27,992 research outputs found

    PolyARBerNN: A Neural Network Guided Solver and Optimizer for Bounded Polynomial Inequalities

    Full text link
    Constraints solvers play a significant role in the analysis, synthesis, and formal verification of complex embedded and cyber-physical systems. In this paper, we study the problem of designing a scalable constraints solver for an important class of constraints named polynomial constraint inequalities (also known as non-linear real arithmetic theory). In this paper, we introduce a solver named PolyARBerNN that uses convex polynomials as abstractions for highly nonlinear polynomials. Such abstractions were previously shown to be powerful to prune the search space and restrict the usage of sound and complete solvers to small search spaces. Compared with the previous efforts on using convex abstractions, PolyARBerNN provides three main contributions namely (i) a neural network guided abstraction refinement procedure that helps selecting the right abstraction out of a set of pre-defined abstractions, (ii) a Bernstein polynomial-based search space pruning mechanism that can be used to compute tight estimates of the polynomial maximum and minimum values which can be used as an additional abstraction of the polynomials, and (iii) an optimizer that transforms polynomial objective functions into polynomial constraints (on the gradient of the objective function) whose solutions are guaranteed to be close to the global optima. These enhancements together allowed the PolyARBerNN solver to solve complex instances and scales more favorably compared to the state-of-art non-linear real arithmetic solvers while maintaining the soundness and completeness of the resulting solver. In particular, our test benches show that PolyARBerNN achieved 100X speedup compared with Z3 8.9, Yices 2.6, and NASALib (a solver that uses Bernstein expansion to solve multivariate polynomial constraints) on a variety of standard test benches

    Formal Verification of Nonlinear Inequalities with Taylor Interval Approximations

    Full text link
    We present a formal tool for verification of multivariate nonlinear inequalities. Our verification method is based on interval arithmetic with Taylor approximations. Our tool is implemented in the HOL Light proof assistant and it is capable to verify multivariate nonlinear polynomial and non-polynomial inequalities on rectangular domains. One of the main features of our work is an efficient implementation of the verification procedure which can prove non-trivial high-dimensional inequalities in several seconds. We developed the verification tool as a part of the Flyspeck project (a formal proof of the Kepler conjecture). The Flyspeck project includes about 1000 nonlinear inequalities. We successfully tested our method on more than 100 Flyspeck inequalities and estimated that the formal verification procedure is about 3000 times slower than an informal verification method implemented in C++. We also describe future work and prospective optimizations for our method.Comment: 15 page

    Formal Proofs for Nonlinear Optimization

    Get PDF
    We present a formally verified global optimization framework. Given a semialgebraic or transcendental function ff and a compact semialgebraic domain KK, we use the nonlinear maxplus template approximation algorithm to provide a certified lower bound of ff over KK. This method allows to bound in a modular way some of the constituents of ff by suprema of quadratic forms with a well chosen curvature. Thus, we reduce the initial goal to a hierarchy of semialgebraic optimization problems, solved by sums of squares relaxations. Our implementation tool interleaves semialgebraic approximations with sums of squares witnesses to form certificates. It is interfaced with Coq and thus benefits from the trusted arithmetic available inside the proof assistant. This feature is used to produce, from the certificates, both valid underestimators and lower bounds for each approximated constituent. The application range for such a tool is widespread; for instance Hales' proof of Kepler's conjecture yields thousands of multivariate transcendental inequalities. We illustrate the performance of our formal framework on some of these inequalities as well as on examples from the global optimization literature.Comment: 24 pages, 2 figures, 3 table

    A Survey of Satisfiability Modulo Theory

    Full text link
    Satisfiability modulo theory (SMT) consists in testing the satisfiability of first-order formulas over linear integer or real arithmetic, or other theories. In this survey, we explain the combination of propositional satisfiability and decision procedures for conjunctions known as DPLL(T), and the alternative "natural domain" approaches. We also cover quantifiers, Craig interpolants, polynomial arithmetic, and how SMT solvers are used in automated software analysis.Comment: Computer Algebra in Scientific Computing, Sep 2016, Bucharest, Romania. 201

    Certified Roundoff Error Bounds Using Semidefinite Programming.

    Get PDF
    Roundoff errors cannot be avoided when implementing numerical programs with finite precision. The ability to reason about rounding is especially important if one wants to explore a range of potential representations, for instance for FPGAs or custom hardware implementation. This problem becomes challenging when the program does not employ solely linear operations as non-linearities are inherent to many interesting computational problems in real-world applications. Existing solutions to reasoning are limited in the presence of nonlinear correlations between variables, leading to either imprecise bounds or high analysis time. Furthermore, while it is easy to implement a straightforward method such as interval arithmetic, sophisticated techniques are less straightforward to implement in a formal setting. Thus there is a need for methods which output certificates that can be formally validated inside a proof assistant. We present a framework to provide upper bounds on absolute roundoff errors. This framework is based on optimization techniques employing semidefinite programming and sums of squares certificates, which can be formally checked inside the Coq theorem prover. Our tool covers a wide range of nonlinear programs, including polynomials and transcendental operations as well as conditional statements. We illustrate the efficiency and precision of this tool on non-trivial programs coming from biology, optimization and space control. Our tool produces more precise error bounds for 37 percent of all programs and yields better performance in 73 percent of all programs

    SWATI: Synthesizing Wordlengths Automatically Using Testing and Induction

    Full text link
    In this paper, we present an automated technique SWATI: Synthesizing Wordlengths Automatically Using Testing and Induction, which uses a combination of Nelder-Mead optimization based testing, and induction from examples to automatically synthesize optimal fixedpoint implementation of numerical routines. The design of numerical software is commonly done using floating-point arithmetic in design-environments such as Matlab. However, these designs are often implemented using fixed-point arithmetic for speed and efficiency reasons especially in embedded systems. The fixed-point implementation reduces implementation cost, provides better performance, and reduces power consumption. The conversion from floating-point designs to fixed-point code is subject to two opposing constraints: (i) the word-width of fixed-point types must be minimized, and (ii) the outputs of the fixed-point program must be accurate. In this paper, we propose a new solution to this problem. Our technique takes the floating-point program, specified accuracy and an implementation cost model and provides the fixed-point program with specified accuracy and optimal implementation cost. We demonstrate the effectiveness of our approach on a set of examples from the domain of automated control, robotics and digital signal processing
    • …
    corecore