3,829 research outputs found

    A Self-Stabilizing K-Clustering Algorithm Using an Arbitrary Metric (Revised Version of RR2008-31)

    Get PDF
    32 pagesMobile ad hoc networks as well as grid platforms are distributed, changing, and error prone environments. Communication costs within such infrastructure can be improved, or at least bounded, by using k-clustering. A k-clustering of a graph, is a partition of the nodes into disjoint sets, called clusters, in which every node is distance at most k from a designated node in its cluster, called the clusterhead. A self-stabilizing asynchronous distributed algorithm is given for constructing a k-clustering of a connected network of processes with unique IDs and weighted edges. The algorithm is comparison-based, takes O(nk) time, and uses O(log n + log k) space per process, where n is the size of the network. This is the first distributed solution to the k-clustering problem on weighted graphs

    Self-stabilizing algorithms for Connected Vertex Cover and Clique decomposition problems

    Full text link
    In many wireless networks, there is no fixed physical backbone nor centralized network management. The nodes of such a network have to self-organize in order to maintain a virtual backbone used to route messages. Moreover, any node of the network can be a priori at the origin of a malicious attack. Thus, in one hand the backbone must be fault-tolerant and in other hand it can be useful to monitor all network communications to identify an attack as soon as possible. We are interested in the minimum \emph{Connected Vertex Cover} problem, a generalization of the classical minimum Vertex Cover problem, which allows to obtain a connected backbone. Recently, Delbot et al.~\cite{DelbotLP13} proposed a new centralized algorithm with a constant approximation ratio of 22 for this problem. In this paper, we propose a distributed and self-stabilizing version of their algorithm with the same approximation guarantee. To the best knowledge of the authors, it is the first distributed and fault-tolerant algorithm for this problem. The approach followed to solve the considered problem is based on the construction of a connected minimal clique partition. Therefore, we also design the first distributed self-stabilizing algorithm for this problem, which is of independent interest

    Optimal Dynamic Distributed MIS

    Full text link
    Finding a maximal independent set (MIS) in a graph is a cornerstone task in distributed computing. The local nature of an MIS allows for fast solutions in a static distributed setting, which are logarithmic in the number of nodes or in their degrees. The result trivially applies for the dynamic distributed model, in which edges or nodes may be inserted or deleted. In this paper, we take a different approach which exploits locality to the extreme, and show how to update an MIS in a dynamic distributed setting, either \emph{synchronous} or \emph{asynchronous}, with only \emph{a single adjustment} and in a single round, in expectation. These strong guarantees hold for the \emph{complete fully dynamic} setting: Insertions and deletions, of edges as well as nodes, gracefully and abruptly. This strongly separates the static and dynamic distributed models, as super-constant lower bounds exist for computing an MIS in the former. Our results are obtained by a novel analysis of the surprisingly simple solution of carefully simulating the greedy \emph{sequential} MIS algorithm with a random ordering of the nodes. As such, our algorithm has a direct application as a 33-approximation algorithm for correlation clustering. This adds to the important toolbox of distributed graph decompositions, which are widely used as crucial building blocks in distributed computing. Finally, our algorithm enjoys a useful \emph{history-independence} property, meaning the output is independent of the history of topology changes that constructed that graph. This means the output cannot be chosen, or even biased, by the adversary in case its goal is to prevent us from optimizing some objective function.Comment: 19 pages including appendix and reference

    Complex networks in climate dynamics - Comparing linear and nonlinear network construction methods

    Full text link
    Complex network theory provides a powerful framework to statistically investigate the topology of local and non-local statistical interrelationships, i.e. teleconnections, in the climate system. Climate networks constructed from the same global climatological data set using the linear Pearson correlation coefficient or the nonlinear mutual information as a measure of dynamical similarity between regions, are compared systematically on local, mesoscopic and global topological scales. A high degree of similarity is observed on the local and mesoscopic topological scales for surface air temperature fields taken from AOGCM and reanalysis data sets. We find larger differences on the global scale, particularly in the betweenness centrality field. The global scale view on climate networks obtained using mutual information offers promising new perspectives for detecting network structures based on nonlinear physical processes in the climate system.Comment: 24 pages, 10 figure

    Kronecker Graphs: An Approach to Modeling Networks

    Full text link
    How can we model networks with a mathematically tractable model that allows for rigorous analysis of network properties? Networks exhibit a long list of surprising properties: heavy tails for the degree distribution; small diameters; and densification and shrinking diameters over time. Most present network models either fail to match several of the above properties, are complicated to analyze mathematically, or both. In this paper we propose a generative model for networks that is both mathematically tractable and can generate networks that have the above mentioned properties. Our main idea is to use the Kronecker product to generate graphs that we refer to as "Kronecker graphs". First, we prove that Kronecker graphs naturally obey common network properties. We also provide empirical evidence showing that Kronecker graphs can effectively model the structure of real networks. We then present KronFit, a fast and scalable algorithm for fitting the Kronecker graph generation model to large real networks. A naive approach to fitting would take super- exponential time. In contrast, KronFit takes linear time, by exploiting the structure of Kronecker matrix multiplication and by using statistical simulation techniques. Experiments on large real and synthetic networks show that KronFit finds accurate parameters that indeed very well mimic the properties of target networks. Once fitted, the model parameters can be used to gain insights about the network structure, and the resulting synthetic graphs can be used for null- models, anonymization, extrapolations, and graph summarization

    {HyGen}: {G}enerating Random Graphs with Hyperbolic Communities

    No full text
    corecore