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Shunting inhibitory cellular neural networks (SICNNs) are considered with the introduction of continuously distributed delays in
the leakage (or forgetting) terms. By using the Lyapunov functional method and differential inequality techniques, some sufficient
conditions for the existence and exponential stability of almost periodic solutions are established. Our results complement with
some recent ones.

1. Introduction where C;; denotes the cell at the (i, j) position of the lattice.

The r-neighborhood N, (i, j) of is given as
It is well known that a neural network usually has a spatial

nature due to the presence of an amount of parallel pathways N, (i, j) = {Cy : max (|k —il,|I- j|) <,
of a variety of axon sizes and lengths; it is desired to model 2)
them by introducing continuously distributed delays over l<k<ml<l<n},

a certain duration of time [1-4]. In particular, shunting
inhibitory cellular neural networks (SICNNs) with continu-
ously distributed delays can be described by

where N, (i, j) is similarly specified, x;; is the activity of
the cell Cj;, L;;(¢) is the external input to C;j, the constant

a; > 0 represents the passive decay rate of the cell activity,

ijl(t) and B:.‘jl(t) are the connection or coupling strengths of

xi’j (t) = —a; (1) x; () postsynaptic activity of the cell transmitted to the cell C;j,

the activity functions f(-) and g(-) are continuous functions

_ Z C:;jl ®) (xy (=T (1)) X () representing the output or firing rate of the cell Cy;, and 7(¢) >
CueN, (i) 0 corresponds to the transmission delay.

Since SICNNSs (1) have been introduced as a new cellular

Xl neural networks (CNNs) in Bouzerdout and Pinter in [5-

a Z ‘ 'B ij () (1) 7], it has been extensively applied in psychophysics, speech,

Cu €N (67 perception, robotics, adaptive pattern recognition, vision,

- and image processing. Hence, there have been extensive

. J K;; (u) g (3 (t — u)) dux;; () results on the problem of the existence and stability of the

o 7 / equilibrium point, periodic and almost periodic solutions of

SICNNs with continuously distributed delays in the literature.
+Lj #, i=1L2,..., mj=12,...,n We refer the reader to [8-12] and references cited therein.



As pointed out in Gopalsamy [13], the first term in each
of the right side of (1) corresponds to a stabilizing negative
feedback of the system which acts instantaneously without
time delay; these terms are variously known as “forgettin”
or leakage terms (see, e.g., Kosko [14] and Haykin [15]). It
is known from the literature on population dynamics and
neural networks dynamics (see Gopalsamy [16]) that time
delays in the stabilizing negative feedback terms will have a
tendency to destabilize a system. Therefore, the authors of
[17-21] dealt with the existence and stability of equilibrium
and periodic solutions for neuron networks model involving
leakage delays. Since leakage delays can have a destabilizing
influence on the dynamical behaviors of neural networks
and the incorporation of time delays in the leakage terms
are usually not easy to handle, it necessary to investigate
leakage delay effects on the stability of neural networks. On
the other hand, as pointed out in [22, 23], periodically varying
environment and almost periodically varying environment
are foundations for the theory of nature selection. Compared
with periodic effects, almost periodic effects are more fre-
quent. Hence, the effects of the almost periodic environment
on the evolutionary theory have been the object of intensive
analysis by numerous authors, and some of these results can
be found in [8, 9, 11] and references cited therein. However,
to the best of our knowledge, few authors have considered
the existence and exponential stability of almost periodic
solutions of SICNNs with continuously distributed delays in
the leakage terms. Motivated by the above discussions, in this
present paper, we will consider the following SICNNs with
continuously distributed leakage delays:

x;; (8) = a,](t)J hij (s) x;; (t = 5) ds

- Y CHOf (-t @)x; 0

CuEN, (1 ])

_ Z Bkl (t) J K;; (u) g (% (t = w)) dux;; (t)

C'kIGN (1 ])

+L;; (1),
3)
:R — (0 +00),7:

wherei=1,2,...,m, j=1,2,...,n,qa

R — [0 +00),and LU,CZZ,BZ.Z R — R are almost periodic
functions, 7(t) denotes transmission delay, the leakage delay
kernels hij : [0,00) — [0, 00) are continuous and integrable,
respectively, and the delay kernels Kj; : [0,00) — [0, c0) are
continuous and integrable.

The main purpose of this paper is to give the conditions
for the existence and exponential stability of the almost
periodic solutions for system (3). By applying the Lyapunov
functional method and differential inequality techniques, we
derive some new sufficient conditions ensuring the existence,
uniqueness, and exponential stability of the almost periodic
solution for system (3), which are new and complement
previously known results. Moreover, an example is also
provided to illustrate the effectiveness of our results.
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Throughout this paper, for ij € J = {11,12,...,1n,
21,22,...,2n,...,ml,m2,...,mn}, delay kernels h;(s) and
K,»j(u) are continuous functions, and there exist constants a;;

and #;; such that

17;; = L sh;; (s) ds. (4)

a] = supa; (),
teR

From the theory of almost periodic functions in [22, 23], it
follows that, for any € > 0, it is possible to find a real number
I =I(e) > 0, for any interval with length I(¢), and there exists
anumber & = §(¢) in this interval such that

|a; (t +8) —a; (1) <,

|C (t+8) - Cif ()] <&,

|Bf (t+0) - B (t)] < e, (5)
lt(t+8) - 7(t) <6

|Lij (t+8) - Ly (t)| <e

forallt € R, kl,ij € J.
We set

{xij (t)} = (xp;(£),...

Xy )5ty

X1, () s xg ()5 X, ()50 ns

X, (1)) € R™,

(6)

For any x(t) = {x;;()} € R™" we define the norm [ x(t)|| =
max; ]){Ix ()]} We also assume that the following condi-
tions (T;) and (T5) hold.

(T))f : R - Randg : R — R are nonincreasing
functions on [0, +00), and there exist constants M ¢, M, yi,
and p,; such that

|f @) = f W) < pplu—l,
|f W] < My,

|lg w)] < M,,

|9 () = g )] < g lu =1,
(7)

Yu,v € R.

(T,) Forije], 1- al]nlj

8, (t) = «l [a,.j ® LOO hy (5)ds (1 - 2ainf)
_ LOO iy () |ay; () = ay; (¢ = )| ds]

-2

CueN, (i.j)

i 0] My
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(o)

-y |l

. 0
Ck,eNq(z,])

|Ki]- (u)| duMg]»

1

+

K —
L= am;
> 0,

(8)
and there exist positive constants # and A such that

(o)

A< a;; (t) J hi]- (s)ds,

0

J hy; (s) eMds < +o0,
0
J |K,-]- (s)' eMds < +00,
0

- [<aij "y ©ds- A) (1 - 2ajn;)

0

_ LOO h; (s) |aij (t)e" —ay (t - s)| ds] e

o
— 41

CY ol

1 1 ( Ly )*
+ o+ o+
Cu€N, (i) L=agng 1= aim; \ 8y

ki 1
+ Z |Cij (t)lel_a+ +
CueN, (ij) i

)

L ol
k1 €Ng\L]

xXu
91 _ .t
L—agmy

L= aji\ 9

£ Y ol 1

'Kij (u)' duMg !
Cu€N,(i.j) 0 ij'lij

— a+]1'+

< -1,
)

where t > 0, and (L,-j/6ij)+ = sup,glL;;()/8;(t)l.
The initial conditions associated with system (3) are of the
form

x;; () = ¢ij (), s€(-00,0], ije], (10)

where ¢;;() denotes real-valued bounded continuous func-

tion defined on (—00, 0].

Definition 1 (see [22, 23]). Letu(t) : R — R™" be contin-
uous in t. u(t) is said to be almost periodic on R if, for any
e > 0, the set T(u,e) = {0 : lu(t +8) —u(t)| < &Vt € R}

is relatively dense; that is, for any € > 0, it is possible to find
a real number [ = I(e) > 0, for any interval with length I(¢),
and there exists a number § = d(¢) in this interval such that
llea(t + &) —u(t)| < ¢ forallt € R.

The remaining part of this paper is organized as follows.
In Section 2, we will derive some new sufficient conditions
for checking the existence of bounded solutions. In Section 3,
we present some new sufficient conditions for the existence,
uniqueness and exponential stability of the positive almost
periodic solution of (3). In Section 4, we will give some
examples and remarks to illustrate our results obtained in
previous sections.

2. Preliminary Results

The following lemmas will be useful to prove our main results
in Section 3.

Lemma 2. Let (T)) and (T,) hold. Suppose that x(t) = {x,»j(t)}
is a solution of system (3) with initial conditions

(&)
5,
50| o) | a;0x;@dods

L. \"
3(8—”), Vt >0, ij €],

ij

Xij (s) = Pij (s),
t
t

0y 0= | hy© | a0 9, @dods

where s,t € (-00,0],ij € J. Then

(12)

|x; )] < ! (L"jy VE>0,ije).  (13)
ij =57_ .\ s | = :

1 -aln; d;;
Proof. Assume, by way of contradiction, that (12) does not
hold. Then, there existij € ],y > (L,»j/éij)+, and t, > 0 such
that

X, (t)| =7 |X; 0| <y, Vte(-o0,t,), (1)

where

t

X5 (£) = x;; (1) - LOO hij (s) J a;(0) x;; (0)dods.  (15)

t—s

It follows that

[ 0

<

55— [ 1y [ ay©)x;©)0ds

(16)

#|] By | ay©)x; @ d0ds

SY+%§’11§ sup ]'xij(5)|, vt € (—oo,t,].

s€(—oo,t,



Consequently, in view of (16) and the fact aljr]U <1(@je])),

we have
|xij (t)' sup |x1] (s)'
NS —oot
(17)
< ;y vt € (—0o,t,]
e

From system (3), we derive
d 0 t
dt(xw(ﬂ | 1@ a0 (6)d0ds>
= x (t) —a; (1) J i (5) dsx; (t)

+ Jo hij (s) ay; (t = s) x;; (t = s)ds

= —a; (t) L
x <xij (t)

(&) t
- ~|-0 hz] (S) .|-t—5 aij (9) xij (9) d9 dS>

o

t
x| ay©)x,©d0ds
t—s

h,»j (s)ds

g (©)ds |y 9

_J:Dhﬁ(g[aﬁ(ﬂ-—aﬁ(t—s)]xﬁ(t—s)ds

- Y GO f (g t—T (@) x;(2)

Cy€EN, (z J)

_ Z Bkl(t)J'

CklEN (1 ])

K;; (1) g (x (t — w)) dux;; (¢)

FL;(0), ijel.
(18)
Calculating the upper left derivative of |X;;(t)], together
with (14), (17), (18), (T}), and (T},), we obtain

0< D |x;(t.)

< —ay(t,) LOO hy (s) s |X (¢
—a; (t.) Jo

x.[h 1 (0)x, (0)do ds

*

_ J:O hy; (s) [aij (t,) - a; (t, - s)] X (t, —s)ds

+

@mﬁ hy (5)
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- Z C () f (e (-7 (8, ) x; (t.)

Cu€EN, (1 ])

Kl
- > B (t
CueN,(i.1)

[ 0 9 (g (0 = ) daxy (1)

+L;; (t,)

< —ay (t,) Jo hy; (s)dsy + a; (t.)

o0 1

d

< [y dsay = !

h. L (t (t, —s)|d

+J‘O ,](s)|alj(*) s)| Sl_ﬂ;}ﬂ;}
Kl 1

+ Z |Cij (t.) Mf#?

CueN, (i) ij'lij

oY B | 1Ky 00 dut, sy

CueN, (ir]) ij'lij

+|Lij(t

- { oy [y @ ds(1-2a)

_ JOOO hi; (s) |aij (t.)—a;(t, - s)| ds]

+ Z 'Cf.‘jl(t )M

CueN, (i.j)
«© 1
+ ) [B() J [K;j @] dudy b oy
CueN, (i) 0 A
+ |Lij (t
L.\"
< _61] (t*) |:Y_ (_U> :|
8;;
< 0.
(19)

It is a contradiction and shows that (12) holds. Then, using a
similar argument as in the proof of (16) and (17), we can show
that (13) holds. The proof of Lemma 2 is now completed. [

Remark 3. In view of the boundedness of this solution, from
the theory of functional differential equations with infinite
delay in [21], it follows that the solution of system (3) with
initial conditions (11) can be defined on [0, co).
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Lemma 4. Suppose that (T,) and (T,) hold. Moreover, assume
that x(t) = {xij(t)} is a solution of system (3) with initial
function ¢;;(-) satisfying (11), and <pl.'j(~) is bounded continuous
on (—00,0]. Then, for any € > 0, there exists | = I(€) > 0, such
that every interval [, « + ] contains at least one number & for
which there exists N > 0 which satisfies

[x(+8)-x@)<e Vt>N. (20)

Proof. Forij € ], set

€ (0,1) = = [a, (t+0) —a; (t)]

xJ-OOh (s) x;j (t+d8-s)ds
0

-

CueN, (i.j)

[C (¢ +8) - Cff (8)]

X (f (o (E =T (t+0) +8)) x; (t +0))

- Z cj.‘j’(t)[f(xkl(t—r(t+5)+5))

CueN, (i)

—f (% (=7 (t) +9))]

X x;; (¢ +9)

-

CueN,(i.7)

[BY (¢ +0) - B (t)]

x j ii (W) g (x (¢ + 8 —w)) dux;; (t + )
0

+[LyE+8)-L; 0]
(21

By Lemma 2, the solution x(t) = {xij(t)} is bounded and

Li' *
|x; (8)] < <6f) . Vte[0,+00), ij€]. (22)

1]171]

Thus, the right side of (3) is also bounded, which implies that
x(t) is uniformly continuous on R. From (5), for any ¢ > 0,
there exists [ = I(e) > 0, such that every interval [«, x + 1], & €
R, contains a § for which

|e (6, t)| r]mln{l—a;m} €, whereije],teR
ijeJ

(23)

Let N, > 0 be sufficiently large such that t + § > 0, for
t > N,, and denote u; (1) = x;(f + 0) — x; ;(1). We obtain

du;; (1) 0
% - —a (t)J iy () (& — 5) dis
- Y CEOf (xut-T(0)+9))
CuEN, (1 ])
—f (xa (=7 (1))))
X x;; (£ + 6)
- ) CZI ) f (i (t = 7(1))
CyeN, (i,f)
(o (E+8) = x; (1))
- Z Bkl (1) J Kj; (1)
CueN,(irj)
X (g (g (t+0—u))
—g (x (t —w))) dux;; (t + )
- Y Bi® J K;; (u) g (xg (t - ) du
CkleN (z]) 0
(i (E+0) = x, (D) +€;(5:1),
Vt= Ny, ij €],
(24)
which yields
d o0 t
o <e uy© = [y | ay @ ©0)a0 ds>
= AeM U;; (t) + eMu' )
—a;; (1) J h,-j (s) dseMuij ()
0
+ J-Ooh (s) a;; (t —s) Mt S)u (t-s)ds
0
(a,] (t s)ds - /\)
x (eMu -| T hy 9) I_ a; (0) €%, 0) d9d5>
(a,] (t) (s) ds - > L hij (s)
x J . (0)¢u, (0)do ds
t—s

jooh (s [a; () —a; (£ -5)]

0

X e’\(t_s)u,-j (t-s)ds
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x My (t-s)ds
v - (e o
{ Ch E%(i)j) '
#efq= Yl
X (f (xkl (t-7()+ 8)) Cu €N, (i»)); t
—f (g (& =T (£)))) x;; (¢ +0) X (f (xq(t—7(t)+9))
- Y GO f (-t @) —f (x (t = 7(1))))

CueN, (i-7)

(x5 (£ +8) = x; (1))

X x(i]‘)t (t + 8)

Z Cz(ilj)t () f (g (t =7 (1))

«© C €N, (i),
- Y Bi® j K;; (u) J
CueN, (i) 0 (g, (8 +8) = x4p, ()
X (g (xkl (t +0 - u)) _ Z B]Eilj')t (t)
~g (s (¢ = ) dux;; (¢ +9) Cucla®
B Z Bll';l (t) _[OO Kijwg (% (t = u)) du 8 Jo Keap, ()
.. 0
) % (g (x4 (¢ + 6 — 1)
(x5 £+ 8) = 3, 0) + ¢ 8.1) } , =9 (5 (t = 1)) dux, (¢ +9)
- Y By ©
Vit > N,, ij€]. CreN,(i,));
2 00
) X I K, (1) g (xyq (t —u)) du
Set 0
Ut) =U; @), 26
() { ij (t)} (26) . (x(ij)t (t+9) - X(ij), (t)) + €Gij), (6,1) } .
where
Uy (8) = eMuy; (1) (29)
- JOOO hij (s) J:_S a;; () ekeuij (0)dOds, ije]. Let
(27)
Let (if), be such an index that M(t) = Sslg {IU )} . (30)
Uy, ] = 1U @)1 (28)

It is obvious that [|U(f)|| < M(t), and M(t) is nondecreasing.
Calculating the upper left derivative of Ui, ()l along (25), In particular,

we have
D™ (U, O], e Ju;; (p)|
_ ® _ ©0 P
< (%-), () L h, (s) ds )‘> Ui, @] < [eMu; (p)—J h; (S)J a;; (0) €u;; (0) d6 ds
0 p—s
[ [ . o
* —<a<z-j>t () L hap, (s)ds—k> L i, () T j hy; (s)j a; (0) e"u;; (0) dO ds
0 p—s
t < M(t
<[, © gy, ©dods ®

A0 ..
o . +a,-§f1,-§96§}£ e luy @), Ve pijel.
- L hap, () [ag, (1) € = agy, (t = 9)] G1)
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Consequently, in view of (31) and the fact al ]171 ;< 1(ij € ]),
we have

eks'uij (s)| < sup Y |u,-]- (9).

0e(—00,t]
32

M (¢) . 42
— where s € (—00,t], ij € ].

1 —agm;

Now, we consider two cases.
Case (i). If

M@ > U@, V=N, (33)

then, we claim that

M (t) = M(N,) is a constant, V¢>N,.  (34)

Assume, by way of contradiction, that (34) does not hold.
Then, there exists t; > N, such that M(t,) > M(N,), since

IU (0] < M(Ny), V<N, (35)

There must exist 3 € (N,, t;) such that

[ B =M(t)=M(B), (36)

which contradicts (33). This contradiction implies that (34)
holds. It follows from (32) that there exists £, > N, such that

It (O] = maxu 1)

—At
M
< maxt2a )

T ije] 1_‘11,’7,] 37)

Case (ii). If there is such a point t, > N, that M(t,) = [[U(¢,)l,
then, in view of (8), (22), (23), (29), (32), (T}), and (T}), we
get

0< D™ (|U(ij)s (S)|)|s:t

(a,])t to) h(u, ()ds—)t) Ui, ()
+ (a (t )

(i), \*0

h(l]) (S) dS > J’() h(ij)[g (S)

X a(l]) M u(,]) (6)|d6ds

+

I,
L h(u) () ‘a(q (to) = Aij),, (to—s)’

o Ao

(1])[ 5)| ds

)

CueN,(irj)y,
X | f (xia (tg = 7 () +8)) = f (x4 (£ = 7 (£5)))]
X 'X(ij),o (o + 8)|

+ [l ()| 1f (i (g = 7 (1))
ClEN, (1 o

kl A
C, (t0)] <™

A
e ‘x(ij)to (to +9) - X(ij),, (to)l

ki
+ Z ‘B(ij),o (fo)‘

Cr€N, (> ]y,
X Kiy (u

L | ey ( )|

x €' |g (i (o + 8 —u)) = g (0 (to — u))| du
X |x(ij)¢0 (tO + 6)|

kl
) B, (t0)|

Cu€N(irj)yy
(o)
X JO | (i), (u)| |g xkl u))ldu
A
e |x(ij)t0 (to+6) - X(ij)ey (to)|

+ |€(ij)r0 (8, t0)| eAtO

- <a(ij)t (to) J haj,, () ds - )M ()

IN

<a(z])t (tO) J- h(z]) (s)ds— ) a(J;j)tO néj)to
t
M@

1- a(l])t ’7(1]

[e¢]
A
+ JO h(ij)to (S) |a(ij)[0 (t()) e S _ a(ij)[g (t() - S)| ds

L M)
P
1 a(ij)[o M,

+ |C(z] (t0)|
ClEN, (1 o

" Mfe,x-;(to)e)u(to—r(to)) |ukl (tO -7 (to))|

.
1 Ly,
% 1-a’. nt O ;i
(Wi Ty \ Ol

+ [l (t0)| My Jugy, (t0)]
CklEN(lj)tO




)

(1])t0 0)‘
C €Ny (1),

[oe)
A Ato—
X ,[o e 'Kﬁj)m (”)| pge 7 gy (£ - )| du

N
. 1 < L, )
e +
L=ag) i, \ O,

)

Cra€Ny(isj)s,

(1])t0 0)|

oo
At
X L |K(ij)t0 (u)|duMge 0

Ugij),, (to)|

’6(1] (8 t0)| Mo

_ [(a(ij)to (to) J-O h(ij)t(, (s)ds— /\)

+ +
X (1 - 244, ’7(1';'),0)
_JO hap, (s)| agp, (to) €™

1

IN

(1= )| ]

X
1-

)

Cr €N, (i),

+
L1 1 (L(wfu )
+ .+ + +
L—aghy 1= agy M, \ i,

1

+ +
%, i,

(ty)

‘ (if)e, tO)’ ”fe

+ ‘Cl])t to)’Mf1

CueN, (1 Do (l] 0 ’7(’]):0

+ 'B(l] (t0)|JOOeA| i, (u).du

CueN, (l o

.
1 1 L,
el o 0 i 8
'l 1 ij)to (i) (if)e,

+ |Blj), (tO)I
CreN, (1 ])fo

oo
1
X J |K(ij)¢0 (u)| duMgT M (tO)
0 (i), i),
At
+ nmln{l—aljnl]} !

l]E

Mo

. + o+
< —;1M(t0)+11r15;61§1{1—aij11ij}ee ,

(38)
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which yields that
U (to)] = M (t,) < ml? {1 _ %771]} Mo
f)tto (39)
(e < max 1)
el L= agn;;

For any t > t,, by the same approach used in the proof of
(39), we have

. +, + At
M (t) < rlrjlgl {1 - aijnij}ee ,

U @) =
lu @) <e, (40)
if M (£) = U (8)]].

On the other hand, if M(t) > |U(¢)|| and ¢t > t,, we can
choose t, < t; < t such that

M(t;) = |U ()], M (s) > U (s)Il, Vs € (tst],
(41)
which, together with (40), yields that
M(t;) = U (t5)] < mm {1 - a;;n;;.} e,
(42)

u (25)] < e.

Using a similar argument as in the proof of Case (i), we can
show that

M (s) = M (t;) is a constant, Vs € (t5,t], (43)

which implies that
At
e "M (t)
lu@®l < max———-
ijel 1 = agn;;
oM
_ M (t;)
= max—
ije] 1 — aljnlj (44)
e Mmin {1 - af.ni} ees
ijeJ e
< max
ijeJ 1- al]nlj
<e.

In summary, there must exist N > max{t,, N, f,} such
that [u(t)|| < € holds, for all ¢+ > N. The proof of Lemma 4 is
now complete. O

3. Main Results

In this section, we establish some results for the existence,
uniqueness, and exponential stability of the almost periodic
solution of (3).

Theorem 5. Suppose that (T,) and (T,) are satisfied. Then
system (3) has exactly one almost periodic solution Z*(t).
Moreover, Z* (t) is globally exponentially stable.
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Proof. Let v(t) = {vij(t)} be a solution of system (3) with
initial function goivj(') satisfying (11), and ((pivj(-))/ is bounded
continuous on (—00, 0].

Set

€k (1) = — [aij (t+1) —a; (f)]

X Jjo hy; (s) v (t + 1t — s)ds
-

CueN, (i.f)
X (f (e (=7 (t+1) +10)) x5 (t + 1)
B Z Ckl )

CueN, (i.7)
X[f(xg(t—1(t+t)+1t))
—f (i (E=7(t) +1))]
X X;j (t+1t;)

[Bf (t + ) - B ()]

[C (t+1,) - Ckl(t)]

-

Cu€eN,(i,j)
X L Kj; () g (xg (£ + ti —u)) dux;; (¢ +t,)

+[L,(t+8)-L,;0], djel,

(45)

where {t} is any sequence of real numbers. By Lemma 2, the
solution v(t) is bounded and

L..\"
|v; (8)] < ( 5”>, VteR, ije],  (46)

1]771]
which implies that the right side of (3) is also bounded, and
v'(t) is a bounded function on R. Thus, v(¢) is uniformly
continuous on R. Then, from the almost periodicity of
4> T, Ckl, and ijl , we can select a sequence {t,} — +00 such
that

|aij (t+t) - a; (t)| < %

|C (£ + 1) - Ckl(t)|s%
|B (t+1,) - (t)| 1 (47)

ha+a»¢ansg

|€ij,k (t)| < %,

forallij,kl € J,t € R.
Since {v(t + tk)},:fl’ is uniformly bounded and equiuni-
formly continuous, by the Arzala-Ascoli Lemma and diagonal

selection principle, we can choose a subsequence {tkj} of
{t;}, such that v(t + tkj) (for convenience, we still denote

by v (¢ + t;)) uniformly converges to a continuous function
Z*(t) = {x;"j(t)} on any compact set of R, and

.
ij

L. \"
l—ﬂﬁ(gﬂ’ VteR, ije].  (48)
g 1

Now, we prove that Z*(¢) is a solution of (3). In fact, for
any t > 0 and At € R, from (47), we have

X (t+ At) — x;; (t)

= lim_ [vij (t+ At + 1) = v (t+1,)]
t+At
= kLHPOO Jt { - a;; (p + i)

X L hyi (s) vij (4 +t — ) ds

- C futte)

CueN, (irj)
< f v (ptte—1(u+1)))
x v (p+t)
- Z Bz]'}l (u+1)

CueN, (i)

x J Ki;(u) g
0
X (vig ( + ty —u)) du
x v (p+ 1)

+Lj; (1 +1) ]’ du

t+At
= lim L { a;; (1) j By (s) vij (u +ty —s) ds

k — +oo
- Y Ciwf

CueN, (i.5)
X (vig (=7 (1) + ;)
x v (p+ty)

- Y Bi(w

Cra€Ny (i, )
[ee)
< [ Ky 00 9 (g (v - )
x duvy; (p + 1)

+Lj; (1) + €ijk (1) } du
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t+At [e)
= L {—aij () Jo hy; (s) xi*j (u—s)ds

- Y G f (g (-t (W) x5 (w)

CuEN, (l ])

- Y Bjw

Cr€Ny(i,j)

o0
XJK
0

+Lj; () } du

u) g (i (1 — ) dux; (u)

t+At
+ lim j €k (1) du

k—+0o Jt

= J‘:*’At {_a,.j (#) J:" hij (s) x;; (= s) ds
_ Z Cf-cjl () f (e (=7 (1)) x:j ()

CueN, (i.f)
- Y Bjw
Cu €N, (i, j)
©° * %
[ 00 g (o (= ) ()

+L; () } du,

(49)

which implies that

E{x;‘j(t)} a,](t)J hy; (s) x;; (¢ = s) ds
- c L) f (g (- T (1)) x5 (1)
CkleN(zj)
- 2 Bi®
Cr €N, (i,5)

X L Ki; () g (x (t = w)) dux; (£)
(50)

Therefore, Z*(t) is a solution of (3).

Secondly, we prove that Z*(¢) is an almost periodic
solution of (3). From Lemma 4, for any ¢ > 0, there exists
I =1(¢) > 0, such that every interval [a, & + 1] contains at least
one number & for which there exists N > 0 which satisfies

|v (t+0) - V,J(t)|<s, vt > N, ij €. (51)

Abstract and Applied Analysis

Then, for any fixed s € R, we can find a sufficiently large
positive integer N, > N such that, for any k > N,

$+tk > N;
(52)
|v (s+t+0)- (s+tk)|<s, ije].
Let k — +00; we obtain
'x (s+0) —x;, (s)| <eg ije], (53)

which implies that Z” (t) is an almost periodic solution of (3).

Finally, we prove that Z*(¢) is globally exponentially
stable.

Let Z*(t) = {x/; (t)} be the positive almost periodic
solution of system (3) with initial value ¢* = {g;’ ](t)} and
Z(t) = {x i(t)} an arbitrary solution of system (3) with initial
value ¢ = {(p,](t)} and set y(t) = {y,](t)} {x,](t) xl](t)}
Z(t) — Z*(t). Then

W®) = — a0 j hy (5) 3, (£ - 5) ds
- ¥ o
CueN, (i,f)
x [ f (g (£ = 7 () x5 (8)
—f (g (=T (@) x5, (1)]
- ) B®
Cr€Ny(i,j)
X “0 Kj; () g (g (t = w)) dux;; (t)
_ L K;j(wg (x5, (t —w)) dux; (t)] ,
(54)
which yields

d (o) t
" <e 7, (6) - L hy (5 La,‘j )"y, (9)d9ds>
=My, () +eyl (o)
—a; (t) J hy; (s) dse™ y; (1)

+ L hy; (s) a;; (t — ) eMt_s)yij (t-s)ds

<al] () ,-j (s)ds - /\)

X (eM)’U (t) - 0 hij (s) L_s a;; (0) ew)’ij (0)do dS)
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_ (aij (t) JOO hy; (s)ds - /\) LOO hij (s)

0

t
x J a; 0) %y, (6)do ds
t—s

- J:O hij (s) [a,-j (t) P aj (t - s)]

e)t(t—s)

X yij (t=s)ds

+eM {1 - Z C:fjl(t)
Cu€N, (i)

X [f (xg (8 =7 ())) = f (x5 (¢ = 7 ()))] ;5 (2)
- Y ClOf (-t )

CueN,(if)

x [x; () - x5, (8)]

- Y Blo|

C€N,(ivj) 0

(o)

Kij (1)
x [g (i (t =w) = g (x5 (¢ = )] dux;; (¢)
- Z B:'cjl (t) J. Kij(u) g

CreN,(i-j) 0

X (xg; (t —u)) du [x,j ®) - x; (t)] } ,

(55)
where ij € J.
Let
pY 0
Yij (£) = |e Yij (t) - L h,‘j (s)
, (56)
| a;@¢%y; @ d0ds, ijel.
t—s
We define a positive constant M as follows:
M = max{ sup Yj; (s)} . (57)
ije] s€(—00,0]

Let K be a positive number such that
Vi) sM<M+1=K, Vte(-00,0],ij€]. (58)
We claim that
Y; () <K, Vt>0,i=12...,n (59)
Otherwise, there must exist ij € J and ¢ > 0 such that

V() =K, Y;(t)<K, Vte(-00,6),1ij€]. (60)

11
It follows that
Ly 0] = [y 0= | iy
! 20
X a; O)e y;j(G) dods
t=s
(o) t
[T [ ay @ @raea P
0 t—s
< K+an, sup e Vi (s)|,
7 se(-00,]

Vt € (—0o,¢], ij € J.

Consequently, in view of (61) and the fact a%r;;; <1(Gj e )),
we have

M |y;j (t)| < sup e~ 'y;j (5)|
s€(—00,]
(62)
K e
ST Vt € (—00,¢], ij € ].
U

Calculating the upper left derivative of Y;;(t), together with
(13), (55), (60), (62), (T}), and (T,), we obtain

0< DY ()

< - (aij (C) JO hl] (S) ds - A) Yz] (C)

+

(@@ [ ©ds-2)

« ¢ A0
<[y | 06, @) a0ds
G—s

- J-OOO hij (s) [aij ) e/\s — 4jj (c- 5)]

Ag—s)

X e Yij (6 —s)ds

+W+—Z Ci (9)

CueN, (i.7)
X [f (xg (6 =7() = f (x5 (6= 7(5)))]
X x;5 (6)

- Y CHEf(-T()

CyeN, (i.5)
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x [x;(9) = x7; ()]
- Y Bi(

CueN,(i.)

x JOOO Kij ()

x[g(x(c-u)-g (XZZ (c-w)]

X duxij (¢)

- ) Bi©

CueN,(ij)

X J K () g (x5 (¢ — w)) du
0
x [x;;(6) = x7; ()] }|

<= (@@ [ m©ds-1)r©

+ (al](

# [0y @ -ay 69

o
K

(s ds—x\) ——a'n

o i () 1-aln: il

0
Ac—
x M) Yij (c—s)|ds
Alc—
+ Z 'C (C)'[/l e (c)e (6=7(s))
CueN, (i.j)

X |y (6 = T (@) |x; 9)|

oY |el @] Mpe |y, )]
Ck,eN,(i,])

IR CAC

CueN, (i)

X |Kij (u)| .“ge/\(tu) [y (6 = )| du .xii (C)'

+ Y B ©)

CueN, (i)
X K d
|, 1K o]

X Mgek ')/,'j (C)'
< { - [(aij () J-OOO hij (s)ds — A) (1 - 2%’71])

_ LOO hi; (s) 'aij (c)e™ - a;; (g~ s)| ds]

Abstract and Applied Analysis

1
1 - ain

+ Z |C (C)|,U e/\T(C)

CueN, (i.§)

o 1 1 (Lij )+
1—agm 1 - a;m; \ 9y

v Y e @M
CueN, (i) @1

+ Y B ()|r° M |Ky; ()] du

CueN,(i.j)

X 1 1 (Lij )+
T1—aini 1 —agn;\ Oy

DI A e

CueN,(if)

1
XM, ———r K
”-%%}

<-nK

<0,
(63)

which is a contradiction and implies that (59) holds.
Consequently, using a similar argument as in (61)-(62),
we know that
At K ..
s()e” £ ———, VteR, ije].
iy (0] e < — i i€l (64)

This completes the proof. O

4. An Example

In this section, we give an example to demonstrate the results
obtained in the previous sections.

Example 6. Consider the following SICNNs with continu-
ously distributed delays in the leakage terms:

dx;;

S0 a0 L iy () %, (¢ - 5) ds

- Y CHOf (o t—T®))x; ()

CueN, (i.5)
_ Z Bkl (t) J Kj; (1) g (x (t — w)) dux;; ()
Cu €Ny (1])

+L; (), 6j=1,23
(65)
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ay (t) ap () a5 () 113
ay (t) an(t) ap)| =131 3],
as, (t) as, () az; () 313

By, (t) By, (t) By; () [C,; (1) CL (1) Ci5(@)
B,y (t) By, (t) By (1) Cy (1) Cypu(t) Cys(t)
By, (t) Bs, (t) Bss(t) | Ca1 (1) Cin (1) Cis(0)

[0.1 0.2 0.1
=102 0 02},
0.1 0.2 0.1

Ly () Lip () Lis(1)
Ly (1) Ly (t) Ly (t)
Ly (t) Lsy (t) Ly (t)

=0.05

0.7 + 0.24sin®V2t 0.41 + 0.5cos’t 0.74 + 0.2sin’t
x| 0.61+02cos’t 0.67 +0.2sin*t 0.75 + 0.2sin’¢ | .
0.59 + 0.4cos’t 0.5+ 0.41sin’t 0.76 + 0.2cos’t
(66)

Set A = 0.001, 7= 0.05,7 = g = 1, hy(s) = (1/5)e™ , K (1) =
|sinule™,i = 1,2, and 3. j = 1,2, and 3, and f(x) =
g(x) = (1/4000)(Ix — 1| = |x + 1f), 7(6) = (1/100)

sin’t; clearly, My = M, = 0.0005, u; = p, = 0.0005,

ch,ENl(l,l) Clldl = ch,eNl(u) Blldl = 0.5, ZCkleNl(l,Z) Clldz
chleNl(l,Z) Blflz = 038, ch,eNl(m) C]1d3 = ch,eNl(l,a) Blfé =
0.5, ZCHENI(Z,I) Clzdl = ZCHGNI(Z,I) B12d1 = 0.3, ch,eNl(z,z) Clzdz =
ZCMENI(Z,Z) Blzdz = 12 ZCk,EN1(2,3) C12d3 = ZCk,€N1(2,3) B];é

0.3, ZCk,eNl(3,1) Cl3dl = ZCk,eNl(S,l) Blad1 = 0.5, chlele,z) Cladz =

ki Kl ki
ZCkIEN1(3,2) B, = 0.8, ZCkleNl(S,S) Cys = zCk1€N1(3,3) By; = 0.5,

1 <a; <3n; =0Lamn <03<Landij €] =
{11,12,13,21,22,23,31,32,33}.

Consider,

ind; (t
min o, (1)

= min

nir [aij (t) J h,»j (s)ds (1 - Za:;n;;)

0
- LOO By (5) |a; (0) = (¢ = 9)| ds]

-2

CueN, (i-7)

- Y ol

L 0
CkleNq(z,])

|C (0] My

o0

|Kij (u)| duMg

1

g
L= ayy

>0.0715>0, Vt>0.

13
0 + o+
rlljlglx - [(aij (t) Jo hij (s)ds - /\) (1 - 2%”71';)
* A
S
- JO h,»j (s) |aij t)e™ —a; (t - s)| ds]
1
Ly
S NCT
CueN, (i)
o 1 1 ( Lij )+
1—agmg 1 - ajini\ 6
1
oy e o|M——
CueN G 1 - ajm;
ki A
u
+ Z |Bi]. (t)| J e 'Kl-j (u)'du
CleN,(irj) 0
o 1 1 ( Lij >+
u _y
1 —almy 1- a;i; \ O
ki «©
DI G R AR
CeN,(i.j) 0
1
XM, ————
)
< -0.0556 < -0.05= -7, Vt>0.
(67)

It follows that system (65) satisfies all the conditions in
Theorem 5. Hence, system (65) has exactly one almost peri-
odic solution. Moreover, the almost periodic solution is
globally exponentially stable.

Remark 7. Since [1-11] only dealt with SICNNs without
leakage delays, [12-21] give no opinions about the problem
of almost periodic solutions for SICNNs with leakage delays.
One can observe that all the results in these literature and the
references therein can not be applicable to prove the existence
and exponential stability of almost periodic solutions for
SICNNSs (65).
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