693 research outputs found

    An Overview of Vertical Handoff Decision Algorithms in NGWNs and a new Scheme for Providing Optimized Performance in Heterogeneous Wireless Networks

    Get PDF
    Because the increasingly development and use of wireless networks and mobile technologies, was implemented the idea that users of mobile terminals must have access in different wireless networks simultaneously. Therefore one of the main interest points of Next Generation Wireless Networks (NGWNs), refers to the ability to support wireless network access equipment to ensure a high rate of services between different wireless networks. To solve these problems it was necessary to have decision algorithms to decide for each user of mobile terminal, which is the best network at some point, for a service or a specific application that the user needs. Therefore to make these things, different algorithms use the vertical handoff technique. Below are presented a series of algorithms based on vertical handoff technique with a classification of the different existing vertical handoff decision strategies, which tries to solve these issues of wireless network selection at a given time for a specific application of an user. Based on our synthesis on vertical handoff decision strategies given below, we build our strategy based on solutions presented below, taking the most interesting aspect of each one.Vertical Handoff, Genetic Algorithms, Fuzzy Logic, Neural Networks, AHP

    An Optimum Vertical Handoff Decision Algorithm for UMTS-WLAN

    Full text link
    The integration of diverse but complementary cellular and wireless technologies in the next generation of wireless communication systems requires the design of intelligent vertical handoff decision algorithms to enable mobile users to seamlessly switch network access and experience uninterrupted service continuity anywhere and anytime. This paper provides an adaptive multiple attribute vertical handoff decision algorithm that enables wireless access network selection at a mobile terminal using fuzzy logic concepts and a genetic algorithm. A performance study using the integration of wireless wide area networks (WWANs) and wireless metropolitan area networks (WMANs) as an example shows that our proposed vertical handoff decision algorithm is able to determine when a handoff is required, and selects the best access network that is optimized to network conditions, quality of service requirements, mobile terminal conditions, user preferences, and service cost

    A Genetic Algorithm-based Framework for Soft Handoff Optimization in Wireless Networks

    Get PDF
    In this paper, a genetic algorithm (GA)-based approach is used to evaluate the probability of successful handoff in heterogeneous wireless networks (HWNs) so as to increase capacity and network performance. The traditional handoff schemes are prone to ping pong and corner effects and developing an optimized handoff scheme for seamless, faster, and less power consuming handoff decision is challenging. The GA scheme can effectively optimize soft handoff decision by selecting the best fit network for the mobile terminal (MT) considering quality of service (QoS) requirements, network parameters and user’s preference in terms of cost of different attachment points for the MT. The robustness and ability to determine global optima for any function using crossover and mutation operations makes GA a promising solution. The developed optimization framework was simulated in Matrix Laboratory (MATLAB) software using MATLAB’s optima tool and results show that an optimal MT attachment point is the one with the highest handoff success probability value which determines direction for successful handoff in HWN environment. The system maintained a 90%  with 4 channels and more while a 75% was obtained even at high traffic intensity

    Mobility Management in 4G Networks

    Get PDF
    Over the past 25 years, the evolution of the internet and the advances of wireless technologies have made a tremendous impact on lifestyle of people around the world. Together, these two factors have changed the way people communicate, work, and get their entertainment. In order to be always best connected for various applications, the network selection procedure in heterogeneous multi-access environment during vertical handover decision is intended to choose the most suitable network for mobile user. In this paper, a performance study using the fuzzy logic concept is done and the integration of UMTS and WiMAX network is taken as an example to show that the proposed vertical handoff decision algorithm is able to determine when a handoff is required, and selects the best access network that is optimized to network conditions, quality of service requirements, received signal strength, bandwidth requirements and user preferences

    Fuzzy-logic framework for future dynamic cellular systems

    Get PDF
    There is a growing need to develop more robust and energy-efficient network architectures to cope with ever increasing traffic and energy demands. The aim is also to achieve energy-efficient adaptive cellular system architecture capable of delivering a high quality of service (QoS) whilst optimising energy consumption. To gain significant energy savings, new dynamic architectures will allow future systems to achieve energy saving whilst maintaining QoS at different levels of traffic demand. We consider a heterogeneous cellular system where the elements of it can adapt and change their architecture depending on the network demand. We demonstrate substantial savings of energy, especially in low-traffic periods where most mobile systems are over engineered. Energy savings are also achieved in high-traffic periods by capitalising on traffic variations in the spatial domain. We adopt a fuzzy-logic algorithm for the multi-objective decisions we face in the system, where it provides stability and the ability to handle imprecise data
    • 

    corecore