138 research outputs found

    Adaptive Active Queue Management based on Queue Ratio of Set-point Weighting

    Get PDF
    Presently, active queue management (AQM) is one of the important considerations in communication networks. The challenge is to make it simple and robust in bursty traffic and uncertain network conditions. This paper proposes a new AQM scheme, an adaptive ratio proportional integral (ARPI), for adaptively controlling network congestion in dynamic network traffic conditions. First, AQM was designed by adding a set-point weighting structure to a proportional integral (PI) controller to reduce the burstiness of network traffic. Second, an adaptive set-point weighting based on the ratio of instantaneous queue length to the set-point queue and the buffer size was proposed to improve the robustness of a non-linear network. The proposed design integrates the aforementioned expectations into one function and needs only one parameter change to adapt to fluctuating network condition. Hence, this scheme provides lightweight computation and simple software and hardware implementation. This approach was analyzed and compared with the PI AQM scheme. Evaluation results demonstrated that our proposed AQM can regulate queue length with a fast response, good stability under any traffic conditions, and small queuing delay

    Dsrem Regulator in the Tcp/ip Network

    Get PDF
    The paper presents the main parameters and describes the behavior of the active queue management (AQM) algorithm which based on random exponential marking (REM) packets in TCP/IP network. It has presented the new AQM algorithm, which has been developed by author, which is based on REM and uses dynamically splitting marking characteristic (DSREM) of network packets. The basic parameters and functional principle of DSREM algorithm have been shown. Block diagram of linearized AQM system, which is based on DSREM management law and describes its main components, is shown. Transfer characteristic for DSREM, which is based on the Laplace transform and its basic parameters, are considered. Simulation of TCP/IP network, which contains congested link for small and large sources of incoming messages using REM and DSREM regulators, is done. Log-frequency characteristics for REM and DSREM methods are obtained and their comparative analysis is performed. It is concluded that the regulator based on DSREM algorithm has better performance and stability of the system can be used in the AQM system

    A contrasting look at self-organization in the Internet and next-generation communication networks

    Get PDF
    This article examines contrasting notions of self-organization in the Internet and next-generation communication networks, by reviewing in some detail recent evidence regarding several of the more popular attempts to explain prominent features of Internet structure and behavior as "emergent phenomena." In these examples, what might appear to the nonexpert as "emergent self-organization" in the Internet actually results from well conceived (albeit perhaps ad hoc) design, with explanations that are mathematically rigorous, in agreement with engineering reality, and fully consistent with network measurements. These examples serve as concrete starting points from which networking researchers can assess whether or not explanations involving self-organization are relevant or appropriate in the context of next-generation communication networks, while also highlighting the main differences between approaches to self-organization that are rooted in engineering design vs. those inspired by statistical physics

    Flower Pollination Algorithm to Tune PID Controller of TCP/AQM Wireless Networks

    Get PDF
    The current study aims to conduct a simulation that is useful in developing an appropriate design that addresses the problem of congestion in the Internet network through controlling the queue of the router. The simulation is conducted through the proposed model for simulation with different control systems that help in raising the quality of performance such as traditional Proportional Integral Derivative (PID) and advanced optimal by Flower Pollination Algorithm  (FPA). It depends for Transmission Control Protocol/ Active Queue Management( TCP/AQM )simulation model for a linear system and another non-linear system. To adjust the network work and raise the level of performance, different control systems were chosen, taking into account all the things that appear through conducting experiments and for different purposes. One of the most important things that must be taken into consideration is the system disturbances as a result of the volume and values of the data, causing congestion . It was shown through the results of the experiments that were conducted considering the cases of the linear and nonlinear system to pass data traffic in the network and by adopting the different techniques of the control units, the preference of optimizasion systems over the traditional ones, as well as the preference of the traditional over  without control in close loop, is the improvement of the performance of linear systems compared to the open and closed system without control. The simulation results showed that very clear the superiority of the optimization by FPA-PID controller over the conventional system (PID)  , as well as very clear the superiority of  the traditional system (PID)over closed system without control and open loop system
    corecore