70,124 research outputs found

    Secure Data Sharing With AdHoc

    Get PDF
    In the scientific circles, there is pressing need to form temporary and dynamic collaborations to share diverse resources (e.g. data, an access to services, applications or various instruments). Theoretically, the traditional grid technologies respond to this need with the abstraction of a Virtual Organization (VO). In practice its procedures are characterized by latency, administrative overhead and are inconvenient to its users. We would like to propose the Manifesto for Secure Sharing. The main postulate is that users should be able to share data and resources by themselves without any intervention on the system administrator's side. In addition, operating an intuitive interface does not require IT skills. AdHoc is a resource sharing interface designed for users willing to share data or computational resources within seconds and almost effortlessly. The AdHoc application is built on the top of traditional security frameworks, such as the PKI X.509 certificate scheme, Globus GSI, gLite VOMS and Shibboleth. It enables users rapid and secure collaboration

    Cross-middleware Interoperability in Distributed Concurrent Engineering

    No full text
    Secure, distributed collaboration between different organizations is a key challenge in Grid computing today. The GDCD project has produced a Grid-based demonstrator Virtual Collaborative Facility (VCF) for the European Space Agency. The purpose of this work is to show the potential of Grid technology to support fully distributed concurrent design, while addressing practical considerations including network security, interoperability, and integration of legacy applications. The VCF allows domain engineers to use the concurrent design methodology in a distributed fashion to perform studies for future space missions. To demonstrate the interoperability and integration capabilities of Grid computing in concurrent design, we developed prototype VCF components based on ESA’s current Excel-based Concurrent Design Facility (a non-distributed environment), using a STEP-compliant database that stores design parameters. The database was exposed as a secure GRIA 5.1 Grid service, whilst a .NET/WSE3.0-based library was developed to enable secure communication between the Excel client and STEP database

    Supporting security-oriented, collaborative nanoCMOS electronics research

    Get PDF
    Grid technologies support collaborative e-Research typified by multiple institutions and resources seamlessly shared to tackle common research problems. The rules for collaboration and resource sharing are commonly achieved through establishment and management of virtual organizations (VOs) where policies on access and usage of resources by collaborators are defined and enforced by sites involved in the collaboration. The expression and enforcement of these rules is made through access control systems where roles/privileges are defined and associated with individuals as digitally signed attribute certificates which collaborating sites then use to authorize access to resources. Key to this approach is that the roles are assigned to the right individuals in the VO; the attribute certificates are only presented to the appropriate resources in the VO; it is transparent to the end user researchers, and finally that it is manageable for resource providers and administrators in the collaboration. In this paper, we present a security model and implementation improving the overall usability and security of resources used in Grid-based e-Research collaborations through exploitation of the Internet2 Shibboleth technology. This is explored in the context of a major new security focused project at the National e-Science Centre (NeSC) at the University of Glasgow in the nanoCMOS electronics domain

    HiTrust: building cross-organizational trust relationship based on a hybrid negotiation tree

    Get PDF
    Small-world phenomena have been observed in existing peer-to-peer (P2P) networks which has proved useful in the design of P2P file-sharing systems. Most studies of constructing small world behaviours on P2P are based on the concept of clustering peer nodes into groups, communities, or clusters. However, managing additional multilayer topology increases maintenance overhead, especially in highly dynamic environments. In this paper, we present Social-like P2P systems (Social-P2Ps) for object discovery by self-managing P2P topology with human tactics in social networks. In Social-P2Ps, queries are routed intelligently even with limited cached knowledge and node connections. Unlike community-based P2P file-sharing systems, we do not intend to create and maintain peer groups or communities consciously. In contrast, each node connects to other peer nodes with the same interests spontaneously by the result of daily searches

    Towards trusted volunteer grid environments

    Full text link
    Intensive experiences show and confirm that grid environments can be considered as the most promising way to solve several kinds of problems relating either to cooperative work especially where involved collaborators are dispersed geographically or to some very greedy applications which require enough power of computing or/and storage. Such environments can be classified into two categories; first, dedicated grids where the federated computers are solely devoted to a specific work through its end. Second, Volunteer grids where federated computers are not completely devoted to a specific work but instead they can be randomly and intermittently used, at the same time, for any other purpose or they can be connected or disconnected at will by their owners without any prior notification. Each category of grids includes surely several advantages and disadvantages; nevertheless, we think that volunteer grids are very promising and more convenient especially to build a general multipurpose distributed scalable environment. Unfortunately, the big challenge of such environments is, however, security and trust. Indeed, owing to the fact that every federated computer in such an environment can randomly be used at the same time by several users or can be disconnected suddenly, several security problems will automatically arise. In this paper, we propose a novel solution based on identity federation, agent technology and the dynamic enforcement of access control policies that lead to the design and implementation of trusted volunteer grid environments.Comment: 9 Pages, IJCNC Journal 201

    Online Project Management for Dynamic e-Collaboration

    Get PDF
    Today’s collaborative projects demand efficient and productive software application tools for the workplace that will bring remote teams together to get the work done. Dynamic e-collaboration is a necessity for virtual relations and business agreements. It depends on two distinct factors: trust and need. This paper presents a way to manage remote teams using a web application developed with ColMap model of project management in an IT company. The information exposed and shared applications with partners in collaborative projects are based on RBAC. Group collaboration and management software has been proven to successfully manage and coordinate projects.Dynamic E-collaboration, Collaboration Model, Web Application

    The Clarens Web Service Framework for Distributed Scientific Analysis in Grid Projects

    Get PDF
    Large scientific collaborations are moving towards service oriented architecutres for implementation and deployment of globally distributed systems. Clarens is a high performance, easy to deploy Web Service framework that supports the construction of such globally distributed systems. This paper discusses some of the core functionality of Clarens that the authors believe is important for building distributed systems based on Web Services that support scientific analysis
    • 

    corecore