10,739 research outputs found

    Towards a Swiss National Research Infrastructure

    Full text link
    In this position paper we describe the current status and plans for a Swiss National Research Infrastructure. Swiss academic and research institutions are very autonomous. While being loosely coupled, they do not rely on any centralized management entities. Therefore, a coordinated national research infrastructure can only be established by federating the various resources available locally at the individual institutions. The Swiss Multi-Science Computing Grid and the Swiss Academic Compute Cloud projects serve already a large number of diverse user communities. These projects also allow us to test the operational setup of such a heterogeneous federated infrastructure

    E-finance-lab at the House of Finance : about us

    Get PDF
    The financial services industry is believed to be on the verge of a dramatic [r]evolution. A substantial redesign of its value chains aimed at reducing costs, providing more efficient and flexible services and enabling new products and revenue streams is imminent. But there seems to be no clear migration path nor goal which can cast light on the question where the finance industry and its various players will be and should be in a decade from now. The mission of the E-Finance Lab is the development and application of research methodologies in the financial industry that promote and assess how business strategies and structures are shared and supported by strategies and structures of information systems. Important challenges include the design of smart production infrastructures, the development and evaluation of advantageous sourcing strategies and smart selling concepts to enable new revenue streams for financial service providers in the future. Overall, our goal is to contribute methods and views to the realignment of the E-Finance value chain. ..

    CERN openlab Whitepaper on Future IT Challenges in Scientific Research

    Get PDF
    This whitepaper describes the major IT challenges in scientific research at CERN and several other European and international research laboratories and projects. Each challenge is exemplified through a set of concrete use cases drawn from the requirements of large-scale scientific programs. The paper is based on contributions from many researchers and IT experts of the participating laboratories and also input from the existing CERN openlab industrial sponsors. The views expressed in this document are those of the individual contributors and do not necessarily reflect the view of their organisations and/or affiliates

    TOWARDS INSTITUTIONAL INFRASTRUCTURES FOR E-SCIENCE: The Scope of the Challenge

    Get PDF
    The three-fold purpose of this Report to the Joint Information Systems Committee (JISC) of the Research Councils (UK) is to: • articulate the nature and significance of the non-technological issues that will bear on the practical effectiveness of the hardware and software infrastructures that are being created to enable collaborations in e- Science; • characterise succinctly the fundamental sources of the organisational and institutional challenges that need to be addressed in regard to defining terms, rights and responsibilities of the collaborating parties, and to illustrate these by reference to the limited experience gained to date in regard to intellectual property, liability, privacy, and security and competition policy issues affecting scientific research organisations; and • propose approaches for arriving at institutional mechanisms whose establishment would generate workable, specific arrangements facilitating collaboration in e-Science; and, that also might serve to meet similar needs in other spheres such as e- Learning, e-Government, e-Commerce, e-Healthcare. In carrying out these tasks, the report examines developments in enhanced computer-mediated telecommunication networks and digital information technologies, and recent advances in technologies of collaboration. It considers the economic and legal aspects of scientific collaboration, with attention to interactions between formal contracting and 'private ordering' arrangements that rest upon research community norms. It offers definitions of e-Science, virtual laboratories, collaboratories, and develops a taxonomy of collaborative e-Science activities which is implemented to classify British e-Science pilot projects and contrast these with US collaboratory projects funded during the 1990s. The approach to facilitating inter-organizational participation in collaborative projects rests upon the development of a modular structure of contractual clauses that permit flexibility and experience-based learning.

    Towards a cyberinfrastructure for enhanced scientific

    Get PDF
    A new generation of information and communication infrastructures, including advanced Internet computing and Grid technologies, promises to enable more direct and shared access to more widely distributed computing resources than was previously possible. Scientific and technological collaboration, consequently, is more and more coming to be seen as critically dependent upon effective access to, and sharing of digital research data, and of the information tools that facilitate data being structured for efficient storage, search, retrieval, display and higher level analysis. A recent (February 2003) report to the U.S. NSF Directorate of Computer and Information System Engineering urged that funding be provided for a major enhancement of computer and network technologies, thereby creating a cyberinfrastructure whose facilities would support and transform the conduct of scientific and engineering research. The articulation of this programmatic vision reflects a widely shared expectation that solving the technical engineering problems associated with the advanced hardware and software systems of the cyberinfrastructure will yield revolutionary payoffs by empowering individual researchers and increasing the scale, scope and flexibility of collective research enterprises. The argument of this paper, however, is that engineering breakthroughs alone will not be enough to achieve such an outcome; success in realizing the cyberinfrastructure’s potential, if it is achieved, will more likely to be the resultant of a nexus of interrelated social, legal and technical transformations. The socio-institutional elements of a new infrastructure supporting collaboration – that is to say, its supposedly “softer” parts -- are every bit as complicated as the hardware and computer software, and, indeed, may prove much harder to devise and implement. The roots of this latter class of challenges facing “e-Science” will be seen to lie in the micro- and meso-level incentive structures created by the existing legal and administrative regimes. Although a number of these same conditions and circumstances appear to be equally significant obstacles to commercial provision of Grid services in interorganizational contexts, the domain of publicly supported scientific collaboration is held to be the more hospitable environment in which to experiment with a variety of new approaches to solving these problems. The paper concludes by proposing several “solution modalities,” including some that also could be made applicable for fields of information-intensive collaboration in business and finance that must regularly transcends organizational boundaries.

    Towards a cyberinfrastructure for enhanced scientific

    Get PDF
    Scientific and technological collaboration is more and more coming to be seen as critically dependent upon effective access to, and sharing of digital research data, and of the information tools that facilitate data being structured for efficient storage, search, retrieval, display and higher level analysis. A February 2003 report to the U.S. NSF Directorate of Computer and Information System Engineering urged that funding be provided for a major enhancement of computer and network technologies, thereby creating a cyberinfrastructure whose facilities would support and transform the conduct of scientific and engineering research. The argument of this paper is that engineering breakthroughs alone will not be enough to achieve such an outcome; success in realizing the cyberinfrastructure’s potential, if it is achieved, will more likely to be the resultant of a nexus of interrelated social, legal and technical transformations. The socio-institutional elements of a new infrastructure supporting collaboration that is to say, its supposedly “softer” parts -- are every bit as complicated as the hardware and computer software, and, indeed, may prove much harder to devise and implement. The roots of this latter class of challenges facing “e- Science” will be seen to lie in the micro- and meso-level incentive structures created by the existing legal and administrative regimes. Although a number of these same conditions and circumstances appear to be equally significant obstacles to commercial provision of Grid services in interorganizational contexts, the domain of publicly supported scientific collaboration is held to be the more hospitable environment in which to experiment with a variety of new approaches to solving these problems. The paper concludes by proposing several “solution modalities,” including some that also could be made applicable for fields of information-intensive collaboration in business and finance that must regularly transcends organizational boundaries.

    A Grid-Enabled Infrastructure for Resource Sharing, E-Learning, Searching and Distributed Repository Among Universities

    Get PDF
    In the recent years, service-based approaches for sharing of data among repositories and online learning are rising to prominence because of their potential to meet the requirements in the area of high performance computing. Developing education based grid services and assuring high availability reliability and scalability are demanding in web service architectures. On the other hand, grid computing provides flexibility towards aggregating distributed CPU, memory, storage, data and supports large number of distributed resource sharing to provide the full potential for education like applications to share the knowledge that can be attainable on any single system. However, the literature shows that the potential of grid resources for educational purposes is not being utilized yet. In this paper, an education based grid framework architecture that provides promising platform to support sharing of geographically dispersed learning content among universities is developed. It allows students, faculty and researchers to share and gain knowledge in their area of interest by using e-learning, searching and distributed repository services among universities from anywhere, anytime. Globus toolkit 5.2.5 (GTK) software is used as grid middleware that provides resource access, discovery and management, data movement, security, and so forth. Furthermore, this work uses the OGSA-DAI that provides database access and operations. The resulting infrastructure enables users to discover education services and interact with them using the grid portal

    SIMDAT

    No full text

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008
    • …
    corecore