49,379 research outputs found

    Mandible Segmentation of Dental CBCT Scans Affected by Metal Artifacts Using Coarse-to-Fine Learning Model

    Get PDF
    Accurate segmentation of the mandible from cone-beam computed tomography (CBCT) scans is an important step for building a personalized 3D digital mandible model for maxillofacial surgery and orthodontic treatment planning because of the low radiation dose and short scanning duration. CBCT images, however, exhibit lower contrast and higher levels of noise and artifacts due to extremely low radiation in comparison with the conventional computed tomography (CT), which makes automatic mandible segmentation from CBCT data challenging. In this work, we propose a novel coarse-to-fine segmentation framework based on 3D convolutional neural network and recurrent SegUnet for mandible segmentation in CBCT scans. Specifically, the mandible segmentation is decomposed into two stages: localization of the mandible-like region by rough segmentation and further accurate segmentation of the mandible details. The method was evaluated using a dental CBCT dataset. In addition, we evaluated the proposed method and compared it with state-of-the-art methods in two CT datasets. The experiments indicate that the proposed algorithm can provide more accurate and robust segmentation results for different imaging techniques in comparison with the state-of-the-art models with respect to these three datasets

    Point cloud segmentation using hierarchical tree for architectural models

    Full text link
    Recent developments in the 3D scanning technologies have made the generation of highly accurate 3D point clouds relatively easy but the segmentation of these point clouds remains a challenging area. A number of techniques have set precedent of either planar or primitive based segmentation in literature. In this work, we present a novel and an effective primitive based point cloud segmentation algorithm. The primary focus, i.e. the main technical contribution of our method is a hierarchical tree which iteratively divides the point cloud into segments. This tree uses an exclusive energy function and a 3D convolutional neural network, HollowNets to classify the segments. We test the efficacy of our proposed approach using both real and synthetic data obtaining an accuracy greater than 90% for domes and minarets.Comment: 9 pages. 10 figures. Submitted in EuroGraphics 201

    Atlas-Based Prostate Segmentation Using an Hybrid Registration

    Full text link
    Purpose: This paper presents the preliminary results of a semi-automatic method for prostate segmentation of Magnetic Resonance Images (MRI) which aims to be incorporated in a navigation system for prostate brachytherapy. Methods: The method is based on the registration of an anatomical atlas computed from a population of 18 MRI exams onto a patient image. An hybrid registration framework which couples an intensity-based registration with a robust point-matching algorithm is used for both atlas building and atlas registration. Results: The method has been validated on the same dataset that the one used to construct the atlas using the "leave-one-out method". Results gives a mean error of 3.39 mm and a standard deviation of 1.95 mm with respect to expert segmentations. Conclusions: We think that this segmentation tool may be a very valuable help to the clinician for routine quantitative image exploitation.Comment: International Journal of Computer Assisted Radiology and Surgery (2008) 000-99

    Creation of virtual worlds from 3D models retrieved from content aware networks based on sketch and image queries

    Get PDF
    The recent emergence of user generated content requires new content creation tools that will be both easy to learn and easy to use. These new tools should enable the user to construct new high-quality content with minimum effort; it is essential to allow existing multimedia content to be reused as building blocks when creating new content. In this work we present a new tool for automatically constructing virtual worlds with minimum user intervention. Users can create these worlds by drawing a simple sketch, or by using interactively segmented 2D objects from larger images. The system receives as a query the sketch or the segmented image, and uses it to find similar 3D models that are stored in a Content Centric Network. The user selects a suitable model from the retrieved models, and the system uses it to automatically construct a virtual 3D world
    corecore