝑗
(𝑠) ∫

𝑡

𝑡−𝑠

𝑎
𝑖𝑗
(𝜃) 𝑒
𝜆𝜃
𝑦
𝑖𝑗
(𝜃) 𝑑𝜃 𝑑𝑠)

= 𝜆𝑒
𝜆𝑡
𝑦
𝑖𝑗
(𝑡) + 𝑒

𝜆𝑡
𝑦


𝑖𝑗
(𝑡)

− 𝑎
𝑖𝑗
(𝑡) ∫

∞

0

ℎ
𝑖𝑗
(𝑠) 𝑑𝑠𝑒

𝜆𝑡
𝑦
𝑖𝑗
(𝑡)

+ ∫

∞

0

ℎ
𝑖𝑗
(𝑠) 𝑎
𝑖𝑗
(𝑡 − 𝑠) 𝑒

𝜆(𝑡−𝑠)
𝑦
𝑖𝑗
(𝑡 − 𝑠) 𝑑𝑠

= −(𝑎
𝑖𝑗
(𝑡) ∫

∞

0

ℎ
𝑖𝑗
(𝑠) 𝑑𝑠 − 𝜆)

× (𝑒
𝜆𝑡
𝑦
𝑖𝑗
(𝑡) − ∫

∞

0

ℎ
𝑖𝑗
(𝑠) ∫

𝑡

𝑡−𝑠

𝑎
𝑖𝑗
(𝜃) 𝑒
𝜆𝜃
𝑦
𝑖𝑗
(𝜃) 𝑑𝜃 𝑑𝑠)
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− (𝑎
𝑖𝑗
(𝑡) ∫

∞

0

ℎ
𝑖𝑗
(𝑠) 𝑑𝑠 − 𝜆)∫

∞

0

ℎ
𝑖𝑗
(𝑠)

× ∫

𝑡

𝑡−𝑠

𝑎
𝑖𝑗
(𝜃) 𝑒
𝜆𝜃
𝑦
𝑖𝑗
(𝜃) 𝑑𝜃 𝑑𝑠

− ∫

∞

0

ℎ
𝑖𝑗
(𝑠) [𝑎
𝑖𝑗
(𝑡) 𝑒
𝜆𝑠
− 𝑎
𝑖𝑗
(𝑡 − 𝑠)]

× 𝑒
𝜆(𝑡−𝑠)

𝑦
𝑖𝑗
(𝑡 − 𝑠) 𝑑𝑠

+ 𝑒
𝜆𝑡
{

{

{

− ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝑡)

× [𝑓 (𝑥
𝑘𝑙
(𝑡 − 𝜏 (𝑡))) − 𝑓 (𝑥

∗

𝑘𝑙
(𝑡 − 𝜏 (𝑡)))] 𝑥

𝑖𝑗
(𝑡)

− ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝑡) 𝑓 (𝑥

∗

𝑘𝑙
(𝑡 − 𝜏 (𝑡)))

× [𝑥
𝑖𝑗
(𝑡) − 𝑥

∗

𝑖𝑗
(𝑡)]

− ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝑡) ∫

∞

0

𝐾
𝑖𝑗
(𝑢)

× [𝑔 (𝑥
𝑘𝑙
(𝑡 − 𝑢)) − 𝑔 (𝑥

∗

𝑘𝑙
(𝑡 − 𝑢))] 𝑑𝑢𝑥

𝑖𝑗
(𝑡)

− ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝑡) ∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔

× (𝑥
∗

𝑘𝑙
(𝑡 − 𝑢)) 𝑑𝑢 [𝑥

𝑖𝑗
(𝑡) − 𝑥

∗

𝑖𝑗
(𝑡)]

}

}

}

,

(55)

where 𝑖𝑗 ∈ 𝐽.
Let

𝑌
𝑖𝑗
(𝑡) =










𝑒
𝜆𝑡
𝑦
𝑖𝑗
(𝑡) − ∫

∞

0

ℎ
𝑖𝑗
(𝑠)

∫

𝑡

𝑡−𝑠

𝑎
𝑖𝑗
(𝜃) 𝑒
𝜆𝜃
𝑦
𝑖𝑗
(𝜃) 𝑑𝜃 𝑑𝑠










, 𝑖𝑗 ∈ 𝐽.

(56)

We define a positive constant𝑀 as follows:

𝑀 = max
𝑖𝑗∈𝐽

{ sup
𝑠∈(−∞,0]

𝑌
𝑖𝑗
(𝑠)} . (57)

Let 𝐾 be a positive number such that

𝑌
𝑖𝑗
(𝑡) ≤ 𝑀 < 𝑀 + 1 = 𝐾, ∀𝑡 ∈ (−∞, 0] , 𝑖𝑗 ∈ 𝐽. (58)

We claim that

𝑌
𝑖𝑗
(𝑡) < 𝐾, ∀𝑡 > 0, 𝑖 = 1, 2, . . . , 𝑛. (59)

Otherwise, there must exist 𝑖𝑗 ∈ 𝐽 and 𝜍 > 0 such that

𝑌
𝑖𝑗
(𝜍) = 𝐾, 𝑌

𝑖𝑗
(𝑡) < 𝐾, ∀𝑡 ∈ (−∞, 𝜍) , �̃�𝑗 ∈ 𝐽. (60)

It follows that

𝑒
𝜆𝑡 



𝑦
𝑖𝑗
(𝑡)






≤










𝑒
𝜆𝑡
𝑦
𝑖𝑗
(𝑡) − ∫

∞

0

ℎ̃
𝑖𝑗
(𝑠)

×∫

𝑡

𝑡−𝑠

𝑎
𝑖𝑗
(𝜃) 𝑒
𝜆𝜃
𝑦
𝑖𝑗
(𝜃) 𝑑𝜃 𝑑𝑠










+










∫

∞

0

ℎ̃
𝑖𝑗
(𝑠) ∫

𝑡

𝑡−𝑠

𝑎
𝑖𝑗
(𝜃) 𝑒
𝜆𝜃
𝑦
𝑖𝑗
(𝜃) 𝑑𝜃 𝑑𝑠










≤ 𝐾 + 𝑎
+

�̃�𝑗
𝜂
+

�̃�𝑗
sup
𝑠∈(−∞,𝜍]

𝑒
𝜆𝑠 



𝑦
𝑖𝑗
(𝑠)






,

∀𝑡 ∈ (−∞, 𝜍] , �̃�𝑗 ∈ 𝐽.

(61)

Consequently, in view of (61) and the fact 𝑎+
�̃�𝑗
𝜂
+

�̃�𝑗
< 1(̃𝑖𝑗 ∈ 𝐽),

we have

𝑒
𝜆𝑡 



𝑦
𝑖𝑗
(𝑡)






≤ sup
𝑠∈(−∞,𝜍]

𝑒
𝜆𝑠 



𝑦
𝑖𝑗
(𝑠)







≤

𝐾

1 − 𝑎
+

�̃�𝑗
𝜂
+

�̃�𝑗

, ∀𝑡 ∈ (−∞, 𝜍] , �̃�𝑗 ∈ 𝐽.

(62)

Calculating the upper left derivative of 𝑌
𝑖𝑗
(𝑡), together with

(13), (55), (60), (62), (𝑇
1
), and (𝑇

2
), we obtain

0 ≤ 𝐷
−
𝑌
𝑖𝑗
(𝜍)

≤ − (𝑎
𝑖𝑗
(𝜍) ∫

∞

0

ℎ
𝑖𝑗
(𝑠) 𝑑𝑠 − 𝜆)𝑌

𝑖𝑗
(𝜍)

+














− (𝑎
𝑖𝑗
(𝜍) ∫

∞

0

ℎ
𝑖𝑗
(𝑠) 𝑑𝑠 − 𝜆)

× ∫

∞

0

ℎ
𝑖𝑗
(𝑠) ∫

𝜍

𝜍−𝑠

𝑎
𝑖𝑗
(𝜃) 𝑒
𝜆𝜃
𝑦
𝑖𝑗
(𝜃) 𝑑𝜃 𝑑𝑠

− ∫

∞

0

ℎ
𝑖𝑗
(𝑠) [𝑎
𝑖𝑗
(𝜍) 𝑒
𝜆𝑠
− 𝑎
𝑖𝑗
(𝜍 − 𝑠)]

× 𝑒
𝜆(𝜍−𝑠)

𝑦
𝑖𝑗
(𝜍 − 𝑠) 𝑑𝑠

+ 𝑒
𝜆𝜍
{

{

{

− ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝜍)

× [𝑓 (𝑥
𝑘𝑙
(𝜍 − 𝜏 (𝜍))) − 𝑓 (𝑥

∗

𝑘𝑙
(𝜍 − 𝜏 (𝜍)))]

× 𝑥
𝑖𝑗
(𝜍)

− ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝜍) 𝑓 (𝑥

∗

𝑘𝑙
(𝜍 − 𝜏 (𝜍)))
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× [𝑥
𝑖𝑗
(𝜍) − 𝑥

∗

𝑖𝑗
(𝜍)]

− ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝜍)

× ∫

∞

0

𝐾
𝑖𝑗
(𝑢)

× [𝑔 (𝑥
𝑘𝑙
(𝜍 − 𝑢)) − 𝑔 (𝑥

∗

𝑘𝑙
(𝜍 − 𝑢))]

× 𝑑𝑢𝑥
𝑖𝑗
(𝜍)

− ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝜍)

× ∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝑥

∗

𝑘𝑙
(𝜍 − 𝑢)) 𝑑𝑢

× [𝑥
𝑖𝑗
(𝜍) − 𝑥

∗

𝑖𝑗
(𝜍)]

}

}

}














≤ −(𝑎
𝑖𝑗
(𝜍) ∫

∞

0

ℎ
𝑖𝑗
(𝑠) 𝑑𝑠 − 𝜆)𝑌

𝑖𝑗
(𝜍)

+ (𝑎
𝑖𝑗
(𝜍) ∫

∞

0

ℎ
𝑖𝑗
(𝑠) 𝑑𝑠 − 𝜆)

𝐾

1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

+ ∫

∞

0

ℎ
𝑖𝑗
(𝑠)






𝑎
𝑖𝑗
(𝜍) 𝑒
𝜆𝑠
− 𝑎
𝑖𝑗
(𝜍 − 𝑠)







× 𝑒
𝜆(𝜍−𝑠) 




𝑦
𝑖𝑗
(𝜍 − 𝑠)






𝑑𝑠

+ ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)






𝐶
𝑘𝑙

𝑖𝑗
(𝜍)






𝜇
𝑓
𝑒
𝜆𝜏(𝜍)

𝑒
𝜆(𝜍−𝜏(𝜍))

×




𝑦
𝑘𝑙
(𝜍 − 𝜏 (𝜍))











𝑥
𝑖𝑗
(𝜍)







+ ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)






𝐶
𝑘𝑙

𝑖𝑗
(𝜍)






𝑀
𝑓
𝑒
𝜆𝜍 



𝑦
𝑖𝑗
(𝜍)







+ ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)






𝐵
𝑘𝑙

𝑖𝑗
(𝜍)






∫

∞

0

𝑒
𝜆𝑢

×






𝐾
𝑖𝑗
(𝑢)






𝜇
𝑔
𝑒
𝜆(𝜍−𝑢) 




𝑦
𝑘𝑙
(𝜍 − 𝑢)





𝑑𝑢






𝑥
𝑖𝑗
(𝜍)







+ ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)






𝐵
𝑘𝑙

𝑖𝑗
(𝜍)







× ∫

∞

0






𝐾
𝑖𝑗
(𝑢)






𝑑𝑢

×𝑀
𝑔
𝑒
𝜆𝜍 



𝑦
𝑖𝑗
(𝜍)







≤ { − [(𝑎
𝑖𝑗
(𝜍) ∫

∞

0

ℎ
𝑖𝑗
(𝑠) 𝑑𝑠 − 𝜆) (1 − 2𝑎

+

𝑖𝑗
𝜂
+

𝑖𝑗
)

−∫

∞

0

ℎ
𝑖𝑗
(𝑠)






𝑎
𝑖𝑗
(𝜍) 𝑒
𝜆𝑠
− 𝑎
𝑖𝑗
(𝜍 − 𝑠)






𝑑𝑠]

×

1

1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

+ ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)






𝐶
𝑘𝑙

𝑖𝑗
(𝜍)






𝜇
𝑓
𝑒
𝜆𝜏(𝜍)

×

1

1 − 𝑎
+

𝑘𝑙
𝜂
+

𝑘𝑙

1

1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

(

𝐿
𝑖𝑗

𝛿
𝑖𝑗

)

+

+ ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)






𝐶
𝑘𝑙

𝑖𝑗
(𝜍)






𝑀
𝑓

1

1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

+ ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)






𝐵
𝑘𝑙

𝑖𝑗
(𝜍)






∫

∞

0

𝑒
𝜆𝑢 



𝐾
𝑖𝑗
(𝑢)






𝑑𝑢

× 𝜇
𝑔

1

1 − 𝑎
+

𝑘𝑙
𝜂
+

𝑘𝑙

1

1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

(

𝐿
𝑖𝑗

𝛿
𝑖𝑗

)

+

+ ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)






𝐵
𝑘𝑙

𝑖𝑗
(𝜍)






∫

∞

0






𝐾
𝑖𝑗
(𝑢)






𝑑𝑢

×𝑀
𝑔

1

1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

}𝐾

< −𝜂𝐾

< 0,

(63)

which is a contradiction and implies that (59) holds.
Consequently, using a similar argument as in (61)-(62),

we know that






𝑦
𝑖𝑗
(𝑡)






𝑒
𝜆𝑡
≤

𝐾

1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

, ∀𝑡 ∈ 𝑅, 𝑖𝑗 ∈ 𝐽. (64)

This completes the proof.

4. An Example

In this section, we give an example to demonstrate the results
obtained in the previous sections.

Example 6. Consider the following SICNNs with continu-
ously distributed delays in the leakage terms:

𝑑𝑥
𝑖𝑗

𝑑𝑡

= − 𝑎
𝑖𝑗
(𝑡) ∫

∞

0

ℎ
𝑖𝑗
(𝑠) 𝑥
𝑖𝑗
(𝑡 − 𝑠) 𝑑𝑠

− ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)

𝐶
𝑘𝑙

𝑖𝑗
(𝑡) 𝑓 (𝑥

𝑘𝑙
(𝑡 − 𝜏 (𝑡))) 𝑥

𝑖𝑗
(𝑡)

− ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)

𝐵
𝑘𝑙

𝑖𝑗
(𝑡) ∫

∞

0

𝐾
𝑖𝑗
(𝑢) 𝑔 (𝑥

𝑘𝑙
(𝑡 − 𝑢)) 𝑑𝑢𝑥

𝑖𝑗
(𝑡)

+ 𝐿
𝑖𝑗
(𝑡) , 𝑖, 𝑗 = 1, 2, 3,

(65)
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[

[

𝑎
11
(𝑡) 𝑎
12
(𝑡) 𝑎
13
(𝑡)

𝑎
21
(𝑡) 𝑎
22
(𝑡) 𝑎
23
(𝑡)

𝑎
31
(𝑡) 𝑎
32
(𝑡) 𝑎
33
(𝑡)

]

]

=
[

[

1 1 3

3 1 3

3 1 3

]

]

,

[

[

𝐵
11
(𝑡) 𝐵
12
(𝑡) 𝐵
13
(𝑡)

𝐵
21
(𝑡) 𝐵
22
(𝑡) 𝐵
23
(𝑡)

𝐵
31
(𝑡) 𝐵
32
(𝑡) 𝐵
33
(𝑡)

]

]

=
[

[

𝐶
11
(𝑡) 𝐶

12
(𝑡) 𝐶

13
(𝑡)

𝐶
21
(𝑡) 𝐶

22
(𝑡) 𝐶

23
(𝑡)

𝐶
31
(𝑡) 𝐶

32
(𝑡) 𝐶

33
(𝑡)

]

]

=
[

[

0.1 0.2 0.1

0.2 0 0.2

0.1 0.2 0.1

]

]

,

[

[

𝐿
11
(𝑡) 𝐿

12
(𝑡) 𝐿

13
(𝑡)

𝐿
21
(𝑡) 𝐿

22
(𝑡) 𝐿

23
(𝑡)

𝐿
31
(𝑡) 𝐿

32
(𝑡) 𝐿

33
(𝑡)

]

]

= 0.05

×[

0.7 + 0.24sin2√2𝑡 0.41 + 0.5cos2𝑡 0.74 + 0.2sin2𝑡
0.61 + 0.2cos2𝑡 0.67 + 0.2sin2𝑡 0.75 + 0.2sin2𝑡
0.59 + 0.4cos4𝑡 0.5 + 0.41sin2𝑡 0.76 + 0.2cos2𝑡

] .

(66)

Set 𝜆 = 0.001, 𝜂 = 0.05, 𝑟 = 𝑞 = 1, ℎ
𝑖𝑗
(𝑠) = (1/5)𝑒

−𝑠
2

,𝐾
𝑖𝑗
(𝑢) =

| sin 𝑢|𝑒−𝑢, 𝑖 = 1, 2, and 3. 𝑗 = 1, 2, and 3, and 𝑓(𝑥) =

𝑔(𝑥) = (1/4000)(|𝑥 − 1| − |𝑥 + 1|), 𝜏(𝑡) = (1/100)

sin2𝑡; clearly, 𝑀
𝑓

= 𝑀
𝑔

= 0.0005, 𝜇
𝑓

= 𝜇
𝑔

= 0.0005,
∑
𝐶𝑘𝑙∈𝑁1(1,1)

𝐶
𝑘𝑙

11
= ∑
𝐶𝑘𝑙∈𝑁1(1,1)

𝐵
𝑘𝑙

11
= 0.5, ∑

𝐶𝑘𝑙∈𝑁1(1,2)
𝐶
𝑘𝑙

12
=

∑
𝐶𝑘𝑙∈𝑁1(1,2)

𝐵
𝑘𝑙

12
= 0.8, ∑

𝐶𝑘𝑙∈𝑁1(1,3)
𝐶
𝑘𝑙

13
= ∑
𝐶𝑘𝑙∈𝑁1(1,3)

𝐵
𝑘𝑙

13
=

0.5,∑
𝐶𝑘𝑙∈𝑁1(2,1)

𝐶
𝑘𝑙

21
= ∑
𝐶𝑘𝑙∈𝑁1(2,1)

𝐵
𝑘𝑙

21
= 0.8,∑

𝐶𝑘𝑙∈𝑁1(2,2)
𝐶
𝑘𝑙

22
=

∑
𝐶𝑘𝑙∈𝑁1(2,2)

𝐵
𝑘𝑙

22
= 1.2, ∑

𝐶𝑘𝑙∈𝑁1(2,3)
𝐶
𝑘𝑙

23
= ∑
𝐶𝑘𝑙∈𝑁1(2,3)

𝐵
𝑘𝑙

23
=

0.8,∑
𝐶𝑘𝑙∈𝑁1(3,1)

𝐶
𝑘𝑙

31
= ∑
𝐶𝑘𝑙∈𝑁1(3,1)

𝐵
𝑘𝑙

31
= 0.5,∑

𝐶𝑘𝑙∈𝑁1(3,2)
𝐶
𝑘𝑙

32
=

∑
𝐶𝑘𝑙∈𝑁1(3,2)

𝐵
𝑘𝑙

32
= 0.8,∑

𝐶𝑘𝑙∈𝑁1(3,3)
𝐶
𝑘𝑙

33
= ∑
𝐶𝑘𝑙∈𝑁1(3,3)

𝐵
𝑘𝑙

33
= 0.5,

1 ≤ 𝑎
+

𝑖𝑗
≤ 3, 𝜂+

𝑖𝑗
= 0.1, 𝑎+

𝑖𝑗
𝜂
+

𝑖𝑗
≤ 0.3 < 1, and 𝑖𝑗 ∈ 𝐽 =

{11, 12, 13, 21, 22, 23, 31, 32, 33}.
Consider,

min
𝑖𝑗∈𝐽

𝛿
𝑖𝑗
(𝑡)

= min
𝑖𝑗∈𝐽

{

{

{

[𝑎
𝑖𝑗
(𝑡) ∫

∞

0

ℎ
𝑖𝑗
(𝑠) 𝑑𝑠 (1 − 2𝑎

+

𝑖𝑗
𝜂
+

𝑖𝑗
)

−∫

∞

0

ℎ
𝑖𝑗
(𝑠)






𝑎
𝑖𝑗
(𝑡) − 𝑎

𝑖𝑗
(𝑡 − 𝑠)






𝑑𝑠]

− ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)






𝐶
𝑘𝑙

𝑖𝑗
(𝑡)






𝑀
𝑓

− ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)






𝐵
𝑘𝑙

𝑖𝑗
(𝑡)






∫

∞

0






𝐾
𝑖𝑗
(𝑢)






𝑑𝑢𝑀
𝑔

}

}

}

×

1

1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

> 0.0715 > 0, ∀𝑡 ≥ 0.

max
𝑖𝑗∈𝐽

{ − [(𝑎
𝑖𝑗
(𝑡) ∫

∞

0

ℎ
𝑖𝑗
(𝑠) 𝑑𝑠 − 𝜆) (1 − 2𝑎

+

𝑖𝑗
𝜂
+

𝑖𝑗
)

−∫

∞

0

ℎ
𝑖𝑗
(𝑠)






𝑎
𝑖𝑗
(𝑡) 𝑒
𝜆𝑠
− 𝑎
𝑖𝑗
(𝑡 − 𝑠)






𝑑𝑠]

×

1

1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

+ ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)






𝐶
𝑘𝑙

𝑖𝑗
(𝑡)






𝜇
𝑓
𝑒
𝜆𝜏(𝑡)

×

1

1 − 𝑎
+

𝑘𝑙
𝜂
+

𝑘𝑙

1

1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

(

𝐿
𝑖𝑗

𝛿
𝑖𝑗

)

+

+ ∑

𝐶𝑘𝑙∈𝑁𝑟(𝑖,𝑗)






𝐶
𝑘𝑙

𝑖𝑗
(𝑡)






𝑀
𝑓

1

1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

+ ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)






𝐵
𝑘𝑙

𝑖𝑗
(𝑡)






∫

∞

0

𝑒
𝜆𝑢 



𝐾
𝑖𝑗
(𝑢)






𝑑𝑢

× 𝜇
𝑔

1

1 − 𝑎
+

𝑘𝑙
𝜂
+

𝑘𝑙

1

1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

(

𝐿
𝑖𝑗

𝛿
𝑖𝑗

)

+

+ ∑

𝐶𝑘𝑙∈𝑁𝑞(𝑖,𝑗)






𝐵
𝑘𝑙

𝑖𝑗
(𝑡)






∫

∞

0






𝐾
𝑖𝑗
(𝑢)






𝑑𝑢

×𝑀
𝑔

1

1 − 𝑎
+

𝑖𝑗
𝜂
+

𝑖𝑗

}

< −0.0556 < −0.05 = −𝜂, ∀𝑡 ≥ 0.

(67)

It follows that system (65) satisfies all the conditions in
Theorem 5. Hence, system (65) has exactly one almost peri-
odic solution. Moreover, the almost periodic solution is
globally exponentially stable.

Remark 7. Since [1–11] only dealt with SICNNs without
leakage delays, [12–21] give no opinions about the problem
of almost periodic solutions for SICNNs with leakage delays.
One can observe that all the results in these literature and the
references therein can not be applicable to prove the existence
and exponential stability of almost periodic solutions for
SICNNs (65).
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