302 research outputs found

    Seamless Multimedia Delivery Within a Heterogeneous Wireless Networks Environment: Are We There Yet?

    Get PDF
    The increasing popularity of live video streaming from mobile devices, such as Facebook Live, Instagram Stories, Snapchat, etc. pressurizes the network operators to increase the capacity of their networks. However, a simple increase in system capacity will not be enough without considering the provisioning of quality of experience (QoE) as the basis for network control, customer loyalty, and retention rate and thus increase in network operators revenue. As QoE is gaining strong momentum especially with increasing users' quality expectations, the focus is now on proposing innovative solutions to enable QoE when delivering video content over heterogeneous wireless networks. In this context, this paper presents an overview of multimedia delivery solutions, identifies the problems and provides a comprehensive classification of related state-of-the-art approaches following three key directions: 1) adaptation; 2) energy efficiency; and 3) multipath content delivery. Discussions, challenges, and open issues on the seamless multimedia provisioning faced by the current and next generation of wireless networks are also provided

    Sip Based Mobile Voice Over Ip Client For Wireess Networks

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2008Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2008Bu tez SIP tabanlı mobile bir VoIP istemcisinin tasarımını ve gerçeklenmesini tanımlar. Bu tez temelde çoktürel ağlar üzerinde çalışabilen bir VoIP istemcisi tasarımının çözülmesi gereken iki sorununun üzerinde yogunlaşır. Birinci ve en zorlu sorun farklı erişim teknolojileri arasında kullanıcıya fark ettirmeden yer değişim desteği sağlanmasıdır. Bu tezde, kullanıcıya fark ettirmeden el değiştirme yönetimi, uygulama katmanında, multimedya oturumunu başlatmak, sonlandırmak ve değiştirmek için kullanılan Oturum Başlatma Protokolü (SIP) kullanılarak ele alınmıştır. SIP yaygın bir şekilde kabul edilmekte olan bir VoIP standartıdır. Kullanıcıya fark ettirmeden el değiştirmeyi destekleyebilmek için, VoIP istemcisi üzerinde çalışan SIP tabanlı bir bağlantı yöneticisi önerilmiştir. Bağlantı yöneticisi yeni ağlar keşfettiğinde, adaylar listesinden bir ağ seçer ve hali hazırda yürütülmekte olan iletişimi kullanıcıya fark ettirmeden yeni ağ arayüzüne aktarır. Dolayısı ile, bu birim Wi-Fi, 3G gibi çoktürel ağlar arasında dolaşmayı sağlar. İkinci sorun ise, en kaliteli çağrı (arama) desteğini sağlamaktır. En kaliteli çağrı desteği, iletişim kurmak isteyen tarafların farklı türden ağlara bağlı olmaları durumunda, VoIP uygulamasının iletişim tipine (yarı-çift yönlü yada tam-çift yönlü) karar vermebilmesi demektir. Örneğin, eğer iletişim kurmak isteyen taraflardan biri bir GSM ağındaysa, en iyi çağrı kalitesini yakalayabilmek için, iletişim yarı-çift yönlü olarak kurulmalıdır. Bu tez, bahsedilen özelliği desteklemek için, istemci tabanlı bir karar mekanizması önerir. Bu karar mekanizması, iletişim kurulmak istenen tarafa, istemcinin içinde bulunduğu ağa göre belirlenmiş iletişim tipini içeren bir davet iletisi gönderir. Diğer istemci bu davet iletisini aldıktan sonra, aynı karar mekanizması, iletişimi “bas-konuş VoIP” yada “tam-çift yönlü VoIP” olarak ayarlar.This thesis describes the design and the implementation of a SIP-based mobile VoIP client. It mainly focuses on two challenges of designing a VoIP client which works on heterogeneous network environments. One and the most challenging problem is the provision of seamless mobility support among different access technologies. In this thesis, seamless handover management is handled at the application layer by using Session initiation protocol (SIP), which is used to initiate, terminate, and modify multimedia session. SIP is becoming a widely accepted standard for VoIP. To support seamless handover, a SIP based connection manager is proposed on VoIP client application. As new networks are discovered by the connection manager, it selects a new network from the candidate list and transfers the current communication to the new network interface seamlessly. Therefore, this module provides roaming across heterogeneous networks such as Wi-Fi, 3G. Second problem is providing the best effort call quality support. It means that if the communication parties are in dissimilar networks, the VoIP application should decide the communication type (half-duplex or full-duplex). For instance, if one of the communication parties is in a GSM network, then the communication should be established as a half-duplex manner to achieve best call quality. This thesis proposes a client-based decision mechanism to support this property. This decision mechanism sends an invite message including the communication type (half-duplex or full-duplex) of the client according to the network in which it operates to the other communication party. After the other client receives this invite message, same decision mechanism adjusts the communication as either a “push to talk VoIP” or a “full-duplex VoIP”.Yüksek LisansM.Sc

    Seamless multimedia delivery within a heterogeneous wireless networks environment: are we there yet?

    Get PDF
    The increasing popularity of live video streaming from mobile devices such as Facebook Live, Instagram Stories, Snapchat, etc. pressurises the network operators to increase the capacity of their networks. However, a simple increase in system capacity will not be enough without considering the provisioning of Quality of Experience (QoE) as the basis for network control, customer loyalty and retention rate and thus increase in network operators revenue. As QoE is gaining strong momentum especially with increasing users’ quality expectations, the focus is now on proposing innovative solutions to enable QoE when delivering video content over heterogeneous wireless networks. In this context, this paper presents an overview of multimedia delivery solutions, identifies the problems and provides a comprehensive classification of related state-of-the-art approaches following three key directions: adaptation, energy efficiency and multipath content delivery. Discussions, challenges and open issues on the seamless multimedia provisioning faced by the current and next generation of wireless networks are also provided

    Towards Seamless Mobility: An IEEE 802.21 Practical Approach

    Get PDF
    In the recent years, mobile devices such as cell phones, notebook or ultra mobile computers and videogame consoles are experiencing an impressive evolution in terms of hardware and software possibilities. Elements such a wideband Internet connection allows a broad range of possibilities for creative developers. Many of these possibilities can include applications requiring continuity of service when the user moves form a coverage area to another. Nowadays, mobile devices are equipped with one or more radio interfaces such as GSM, UMTS, WiMax or Wi‐ Fi. Many of these technologies are ready to allow transparent roaming within their own coverage areas, but they are not ready to handle a service transfer between different technologies. In order to find a solution to this issue, the IEEE has developed a standard known as Media Independent Handover (MIH) Services with the aim of easing seamless mobility between these technologies. The present work has been centered in developing a system capable to enable a service of mobility under the terms specified in the stated standard. The development of a platform aiming to provide service continuity is mandatory, being a cross‐layer solution based in elements from link and network layers supplying a transparent roaming mechanism from user’s point of view. Two applications have been implemented in C/C++ language under a Linux environment. One application is designed to work within a mobile device, and the other one in the network access point. The mobile device basically consists in a notebook equipped with two Wi‐Fi interfaces, which is not a common feature in commercial devices, allowing seamless communication transfers aided by the application. Network access points are computers equipped with a Wi‐Fi interface and configured to provide Internet wireless access and services of mobility. In order to test the operation, a test‐bed has been implemented. It consists on a pair of access points connected through a network and placed within partially overlapped coverage areas, and a mobile device, all of them properly set. The mobile detects the networks that are compatible and gets attached to the one that provides better conditions for the demanded service. When the service degrades up to certain level, the mobile transfers the communication to the other access point, which offers better service conditions. Finally, in order to check if the changes have been done properly, the duration of the required actions has been measured, as well as the data that can have been lost or buffered meanwhile. The result is a MIH‐alike system working in a proper way. The discovery and selection of a destination network is correct and is done before the old connection gets too degraded, providing seamless mobility. The measured latencies and packet losses are affordable in terms of MIH protocol, but require future work improvements in terms of network protocols that have not been considered under the scope of this work

    Heterogeneous Wireless Networks QoE Framework

    Get PDF
    With the appearance of small cells and the move of mobile networks towards an all-IP 4G network, the convergence of these with Wi-Fi becomes a possibility which at the same time opens the path to achieve what will become 5G connectivity. This thesis describes the evolution of the different mainstream wireless technologies deployed around the world and how they can interact, and provides tools to use this convergence to achieve the foreseen requirements expected in a 5G environment and the ideal user experience. Several topics were identified as needing attention: handover between heterogeneous networks, security of large numbers of small cells connected via a variety of backhaul technologies to the core networks, edge content distribution to improve latency, improvement of the service provided in challenging radio environments and interference between licensed and unlicensed spectrum. Within these topics a contribution was made to improve the current status by analysing the unaddressed issues and coming up with potential improvements that were tested in trials or lab environment. The main contributions from the study have been: 1. A patent in the wireless security domain that reuses the fact that overlapping coverage is and will be available and protects against man in the middle attacks (Section 5.3). 2. A patent in the content distribution domain that manages to reduce the cost to deliver content within a mobile network by looking for the shortest path to the requested content (Section 6.3). 3. Improvements and interoperability test of 802.21 standard which improves the seamlessness of handovers (Section 4.2). 4. 2 infill trials which focus on how to improve the user experience in those challenging conditions (Sections 7.2 and 7.3). 5. An interference study with Wi-Fi 2.4GHz for the newly allocated spectrum for 4G (Section 8.2). This thesis demonstrates some of the improvements required in current wireless networks to evolve towards 5G and achieve the coverage, service, user experience, latency and security requirements expected from the next generation mobile technology

    Performance evaluation of voice handover between LTE and UMTS

    Get PDF
    M.Sc.(Eng.), Faculty of Engineering and the Built Environment, 2011The main objective of seamless mobility is to enable mobile users to stay connected while roaming across heterogeneous networks. As cellular networks evolve from the third generation Universal Mobile Telecommunication System (UMTS) to the Long Term Evolution (LTE), a new Evolved Packet Core (EPC) will support heterogeneous radio access networks on the same platform. UMTS provides voice services in the circuit switched domain; while LTE operates in the packet switched domain. Cellular network operators thus face the challenge of providing voice services during initial deployment of LTE due to difficulty in mobility between the two domains. Seamless voice handover between packet switched LTE and the circuit switched UMTS network is therefore an important tool in solving this problem. This report investigates the performance of inter-Radio Access Technology voice handover between LTE and UMTS. The schemes evaluated were Voice Call Continuity (VCC) for UMTS to LTE handover and Single Radio Voice Call Continuity (SRVCC) for LTE to UMTS handover. The performance evaluation was done using mathematical models and equations that were derived for the handover service interruption time. The resulting equations were simulated and the output was analysed and compared with the Third Generation Partnership Project (3GPP) specifications

    A Review on Provisioning Quality of Service of Wireless Telemedicine for E-Health Services

    Get PDF
    In general, on-line medical consultation reduces time required for medical consultation induces improvement in the quality and efficiency of healthcare services. All major types of current e-health applications such as ECG, X-ray, video, diagnosis images and other common applications have been included in the scope of the study. In addition, the provision of Quality of Service (QoS) for the application of specific healthcare services in e-health, the scheme of priority for e-health services and the support of QoS in wireless networks and techniques or methods for IEEE 802.11 to guarantee the provision of QoS has also been assessed. In e-health, medical services in remote locations such as rural healthcare centers, ambulances, ships as well as home healthcare services can be supported through the applications of e-health services such as medical databases, electronic health records and the routing of text, audio, video and images. Given this, an adaptive resource allocation for a wireless network with multiple service types and multiple priorities have been proposed. For the provision of an acceptable QoS level to users of e-health services, prioritization is an important criterion in a multi-traffic network. The requirement for QoS provisioning in wireless broadband medical networks have paved the pathway for bandwidth requirements and the real-time or live transmission of medical applications. From the study, good performance of the proposed scheme has been validated by the results obtained. The proposed wireless network is capable of handling medical applications for both normal and life-threatening conditions as characterized by the level of emergencies. In addition, the bandwidth allocation and admission control algorithm for IEEE 802.16- based design specifically for wireless telemedicine/e-health services have also been presented in the study. It has been concluded that under busy traffic conditions, the proposed architecture can used as a feasible and reliable infrastructure network for telemedicine

    5G-PPP Technology Board:Delivery of 5G Services Indoors - the wireless wire challenge and solutions

    Get PDF
    The 5G Public Private Partnership (5G PPP) has focused its research and innovation activities mainly on outdoor use cases and supporting the user and its applications while on the move. However, many use cases inherently apply in indoor environments whereas their requirements are not always properly reflected by the requirements eminent for outdoor applications. The best example for indoor applications can be found is the Industry 4.0 vertical, in which most described use cases are occurring in a manufacturing hall. Other environments exhibit similar characteristics such as commercial spaces in offices, shopping malls and commercial buildings. We can find further similar environments in the media & entertainment sector, culture sector with museums and the transportation sector with metro tunnels. Finally in the residential space we can observe a strong trend for wireless connectivity of appliances and devices in the home. Some of these spaces are exhibiting very high requirements among others in terms of device density, high-accuracy localisation, reliability, latency, time sensitivity, coverage and service continuity. The delivery of 5G services to these spaces has to consider the specificities of the indoor environments, in which the radio propagation characteristics are different and in the case of deep indoor scenarios, external radio signals cannot penetrate building construction materials. Furthermore, these spaces are usually “polluted” by existing wireless technologies, causing a multitude of interreference issues with 5G radio technologies. Nevertheless, there exist cases in which the co-existence of 5G new radio and other radio technologies may be sensible, such as for offloading local traffic. In any case the deployment of networks indoors is advised to consider and be planned along existing infrastructure, like powerlines and available shafts for other utilities. Finally indoor environments expose administrative cross-domain issues, and in some cases so called non-public networks, foreseen by 3GPP, could be an attractive deployment model for the owner/tenant of a private space and for the mobile network operators serving the area. Technology-wise there exist a number of solutions for indoor RAN deployment, ranging from small cell architectures, optical wireless/visual light communication, and THz communication utilising reconfigurable intelligent surfaces. For service delivery the concept of multi-access edge computing is well tailored to host virtual network functions needed in the indoor environment, including but not limited to functions supporting localisation, security, load balancing, video optimisation and multi-source streaming. Measurements of key performance indicators in indoor environments indicate that with proper planning and consideration of the environment characteristics, available solutions can deliver on the expectations. Measurements have been conducted regarding throughput and reliability in the mmWave and optical wireless communication cases, electric and magnetic field measurements, round trip latency measurements, as well as high-accuracy positioning in laboratory environment. Overall, the results so far are encouraging and indicate that 5G and beyond networks must advance further in order to meet the demands of future emerging intelligent automation systems in the next 10 years. Highly advanced industrial environments present challenges for 5G specifications, spanning congestion, interference, security and safety concerns, high power consumption, restricted propagation and poor location accuracy within the radio and core backbone communication networks for the massive IoT use cases, especially inside buildings. 6G and beyond 5G deployments for industrial networks will be increasingly denser, heterogeneous and dynamic, posing stricter performance requirements on the network. The large volume of data generated by future connected devices will put a strain on networks. It is therefore fundamental to discriminate the value of information to maximize the utility for the end users with limited network resources

    Context-awareness for ubiquitous media service delivery in next generation networks

    Get PDF
    Les récentes avancées technologiques permettent désormais la fabrication de terminaux mobiles de plus en plus compacts et dotés de plusieurs interfaces réseaux. Le nouveau modèle de consommation de médias se résume par le concept "Anytime, Anywhere, Any Device" et impose donc de nouvelles exigences en termes de déploiement de services ubiquitaires. Cependant la conception et le developpement de réseaux ubiquitaires et convergents de nouvelles générations soulèvent un certain nombre de défis techniques. Les standards actuels ainsi que les solutions commerciales pourraient être affectés par le manque de considération du contexte utilisateur. Le ressenti de l'utilisateur concernant certains services multimédia tels que la VoIP et l'IPTV dépend fortement des capacités du terminal et des conditions du réseau d'accès. Cela incite les réseaux de nouvelles générations à fournir des services ubiquitaires adaptés à l'environnement de l'utilisateur optimisant par la même occasion ses resources. L'IP Multimedia Subsystem (IMS) est une architecture de nouvelle génération qui centralise l'accès aux services et permet la convergence des réseaux fixe/mobile. Néanmoins, l'évolution de l'IMS est nécessaire sur les points suivants :- l'introduction de la sensibilité au contexte utilisateur et de la PQoS (Perceived QoS) : L'architecture IMS ne prend pas en compte l'environnement de l'utilisateur, ses préférences et ne dispose pas d'un méchanisme de gestion de PQOS. Pour s'assurer de la qualité fournit à l'utilisateur final, des informations sur l'environnement de l'utilisateur ainsi que ses préférences doivent transiter en cœur de réseau afin d'y être analysés. Ce traitement aboutit au lancement du service qui sera adapté et optimisé aux conditions observées. De plus pour le service d'IPTV, les caractéristiques spatio-temporelles de la vidéo influent de manière importante sur la PQoS observée côté utilisateur. L'adaptation des services multimédias en fonction de l'évolution du contexte utilisateur et de la nature de la vidéo diffusée assure une qualité d'expérience à l'utilisateur et optimise par la même occasion l'utilisation des ressources en cœur de réseau.- une solution de mobilité efficace pour les services conversationnels tels que la VoIP : Les dernières publications 3GPP fournissent deux solutions de mobilité: le LTE proposeMIP comme solution de mobilité alors que l'IMS définit une mobilité basée sur le protocoleapplicatif SIP. Ces standards définissent le système de signalisation mais ne s'avancent pas sur la gestion du flux média lors du changement d'interface réseau. La deuxième section introduit une étude comparative détaillée des solutions de mobilité dans les NGNs.Notre première contribution est la spécification de l'architecture globale de notre plateforme IMS sensible au contexte utilisateur réalisée au sein du projet Européen ADAMANTIUM. Nous détaillons tout d'abord le serveur MCMS intelligent placé dans la couche application de l'IMS. Cet élément récolte les informations de qualité de services à différents équipements réseaux et prend la décision d'une action sur l'un de ces équipements. Ensuite nous définissons un profil utilisateur permettant de décrire son environnement et de le diffuser en coeur de réseau. Une étude sur la prédiction de satisfaction utilisateur en fonction des paramètres spatio-temporels de la vidéo a été réalisée afin de connaître le débit idéal pour une PQoS désirée.Notre deuxième contribution est l'introduction d'une solution de mobilité adaptée aux services conversationnels (VoIP) tenant compte du contexte utilisateur. Notre solution s'intègre à l'architecture IMS existante de façon transparente et permet de réduire le temps de latence du handover. Notre solution duplique les paquets de VoIP sur les deux interfaces actives pendant le temps de la transition. Parallèlement, un nouvel algorithme de gestion de mémoire tampon améliore la qualité d'expérience pour le service de VoIP.The latest advances in technology have already defied Moore s law. Thanks to research and industry, hand-held devices are composed of high processing embedded systems enabling the consumption of high quality services. Furthermore, recent trends in communication drive users to consume media Anytime, Anywhere on Any Device via multiple wired and wireless network interfaces. This creates new demands for ubiquitous and high quality service provision management. However, defining and developing the next generation of ubiquitous and converged networks raise a number of challenges. Currently, telecommunication standards do not consider context-awareness aspects for network management and service provisioning. The experience felt by the end-user consuming for instance Voice over IP (VoIP) or Internet Protocol TeleVision (IPTV) services varies depending mainly on user preferences, device context and network resources. It is commonly held that Next Generation Network (NGN) should deliver personalized and effective ubiquitous services to the end user s Mobile Node (MN) while optimizing the network resources at the network operator side. IP Multimedia Subsystem (IMS) is a standardized NGN framework that unifies service access and allows fixed/mobile network convergence. Nevertheless IMS technology still suffers from a number of confining factors that are addressed in this thesis; amongst them are two main issues :The lack of context-awareness and Perceived-QoS (PQoS):-The existing IMS infrastructure does not take into account the environment of the user ,his preferences , and does not provide any PQoS aware management mechanism within its service provisioning control system. In order to ensure that the service satisfies the consumer, this information need to be sent to the core network for analysis. In order to maximize the end-user satisfaction while optimizing network resources, the combination of a user-centric network management and adaptive services according to the user s environment and network conditions are considered. Moreover, video content dynamics are also considered as they significantly impact on the deduced perceptual quality of IPTV services. -The lack of efficient mobility mechanism for conversational services like VoIP :The latest releases of Third Generation Partnership Project (3GPP) provide two types of mobility solutions. Long-Term Evolution (LTE) uses Mobile IP (MIP) and IMS uses Session Initiation Protocol (SIP) mobility. These standards are focusing on signaling but none of them define how the media should be scheduled in multi-homed devices. The second section introduces a detailed study of existing mobility solutions in NGNs. Our first contribution is the specification of the global context-aware IMS architecture proposed within the European project ADAptative Management of mediA distributioN based on saTisfaction orIented User Modeling (ADAMANTIUM). We introduce the innovative Multimedia Content Management System (MCMS) located in the application layer of IMS. This server combines the collected monitoring information from different network equipments with the data of the user profile and takes adaptation actions if necessary. Then, we introduce the User Profile (UP) management within the User Equipment (UE) describing the end-user s context and facilitating the diffusion of the end-user environment towards the IMS core network. In order to optimize the network usage, a PQoS prediction mechanism gives the optimal video bit-rate according to the video content dynamics. Our second contribution in this thesis is an efficient mobility solution for VoIP service within IMS using and taking advantage of user context. Our solution uses packet duplication on both active interfaces during handover process. In order to leverage this mechanism, a new jitter buffer algorithm is proposed at MN side to improve the user s quality of experience. Furthermore, our mobility solution integrates easily to the existing IMS platform.BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF

    TV white spaces for railway wireless applications

    Get PDF
    Train-to-ground communication is one of the most crucial features of modern railway systems. The extensive use of emerging wireless technologies helps to achieve the rail industry vision of implementing intelligent trains, having a customised experience for travelling passengers, and running trains closer together. The Global System for Mobile Communications-Railway (GSM-R) is an international wireless communications standard introduced for train-to-ground communications in mainline railways. However, GSM-R currently suffers from severe interference and capacity problems that impede the consideration of this technology for emerging rail applications. The prospect of opportunistic access to an inefficiently utilised frequency spectrum, known as TV White Spaces (TVWS), that exploits desirable railway propagation characteristics is proposed to solve the spectrum scarcity problem. In order to provide full protection for spectrum Primary Users (PUs), The IEEE 802.22 standard sets strict policies for mobile platforms. This research proposes a handover procedure and channel access scheme that maintain seamless connectivity for various railway wireless applications in the mobility-restrictive TVWS. The suitability of the approach is tested through its application in Remote Condition Monitoring (RCM) systems whose telecommunication requirements can tolerate the uncertainty in the TVWS spectrum availability. The method is applicable to other rail applications if special considerations are given to the specific application requirements. Prior knowledge of the train’s trajectory enables the method to pre-select a list channels that last for long distances, which minimises unnecessary control messages overhead. The newly proposed method indicates an improvement of 37.8% in the channel utilisation distance, as the train can have an uninterrupted connection for an average consecutive distance of 1.188 km using the new scheme compared with an average of 0.862 km for the IEEE 802.22 standard. Besides that, for the same data rate, an extra 6.5% of maintenance data can be transmitted using the new approach if compared with the IEEE 802.22 standard under various spectrum availability. The results also reflect 0% probability of channel collision under all spectrum availability, due to the first-come-first-served spectrum access adopted, and 0% probability of overall network blocking at spectrum availability that is (� 30%). Finally, the new method does not cause any interference to the surrounding PUs and enables better transmission power for the spectrum Secondary Users (SUs) that can reach up to 42.2 dBm under different channel availability, which directly improves the overall network throughput
    corecore