Recent developments in the 3D scanning technologies have made the generation
of highly accurate 3D point clouds relatively easy but the segmentation of
these point clouds remains a challenging area. A number of techniques have set
precedent of either planar or primitive based segmentation in literature. In
this work, we present a novel and an effective primitive based point cloud
segmentation algorithm. The primary focus, i.e. the main technical contribution
of our method is a hierarchical tree which iteratively divides the point cloud
into segments. This tree uses an exclusive energy function and a 3D
convolutional neural network, HollowNets to classify the segments. We test the
efficacy of our proposed approach using both real and synthetic data obtaining
an accuracy greater than 90% for domes and minarets.Comment: 9 pages. 10 figures. Submitted in EuroGraphics 201