5,047 research outputs found

    Neural Sensor Fusion for Spatial Visualization on a Mobile Robot

    Full text link
    An ARTMAP neural network is used to integrate visual information and ultrasonic sensory information on a B 14 mobile robot. Training samples for the neural network are acquired without human intervention. Sensory snapshots are retrospectively associated with the distance to the wall, provided by on~ board odomctry as the robot travels in a straight line. The goal is to produce a more accurate measure of distance than is provided by the raw sensors. The neural network effectively combines sensory sources both within and between modalities. The improved distance percept is used to produce occupancy grid visualizations of the robot's environment. The maps produced point to specific problems of raw sensory information processing and demonstrate the benefits of using a neural network system for sensor fusion.Office of Naval Research and Naval Research Laboratory (00014-96-1-0772, 00014-95-1-0409, 00014-95-0657

    NASA Center for Intelligent Robotic Systems for Space Exploration

    Get PDF
    NASA's program for the civilian exploration of space is a challenge to scientists and engineers to help maintain and further develop the United States' position of leadership in a focused sphere of space activity. Such an ambitious plan requires the contribution and further development of many scientific and technological fields. One research area essential for the success of these space exploration programs is Intelligent Robotic Systems. These systems represent a class of autonomous and semi-autonomous machines that can perform human-like functions with or without human interaction. They are fundamental for activities too hazardous for humans or too distant or complex for remote telemanipulation. To meet this challenge, Rensselaer Polytechnic Institute (RPI) has established an Engineering Research Center for Intelligent Robotic Systems for Space Exploration (CIRSSE). The Center was created with a five year $5.5 million grant from NASA submitted by a team of the Robotics and Automation Laboratories. The Robotics and Automation Laboratories of RPI are the result of the merger of the Robotics and Automation Laboratory of the Department of Electrical, Computer, and Systems Engineering (ECSE) and the Research Laboratory for Kinematics and Robotic Mechanisms of the Department of Mechanical Engineering, Aeronautical Engineering, and Mechanics (ME,AE,&M), in 1987. This report is an examination of the activities that are centered at CIRSSE

    Quantifying the Evolutionary Self Structuring of Embodied Cognitive Networks

    Full text link
    We outline a possible theoretical framework for the quantitative modeling of networked embodied cognitive systems. We notice that: 1) information self structuring through sensory-motor coordination does not deterministically occur in Rn vector space, a generic multivariable space, but in SE(3), the group structure of the possible motions of a body in space; 2) it happens in a stochastic open ended environment. These observations may simplify, at the price of a certain abstraction, the modeling and the design of self organization processes based on the maximization of some informational measures, such as mutual information. Furthermore, by providing closed form or computationally lighter algorithms, it may significantly reduce the computational burden of their implementation. We propose a modeling framework which aims to give new tools for the design of networks of new artificial self organizing, embodied and intelligent agents and the reverse engineering of natural ones. At this point, it represents much a theoretical conjecture and it has still to be experimentally verified whether this model will be useful in practice.

    Self-adaptation of mutation distribution in evolution strategies for dynamic optimization problems

    Get PDF
    Copyright @ IOS Press. All Rights Reserved.Evolution strategies with q-Gaussian mutation, which allows the self-adaptation of the mutation distribution shape, is proposed for dynamic optimization problems in this paper. In the proposed method, a real parameter q, which allows to smoothly control the shape of the mutation distribution, is encoded in the chromosome of the individuals and is allowed to evolve. In the experimental study, the q-Gaussian mutation is compared to Gaussian and Cauchy mutation on experiments generated from the simulation of evolutionary robots and on dynamic optimization problems generated by the Moving Peaks generator

    Navigation control of an automated mobile robot robot using neural network technique

    Get PDF
    Over recent years, automated mobile robots play a crucial role in various navigation operations. For any mobile device, the capacity to explore in its surroundings is essential. Evading hazardous circumstances, for example, crashes and risky conditions (temperature, radiation, presentation to climate, and so on.) comes in the first place, yet in the event that the robot has a reason that identifies with particular places in its surroundings, it must discover those spots. There is an increment in examination here due to the requisition of mobile robots in a solving issues like investigating natural landscape and assets, transportation tasks, surveillance, or cleaning. We require great moving competencies and a well exactness for moving in a specified track in these requisitions. Notwithstanding, control of these navigation bots get to be exceptionally troublesome because of the exceedingly unsystematic and dynamic aspects of the surrounding world. The intelligent reply to this issue is the provision of sensors to study the earth. As neural networks (NNs) are described by adaptability and a fitness for managing non-linear problems, they are conceived to be useful when utilized on navigation robots. In this exploration our computerized reasoning framework is focused around neural network model for control of an Automated motion robot in eccentric and unsystematic nature. Hence the back propagation algorithm has been utilized for controlling the direction of the mobile robot when it experiences by an obstacle in the left, right and front directions. The recreation of the robot under different deterrent conditions is carried out utilizing Arduino which utilizes C programs for usage

    Manifold-Based Robot Motion Generation

    Get PDF
    In order to make an autonomous robot system more adaptive to human-centered environments, it is effective to let the robot collect sensor values by itself and build controller to reach a desired configuration autonomously. Multiple sensors are often available to estimate the state of the robot, but they contain two problems: (1) sensing ranges of each sensor might not overlap with each other and (2) sensor variable can contain redundancy against the original state space. Regarding the first problem, a local coordinate definition based on a sensor value and its extension to unobservable region is presented. This technique helps the robot to estimate the sensor variable outside of its observation range and to integrate regions of two sensors that do not overlap. For a solution to the second problem, a grid-based estimation of lower-dimensional subspace is presented. This estimation of manifold allows the robot to have a compact representation, and thus the proposed motion generation method can be applied to the redundant sensor system. In the case of image feature spaces with a high-dimensional sensor signal, a manifold estimation-based mapping, known as locally linear embedding (LLE), was applied to an estimation of distance between robot body and an obstacle
    corecore