1,236 research outputs found

    PDE-Based Multidimensional Extrapolation of Scalar Fields over Interfaces with Kinks and High Curvatures

    Full text link
    We present a PDE-based approach for the multidimensional extrapolation of smooth scalar quantities across interfaces with kinks and regions of high curvature. Unlike the commonly used method of [2] in which normal derivatives are extrapolated, the proposed approach is based on the extrapolation and weighting of Cartesian derivatives. As a result, second- and third-order accurate extensions in the LL^\infty norm are obtained with linear and quadratic extrapolations, respectively, even in the presence of sharp geometric features. The accuracy of the method is demonstrated on a number of examples in two and three spatial dimensions and compared to the approach of [2]. The importance of accurate extrapolation near sharp geometric features is highlighted on an example of solving the diffusion equation on evolving domains.Comment: 17 pages, 13 figures, submitted to SIAM Journal of Scientific Computin

    Decoupling Numerical Method Based on Deep Neural Network for Nonlinear Degenerate Interface Problems

    Full text link
    Interface problems depict many fundamental physical phenomena and widely apply in the engineering. However, it is challenging to develop efficient fully decoupled numerical methods for solving degenerate interface problems in which the coefficient of a PDE is discontinuous and greater than or equal to zero on the interface. The main motivation in this paper is to construct fully decoupled numerical methods for solving nonlinear degenerate interface problems with ``double singularities". An efficient fully decoupled numerical method is proposed for nonlinear degenerate interface problems. The scheme combines deep neural network on the singular subdomain with finite difference method on the regular subdomain. The key of the new approach is to split nonlinear degenerate partial differential equation with interface into two independent boundary value problems based on deep learning. The outstanding advantages of the proposed schemes are that not only the convergence order of the degenerate interface problems on whole domain is determined by the finite difference scheme on the regular subdomain, but also can calculate VERY\mathbf{VERY} BIG\mathbf{BIG} jump ratio(such as 1012:110^{12}:1 or 1:10121:10^{12}) for the interface problems including degenerate and non-degenerate cases. The expansion of the solutions does not contains any undetermined parameters in the numerical method. In this way, two independent nonlinear systems are constructed in other subdomains and can be computed in parallel. The flexibility, accuracy and efficiency of the methods are validated from various experiments in both 1D and 2D. Specially, not only our method is suitable for solving degenerate interface case, but also for non-degenerate interface case. Some application examples with complicated multi-connected and sharp edge interface examples including degenerate and nondegenerate cases are also presented

    A Deep Learning Framework for Solving Hyperbolic Partial Differential Equations: Part I

    Full text link
    Physics informed neural networks (PINNs) have emerged as a powerful tool to provide robust and accurate approximations of solutions to partial differential equations (PDEs). However, PINNs face serious difficulties and challenges when trying to approximate PDEs with dominant hyperbolic character. This research focuses on the development of a physics informed deep learning framework to approximate solutions to nonlinear PDEs that can develop shocks or discontinuities without any a-priori knowledge of the solution or the location of the discontinuities. The work takes motivation from finite element method that solves for solution values at nodes in the discretized domain and use these nodal values to obtain a globally defined solution field. Built on the rigorous mathematical foundations of the discontinuous Galerkin method, the framework naturally handles imposition of boundary conditions (Neumann/Dirichlet), entropy conditions, and regularity requirements. Several numerical experiments and validation with analytical solutions demonstrate the accuracy, robustness, and effectiveness of the proposed framework

    Wavelet Based Simulation of Elastic Wave Propagation

    Get PDF
    corecore