11,293 research outputs found

    A scaling-invariant algorithm for linear programming whose running time depends only on the constraint matrix

    Get PDF
    Following the breakthrough work of Tardos in the bit-complexity model, Vavasis and Ye gave the first exact algorithm for linear programming in the real model of computation with running time depending only on the constraint matrix. For solving a linear program (LP) maxcx,Ax=b,x0,ARm×n\max\, c^\top x,\: Ax = b,\: x \geq 0,\: A \in \mathbb{R}^{m \times n}, Vavasis and Ye developed a primal-dual interior point method using a 'layered least squares' (LLS) step, and showed that O(n3.5log(χˉA+n))O(n^{3.5} \log (\bar{\chi}_A+n)) iterations suffice to solve (LP) exactly, where χˉA\bar{\chi}_A is a condition measure controlling the size of solutions to linear systems related to AA. Monteiro and Tsuchiya, noting that the central path is invariant under rescalings of the columns of AA and cc, asked whether there exists an LP algorithm depending instead on the measure χˉA\bar{\chi}^*_A, defined as the minimum χˉAD\bar{\chi}_{AD} value achievable by a column rescaling ADAD of AA, and gave strong evidence that this should be the case. We resolve this open question affirmatively. Our first main contribution is an O(m2n2+n3)O(m^2 n^2 + n^3) time algorithm which works on the linear matroid of AA to compute a nearly optimal diagonal rescaling DD satisfying χˉADn(χˉ)3\bar{\chi}_{AD} \leq n(\bar{\chi}^*)^3. This algorithm also allows us to approximate the value of χˉA\bar{\chi}_A up to a factor n(χˉ)2n (\bar{\chi}^*)^2. As our second main contribution, we develop a scaling invariant LLS algorithm, together with a refined potential function based analysis for LLS algorithms in general. With this analysis, we derive an improved O(n2.5lognlog(χˉA+n))O(n^{2.5} \log n\log (\bar{\chi}^*_A+n)) iteration bound for optimally solving (LP) using our algorithm. The same argument also yields a factor n/lognn/\log n improvement on the iteration complexity bound of the original Vavasis-Ye algorithm

    A scaling-invariant algorithm for linear programming whose running time depends only on the constraint matrix

    Get PDF
    Following the breakthrough work of Tardos (Oper. Res. '86) in the bit-complexity model, Vavasis and Ye (Math. Prog. '96) gave the first exact algorithm for linear programming in the real model of computation with running time depending only on the constraint matrix. For solving a linear program (LP) max cx, Ax = b, x ≥ 0, A g m × n, Vavasis and Ye developed a primal-dual interior point method using a g€layered least squares' (LLS) step, and showed that O(n3.5 log(χA+n)) iterations suffice to solve (LP) exactly, where χA is a condition measure controlling the size of solutions to linear systems related to A. Monteiro and Tsuchiya (SIAM J. Optim. '03), noting that the central path is invariant under rescalings of the columns of A and c, asked whether there exists an LP algorithm depending instead on the measure χA∗, defined as the minimum χAD value achievable by a column rescaling AD of A, and gave strong evidence that this should be the case. We resolve this open question affirmatively. Our first main contribution is an O(m2 n2 + n3) time algorithm which works on the linear matroid of A to compute a nearly optimal diagonal rescaling D satisfying χAD ≤ n(χ∗)3. This algorithm also allows us to approximate the value of χA up to a factor n (χ∗)2. This result is in (surprising) contrast to that of Tunçel (Math. Prog. '99), who showed NP-hardness for approximating χA to within 2poly(rank(A)). The key insight for our algorithm is to work with ratios gi/gj of circuits of A - i.e., minimal linear dependencies Ag=0 - which allow us to approximate the value of χA∗ by a maximum geometric mean cycle computation in what we call the g€circuit ratio digraph' of A. While this resolves Monteiro and Tsuchiya's question by appropriate preprocessing, it falls short of providing either a truly scaling invariant algorithm or an improvement upon the base LLS analysis. In this vein, as our second main contribution we develop a scaling invariant LLS algorithm, which uses and dynamically maintains improving estimates of the circuit ratio digraph, together with a refined potential function based analysis for LLS algorithms in general. With this analysis, we derive an improved O(n2.5 lognlog(χA∗+n)) iteration bound for optimally solving (LP) using our algorithm. The same argument also yields a factor n/logn improvement on the iteration complexity bound of the original Vavasis-Ye algorithm

    Eigenvector Synchronization, Graph Rigidity and the Molecule Problem

    Full text link
    The graph realization problem has received a great deal of attention in recent years, due to its importance in applications such as wireless sensor networks and structural biology. In this paper, we extend on previous work and propose the 3D-ASAP algorithm, for the graph realization problem in R3\mathbb{R}^3, given a sparse and noisy set of distance measurements. 3D-ASAP is a divide and conquer, non-incremental and non-iterative algorithm, which integrates local distance information into a global structure determination. Our approach starts with identifying, for every node, a subgraph of its 1-hop neighborhood graph, which can be accurately embedded in its own coordinate system. In the noise-free case, the computed coordinates of the sensors in each patch must agree with their global positioning up to some unknown rigid motion, that is, up to translation, rotation and possibly reflection. In other words, to every patch there corresponds an element of the Euclidean group Euc(3) of rigid transformations in R3\mathbb{R}^3, and the goal is to estimate the group elements that will properly align all the patches in a globally consistent way. Furthermore, 3D-ASAP successfully incorporates information specific to the molecule problem in structural biology, in particular information on known substructures and their orientation. In addition, we also propose 3D-SP-ASAP, a faster version of 3D-ASAP, which uses a spectral partitioning algorithm as a preprocessing step for dividing the initial graph into smaller subgraphs. Our extensive numerical simulations show that 3D-ASAP and 3D-SP-ASAP are very robust to high levels of noise in the measured distances and to sparse connectivity in the measurement graph, and compare favorably to similar state-of-the art localization algorithms.Comment: 49 pages, 8 figure

    A Quantum Interior Point Method for LPs and SDPs

    Full text link
    We present a quantum interior point method with worst case running time O~(n2.5ξ2μκ3log(1/ϵ))\widetilde{O}(\frac{n^{2.5}}{\xi^{2}} \mu \kappa^3 \log (1/\epsilon)) for SDPs and O~(n1.5ξ2μκ3log(1/ϵ))\widetilde{O}(\frac{n^{1.5}}{\xi^{2}} \mu \kappa^3 \log (1/\epsilon)) for LPs, where the output of our algorithm is a pair of matrices (S,Y)(S,Y) that are ϵ\epsilon-optimal ξ\xi-approximate SDP solutions. The factor μ\mu is at most 2n\sqrt{2}n for SDPs and 2n\sqrt{2n} for LP's, and κ\kappa is an upper bound on the condition number of the intermediate solution matrices. For the case where the intermediate matrices for the interior point method are well conditioned, our method provides a polynomial speedup over the best known classical SDP solvers and interior point based LP solvers, which have a worst case running time of O(n6)O(n^{6}) and O(n3.5)O(n^{3.5}) respectively. Our results build upon recently developed techniques for quantum linear algebra and pave the way for the development of quantum algorithms for a variety of applications in optimization and machine learning.Comment: 32 page

    Block Coordinate Descent for Sparse NMF

    Get PDF
    Nonnegative matrix factorization (NMF) has become a ubiquitous tool for data analysis. An important variant is the sparse NMF problem which arises when we explicitly require the learnt features to be sparse. A natural measure of sparsity is the L0_0 norm, however its optimization is NP-hard. Mixed norms, such as L1_1/L2_2 measure, have been shown to model sparsity robustly, based on intuitive attributes that such measures need to satisfy. This is in contrast to computationally cheaper alternatives such as the plain L1_1 norm. However, present algorithms designed for optimizing the mixed norm L1_1/L2_2 are slow and other formulations for sparse NMF have been proposed such as those based on L1_1 and L0_0 norms. Our proposed algorithm allows us to solve the mixed norm sparsity constraints while not sacrificing computation time. We present experimental evidence on real-world datasets that shows our new algorithm performs an order of magnitude faster compared to the current state-of-the-art solvers optimizing the mixed norm and is suitable for large-scale datasets

    Probabilistic analysis of a differential equation for linear programming

    Full text link
    In this paper we address the complexity of solving linear programming problems with a set of differential equations that converge to a fixed point that represents the optimal solution. Assuming a probabilistic model, where the inputs are i.i.d. Gaussian variables, we compute the distribution of the convergence rate to the attracting fixed point. Using the framework of Random Matrix Theory, we derive a simple expression for this distribution in the asymptotic limit of large problem size. In this limit, we find that the distribution of the convergence rate is a scaling function, namely it is a function of one variable that is a combination of three parameters: the number of variables, the number of constraints and the convergence rate, rather than a function of these parameters separately. We also estimate numerically the distribution of computation times, namely the time required to reach a vicinity of the attracting fixed point, and find that it is also a scaling function. Using the problem size dependence of the distribution functions, we derive high probability bounds on the convergence rates and on the computation times.Comment: 1+37 pages, latex, 5 eps figures. Version accepted for publication in the Journal of Complexity. Changes made: Presentation reorganized for clarity, expanded discussion of measure of complexity in the non-asymptotic regime (added a new section

    A geometric method for model reduction of biochemical networks with polynomial rate functions

    Full text link
    Model reduction of biochemical networks relies on the knowledge of slow and fast variables. We provide a geometric method, based on the Newton polytope, to identify slow variables of a biochemical network with polynomial rate functions. The gist of the method is the notion of tropical equilibration that provides approximate descriptions of slow invariant manifolds. Compared to extant numerical algorithms such as the intrinsic low dimensional manifold method, our approach is symbolic and utilizes orders of magnitude instead of precise values of the model parameters. Application of this method to a large collection of biochemical network models supports the idea that the number of dynamical variables in minimal models of cell physiology can be small, in spite of the large number of molecular regulatory actors

    A geometric method for model reduction of biochemical networks with polynomial rate functions

    No full text

    Parameter Selection and Pre-Conditioning for a Graph Form Solver

    Full text link
    In a recent paper, Parikh and Boyd describe a method for solving a convex optimization problem, where each iteration involves evaluating a proximal operator and projection onto a subspace. In this paper we address the critical practical issues of how to select the proximal parameter in each iteration, and how to scale the original problem variables, so as the achieve reliable practical performance. The resulting method has been implemented as an open-source software package called POGS (Proximal Graph Solver), that targets multi-core and GPU-based systems, and has been tested on a wide variety of practical problems. Numerical results show that POGS can solve very large problems (with, say, more than a billion coefficients in the data), to modest accuracy in a few tens of seconds. As just one example, a radiation treatment planning problem with around 100 million coefficients in the data can be solved in a few seconds, as compared to around one hour with an interior-point method.Comment: 28 pages, 1 figure, 1 open source implementatio
    corecore