14,057 research outputs found

    Dependable Digitally-Assisted Mixed-Signal IPs Based on Integrated Self-Test & Self-Calibration

    Get PDF
    Heterogeneous SoC devices, including sensors, analogue and mixed-signal front-end circuits and the availability of massive digital processing capability, are being increasingly used in safety-critical applications like in the automotive, medical, and the security arena. Already a significant amount of attention has been paid in literature with respect to the dependability of the digital parts in heterogeneous SoCs. This is in contrast to especially the sensors and front-end mixed-signal electronics; these are however particular sensitive to external influences over time and hence determining their dependability. This paper provides an integrated SoC/IP approach to enhance the dependability. It will give an example of a digitally-assisted mixed-signal front-end IP which is being evaluated under its mission profile of an automotive tyre pressure monitoring system. It will be shown how internal monitoring and digitally-controlled adaptation by using embedded processors can help in terms of improving the dependability of this mixed-signal part under harsh conditions for a long time

    Online self-repair of FIR filters

    Get PDF
    Chip-level failure detection has been a target of research for some time, but today's very deep-submicron technology is forcing such research to move beyond detection. Repair, especially self-repair, has become very important for containing the susceptibility of today's chips. This article introduces a self-repair-solution for the digital FIR filter, one of the key blocks used in DSPs

    Simulator verification techniques study. Integrated simulator self test system concepts

    Get PDF
    Software and hardware requirements for implementing hardware self tests are presented in support of the development of training and procedures development simulators for the space shuttle program. Self test techniques for simulation hardware and the validation of simulation performance are stipulated. The requirements of an integrated simulator self system are analyzed. Readiness tests, fault isolation tests, and incipient fault detection tests are covered

    Remote Cell Growth Sensing Using Self-Sustained Bio-Oscillations

    Get PDF
    A smart sensor system for cell culture real-time supervision is proposed, allowing for a significant reduction in human effort applied to this type of assay. The approach converts the cell culture under test into a suitable “biological” oscillator. The system enables the remote acquisition and management of the “biological” oscillation signals through a secure web interface. The indirectly observed biological properties are cell growth and cell number, which are straightforwardly related to the measured bio-oscillation signal parameters, i.e., frequency and amplitude. The sensor extracts the information without complex circuitry for acquisition and measurement, taking advantage of the microcontroller features. A discrete prototype for sensing and remote monitoring is presented along with the experimental results obtained from the performed measurements, achieving the expected performance and outcomes

    An On-line BIST RAM Architecture with Self Repair Capabilities

    Get PDF
    The emerging field of self-repair computing is expected to have a major impact on deployable systems for space missions and defense applications, where high reliability, availability, and serviceability are needed. In this context, RAM (random access memories) are among the most critical components. This paper proposes a built-in self-repair (BISR) approach for RAM cores. The proposed design, introducing minimal and technology-dependent overheads, can detect and repair a wide range of memory faults including: stuck-at, coupling, and address faults. The test and repair capabilities are used on-line, and are completely transparent to the external user, who can use the memory without any change in the memory-access protocol. Using a fault-injection environment that can emulate the occurrence of faults inside the module, the effectiveness of the proposed architecture in terms of both fault detection and repairing capability was verified. Memories of various sizes have been considered to evaluate the area-overhead introduced by this proposed architectur

    The 727 approach energy management system avionics specification (preliminary)

    Get PDF
    Hardware and software requirements for an Approach Energy Management System (AEMS) consisting of an airborne digital computer and cockpit displays are presented. The displays provide the pilot with a visual indication of when to manually operate the gear, flaps, and throttles during a delayed flap approach so as to reduce approach time, fuel consumption, and community noise. The AEMS is an independent system that does not interact with other navigation or control systems, and is compatible with manually flown or autopilot coupled approaches. Operational use of the AEMS requires a DME ground station colocated with the flight path reference

    Fault-tolerant evolvable hardware using field-programmable transistor arrays

    Full text link

    Preliminary candidate advanced avionics system for general aviation

    Get PDF
    An integrated avionics system design was carried out to the level which indicates subsystem function, and the methods of overall system integration. Sufficient detail was included to allow identification of possible system component technologies, and to perform reliability, modularity, maintainability, cost, and risk analysis upon the system design. Retrofit to older aircraft, availability of this system to the single engine two place aircraft, was considered

    Wind energy system time-domain (WEST) analyzers

    Get PDF
    A portable analyzer which simulates in real time the complex nonlinear dynamics of horizontal axis wind energy systems was constructed. Math models for an aeroelastic rotor featuring nonlinear aerodynamic and inertial terms were implemented with high speed digital controllers and analog calculation. This model was combined with other math models of elastic supports, control systems, a power train and gimballed rotor kinematics. A stroboscopic display system graphically depicting distributed blade loads, motion, and other aerodynamic functions on a cathode ray tube is included. Limited correlation efforts showed good comparison between the results of this analyzer and other sophisticated digital simulations. The digital simulation results were successfully correlated with test data
    corecore