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Abstract

Following the breakthrough work of Tardos (Oper. Res. ’86) in the bit-complexity model,
Vavasis and Ye (Math. Prog. ’96) gave the first exact algorithm for linear programming in
the real model of computation with running time depending only on the constraint matrix.
For solving a linear program (LP) max c⊤x, Ax = b, x ≥ 0, A ∈ Rm×n, Vavasis and Ye
developed a primal-dual interior point method using a ‘layered least squares’ (LLS) step,
and showed that O(n3.5 log(χ̄A + n)) iterations suffice to solve (LP) exactly, where χ̄A is a
condition measure controlling the size of solutions to linear systems related to A.

Monteiro and Tsuchiya (SIAM J. Optim. ’03), noting that the central path is invariant
under rescalings of the columns of A and c, asked whether there exists an LP algorithm
depending instead on the measure χ̄∗

A, defined as the minimum χ̄AD value achievable by
a column rescaling AD of A, and gave strong evidence that this should be the case. We
resolve this open question affirmatively.

Our first main contribution is an O(m2n2+n3) time algorithm which works on the linear
matroid of A to compute a nearly optimal diagonal rescaling D satisfying χ̄AD ≤ n(χ̄∗)3.
This algorithm also allows us to approximate the value of χ̄A up to a factor n(χ̄∗)2. This
result is in (surprising) contrast to that of Tunçel (Math. Prog. ’99), who showed NP-
hardness for approximating χ̄A to within 2poly(rank(A)). The key insight for our algorithm is
to work with ratios gi/gj of circuits of A—i.e., minimal linear dependencies Ag = 0—which
allow us to approximate the value of χ̄∗

A by a maximum geometric mean cycle computation
in what we call the ‘circuit ratio digraph’ of A.

While this resolves Monteiro and Tsuchiya’s question by appropriate preprocessing, it
falls short of providing either a truly scaling invariant algorithm or an improvement upon
the base LLS analysis. In this vein, as our second main contribution we develop a scaling

invariant LLS algorithm, which uses and dynamically maintains improving estimates of
the circuit ratio digraph, together with a refined potential function based analysis for LLS
algorithms in general. With this analysis, we derive an improved O(n2.5 log n log(χ̄∗

A +
n)) iteration bound for optimally solving (LP) using our algorithm. The same argument
also yields a factor n/ log n improvement on the iteration complexity bound of the original
Vavasis-Ye algorithm.

∗Supported by the ERC Starting Grants ScaleOpt and QIP.
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1 Introduction

The linear programming (LP) problem in primal-dual form is to solve

min c⊤x

Ax = b

x ≥ 0,

max y⊤b

A⊤y + s = c

s ≥ 0,

(LP)

where A ∈ Rm×n, rank(A) = m ≤ n, b ∈ Rm, c ∈ Rn are given in the input, and x, s ∈ Rn,
y ∈ Rm are the variables. We consider the program in x to be the primal problem and the
program in y, s to be the dual problem.

Khachiyan [Kha79] used the ellipsoid method to give the first polynomial time LP algorithm
in the bit-complexity model, that is, polynomial in the bit description length of A, b, c. Follow-
ing Khachiyan’s work, the now forty year old open question is whether there exists a strongly
polynomial time algorithm for LP. The task is to solve LP using poly(n,m) basic arithmetic
operations. Furthermore, the algorithm must be in PSPACE, that is, the numbers occurring
in the computations must remain polynomially bounded in the input size. Known strongly
polynomially solvable LP problems classes include: feasibility for two variable per inequality
systems [Meg83], the minimum-cost circulation problem [Tar85], the maximum generalized flow
problem [Vég17,OV17], and discounted Markov decision problems [Ye05,Ye11].

For more general LP classes, for which strongly polynomial algorithms are not known, the
principal line of attack has been to reduce the numerical complexity of LP algorithms. More
precisely, the goal has been to develop algorithms whose number of arithmetic operations depend
on natural condition measures of the base LP; at a high level, these condition measures attempt
to finely measure the “intrinsic complexity” of the LP. An important line of work in this area
has been to parametrize LPs by the “niceness” of their solutions (e.g. the depth of the most
interior point), where relevant examples include the Goffin measure [Gof80] for conic systems
and Renegar’s distance to ill-posedness for general LPs [Ren94, Ren95], and bounded ratios
between the nonzero entries in basic feasible solutions [Chu14,KM13].

Parametrizing by the constraint matrix A second line of research, and the main focus
of this work, makes no assumptions on the “niceness” of solutions and instead focuses on the
complexity of the constraint matrix A. The first breakthrough in this area was given by Tar-
dos [Tar86], who showed that if A has integer entries and all square submatrices of A have
determinant at most ∆ in absolute value, then (LP) can be solved in time poly(n,m, log∆).
This is achieved by finding the exact solutions to n2 rounded LPs derived from the original LP,
with the right hand side vector and cost function being integers of absolute value bounded in
terms of n and ∆. From n such rounded problem instances, one can infer, via proximity results,
that a constraint xi = 0 must be valid for every optimal solution. The process continues by
induction until the optimal primal face is identified.

Path-following methods and the Vavasis-Ye algorithm In a seminal work, Vavasis and
Ye [VY96] introduced a new type of interior-point method that optimally solves (LP) within
O(n3.5 log(χ̄A + n)) iterations, where the condition number χ̄A controls the size of solutions to
certain linear systems related to the kernel of A (see Section 2 for the formal definition).

Before detailing the Vavasis-Ye (henceforth VY) algorithm, we recall the basics of path fol-
lowing interior-point methods. If both the primal and dual problems in (LP) are strictly feasible,
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the central path for (LP) is the curve ((x(µ), y(µ), s(µ)) : µ > 0) defined by

x(µ)is(µ)i = µ, ∀i ∈ [n]

Ax(µ) = b, x(µ) > 0,

A⊤y(µ) + s(µ) = c, s(µ) > 0,

(CP)

which converges to complementary optimal primal and dual solutions (x∗, y∗, s∗) as µ → 0,
recalling that the optimality gap at time µ is exactly x(µ)⊤s(µ) = nµ. We thus refer to µ as
the normalized dualized gap. Methods that “follow the path” generate iterates that stay in a
certain neighborhood around it while trying to achieve rapid multiplicative progress w.r.t. to µ,
where given (x, y, s) close to the path, we define the effective µ as µ(x, y, s) =

∑n
i=1 xisi/n. In

general, the direction of movement at each iteration is computed by solving a carefully chosen
linear system. Given a target parameter µ′ and starting point close to the path at parameter µ,
standard path following methods [Gon92] can compute a point at parameter below µ′ in at most
O(
√
n log(µ/µ′)) iterations, and hence the quantity log(µ/µ′) can be usefully interpreted as the

length of the corresponding segment of the central path.

Crossover events and layered least squares steps At a very high level, Vavasis and
Ye show that the central path can be decomposed into at most

(

n
2

)

short but curved segments,
possibly joined by long (apriori unbounded) but very straight segments. At the end of each curved
segment, they show that a new ordering relation xi(µ) > xj(µ)—called a ‘crossover event’—is
implicitly learned, where this relation did not hold at the start of the segment, but will hold
at every point from the end of the segment onwards. These

(

n
2

)

relations give a combinatorial
way to measure progress along the central path. In contrast to Tardos’s algorithm, where the
main progress is setting variables to zero explicitly, the variables participating in crossover events
cannot be identified, only their existence is shown.

At a technical level, the VY algorithm is a variant of the Mizuno-Todd-Ye [MTY93] predictor-
corrector method (MTY P-C). In predictor-corrector methods, corrector steps bring an iterate
closer to the path, i.e., improve centrality, and predictor steps “shoot down” the path, i.e., reduce
µ without losing too much centrality. VY’s main algorithmic innovation was the introduction of
a new predictor step, called the ‘layered least squares’ (LLS) step, which crucially allowed them
to cross each aforementioned “straight” segment of the central path in a single step, recalling
that these straight segments may be arbitrarily long. To traverse the short and curved segments
of the path, the standard predictor step, known as affine scaling (AS), in fact suffices.

To compute the LLS direction, the variables are decomposed into ‘layers’ J1∪J2∪. . .∪Jp = [n].
The goal of such a decomposition is to eventually learn a refinement of the optimal partition of
the variables B∗ ∪N∗ = [n], where B∗ := {i ∈ [n] : x∗

i > 0} and N∗ := {i ∈ [n] : s∗i > 0} for the
limit optimal solution (x∗, y∗, s∗).

The primal affine scaling direction can be equivalently described by solving a weighted least
squares problem in Ker(A), with respect to a weighting defined according to the current iterate.
The primal LLS direction is obtained by solving a series of weighted least squares problems,
starting with focusing only on the final layer Jp. This solution is gradually extended to the
higher layers (which refers to layers with lower indices). The dual directions have analogous
interpretations, with the solutions on the layers obtained in the opposite direction, starting with
J1. If we use the two-level layering J1 = B∗, J2 = N∗, and are sufficiently close to the limit
(x∗, y∗, s∗) of the central path, then the LLS step reaches an exact optimal solution in a single
step. We note that standard AS steps generically never find an exact optimal solution, and thus
some form of “LLS rounding” is always necessary to achieve finite termination.
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Of course, guessing B∗ and N∗ correctly is just as hard as solving (LP). Still, if we work with
a “good” layering, these will reveal new information about the “optimal order” of the variables,
where B∗ is placed on higher layers than N∗. The crossover events correspond to swapping two
wrongly ordered variables into the correct ordering. Namely, a variable i ∈ B∗ and j ∈ N∗ are
currently ordered on the same layer, or j is in a higher layer than i. After the crossover event, i
will always be placed on a higher layer than j.

Computing good layerings and the χ̄A condition measure Given the above discussion,
the obvious question is how to come up with “good” layerings? The philosophy behind LLS can
be stated as saying that if modifying a set of variables xI barely affects the variables in x[n]\I
(recalling that movement is constrained to ∆x ∈ Ker(A)), then one should optimize over xI

without regard to the effect on x[n]\I ; hence xI should be placed on lower layers.
VY’s strategy for computing such layerings was to directly use the size of the coordinates of

the current iterate x (where (x, y, s) is a point near the central path). In particular, assuming
x1 ≥ x2 ≥ . . . ≥ xn, the layering J1 ∪ J2 ∪ . . . ∪ Jp = [n] corresponds to consecutive intervals
constructed in decreasing order of xi values. The break between Ji and Ji+1 occurs if the gap
xr/xr+1 > g, where r is the rightmost element of Ji and g > 0 is a threshold parameter. Thus,
the expectation is that if xi > gxj , then a small multiplicative change to xj , subject to moving
in Ker(A), should induce a small multiplicative change to xi. By proximity to the central path,
the dual ordering is reversed as mentioned above.

The threshold g for which this was justified in VY was a function of the χ̄A condition mea-
sure. We now provide a convenient definition, which immediately yields this justification (see
Proposition 2.4). Letting W = Ker(A) and πI(W ) = {xI : x ∈ W}, we define χ̄A := χ̄W as the
minimum number M ≥ 1 such that for any ∅ 6= I ⊆ [n] and z ∈ πI(W ), there exists y ∈ W
with yI = z and ‖y‖ ≤ M‖z‖. Thus, a change of ε in variables in I can be lifted to a change of
at most χ̄Aε in variables in [n] \ I. Crucially, χ̄ is a “self-dual” quantity. That is, χ̄W = χ̄W⊥ ,
where W⊥ = range(A⊤) is the movement subspace for the dual problem, justifying the reversed
layering for the dual (see Sections 2 for more details).

The question of scale invariance and χ̄∗
A While the VY layering procedure is powerful,

its properties are somewhat mismatched with those of the central path. In particular, variable
ordering information has no intrinsic meaning on the central path, as the path itself is scaling
invariant. Namely the central path point (x(µ), y(µ), s(µ)) w.r.t. the problem instance (A, b, c)
is in bijective correspondence with the central path point (D−1x(µ), Dy(µ), Ds(µ))) w.r.t. the
problem instance (AD,Dc, b) for any positive definite diagonal matrix D. The standard path
following algorithms are also scaling invariant in this sense.

This lead Monteiro and Tsuchiya [MT03] to ask whether a scaling invariant LLS algorithm
exists. They noted that any such algorithm would then depend on the potentially much smaller
parameter

χ̄∗
A := inf {χ̄AD : D ≻ 0 diagonal positive definite} , (1)

where the infimum is taken over the set of n × n positive diagonal matrices. Thus, Monteiro
and Tsuchiya’s question can be rephrased as to whether there exists an exact LP algorithm with
running time poly(n,m, log χ̄∗

A).
Substantial progress on this question was made in the followup works [MT05,LMT09]. [MT05]

showed that the number of iterations of the MTY predictor-corrector algorithm [MTY93] can get
from µ0 > 0 to η > 0 on the central path in O

(

n3.5 log χ̄∗ +min{n2 log log(µ0/η), log(µ0/η)}
)

iterations. This is attained by showing that the standard AS steps are reasonably close to the
LLS steps. This proximity can be used to show that the AS steps can traverse the curved parts of
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the central path in the same iteration complexity bound as the VY algorithm. Moreover, on the
“straight” parts of the path, the rate of progress amplifies geometrically, thus attaining a log log
convergence on these parts. Subsequently [LMT09] developed an affine invariant trust region
step, which traverses the full path in O(n3.5 log(χ̄∗

A + n)) iterations. However, each iteration
is weakly polynomial in b and c. The question of developing an LP algorithm with complexity
bound poly(n,m, log χ̄∗

A) thus remained open.
A related open problem to the above is whether it is possible to compute a near-optimal

rescaling D for program (1)? This would give an alternate pathway to the desired LP algo-
rithm by simply preprocessing the matrix A. The related question of approximating χ̄A was
already studied by Tunçel [Tun99], who showed NP-hardness for approximating χ̄A to within
a 2poly(rank(A)) factor. Taken at face value, this may seem to suggest that approximating the
rescaling D should be hard.

A further open question is whether Vavasis and Ye’s base cross-over analysis can be improved.
Ye in [Ye06] showed that the iteration complexity can be reduced to O(n2.5 log(χ̄A + n)) for
feasibility problems and further to O(n1.5 log(χ̄A + n)) for homogeneous systems, though the
O(n3.5 log(χ̄A + n)) bound for optimization has remained unimproved since [VY96].

Our contributions. In this work, we resolve all of the above questions in the affirmative. We
detail our contributions below.

1. Finding an approximately optimal rescaling. As our first contribution, we give anO(m2n2+n3)
time algorithm which works on the linear matroid of A to compute a diagonal rescaling matrix
D which achieves χ̄AD ≤ n(χ̄∗

A)
3, given any m× n matrix A. Furthermore, this same algorithm

allows us to approximate χ̄A to within a factor n(χ̄∗
A)

2. The algorithm bypasses Tunçel’s hardness
result by allowing the approximation factor to depend on A itself, namely on χ̄∗

A. This gives a
simple first answer to Monteiro and Tsuchiya’s question: by applying the Vavasis-Ye algorithm
directly on the preprocessed A matrix, we may solve any LP with constraint matrix A using
O(n3.5(log χ̄∗

A+n)) iterations. Note that the approximation factor n(χ̄∗
A)

2 increases the runtime
only by a constant factor.

To achieve this result, we work directly with the circuits of A, where a circuit C ⊆ [n] is
C = supp(g) for a minimal linear dependency Ag = 0. With each circuit, we can associate a
vector gC ∈ Ker(A) with supp(gC) = C that is unique up to scaling. By the ‘circuit ratio’ of
(i, j), we mean the largest ratio |gCj /gCi | taken over every circuit C of A such that i, j ∈ C. As
our first observation, we show that the maximum of all circuit ratios, which we call the ‘circuit
imbalance measure’, in fact characterizes χ̄A up to a factor n. This measure was first studied by
Vavasis [Vav94], who showed that it lower bounds χ̄A, though, as far as we are aware, our upper
bound is new. The circuit ratios of each pair (i, j) induces a weighted directed graph we call the
circuit ratio digraph of A. From here, our main result is that χ̄∗

A is up to a factor n equal to
the maximum geometric mean cycle in the circuit ratio digraph. Our approximation algorithm
populates the circuit ratio digraph with ratios for each i, j using basic matroid techniques, and
then computes a rescaling by solving the dual of the maximum geometric mean ratio cycle on
the ‘approximate circuit ratio digraph’.

2. Scaling invariant LLS algorithm. While the above yields an LP algorithmwith poly(n,m, log χ̄∗
A)

running time, it does not satisfactorily address Monteiro and Tsuchiya’s question for a scaling
invariant algorithm. As our second contribution, we use the circuit ratio digraph directly to give
a natural scaling invariant LLS layering algorithm together with a scaling invariant crossover
analysis.

At a conceptual level, we show that the circuit ratios give a scale invariant way to measure
whether ‘xi > xj ’ and enable a natural layering algorithm. Let κij be the circuit imbalance
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between i and j, i.e., the maximum value |gj/gi| for a minimal kernel solution g containing i
and j in the support. Given the circuit ratio graph induced by κ and a primal point x near the
path, our layering algorithm can be described as follows. We first rescale the variables so that
x becomes the all ones vector, which rescales κij to κijxi/xj . We then restrict the graph its
edges of length ≥ 1/poly(n)—the long edges of the (rescaled) circuit ratio graph—and let the
layering J1 ∪ J2 ∪ . . .∪ Jp be a topological ordering of its strongly connected components (SCC)
with edges going from left to right. Intuitively, variables that “affect each other” should be in
the same layer, which motivates the SCC definition. It is not hard to see that VY’s original
layering algorithm can achieved in this way by artificially declaring the rescaled circuit ratios to
be poly(n)χ̄A · xi/xj , ∀(i, j).

We note that our layering algorithm does not in fact have access to the true circuit ratios
κij , as these are NP-hard to compute. Getting a good enough initial estimate for our purposes
however is easy: we let κ̂ij be the ratio corresponding to an arbitrary circuit containing i and
j. This already turns out to be within a factor (χ̄∗

A)
2 from the true value κij , which we recall

is the maximum over all such circuits. Our layering algorithm in fact learns better circuit ratio
estimates if the “lifting costs” of our SCC layering, i.e., how much it costs to lift changes from
lower layer variables to higher layers (as in the definition of χ̄A), are larger than we expected
them to be.

For our analysis, we define cross-overs in a scaling invariant way as follows. Before the
crossover event, poly(n)(χ̄∗

A)
n > κijxi/xj , and after the crossover event, poly(n)(χ̄∗

A)
n < κijxi/xj

for all further central path points. Our analysis relies on χ̄∗
A in only a minimalistic way, and

does not require an estimate on the value of χ̄∗
A. Namely, it is only used to show that if i, j ∈ Jq,

fo a layer q ∈ [p], then the rescaled circuit ratio κijxi/xj is in the range (poly(n)χ̄∗
A)

O(±|Jq|).
The argument to show this crucially utilizes the maximum geometric mean cycle characteriza-
tion. Furthermore, unlike prior analyses [VY96,MT03], our definition of a “good” layering (i.e.,
‘balanced’ layerings, see Section 3.4), is completely independent of χ̄∗

A.

3. Improved potential analysis. As our third contribution, we improve the Vavasis-Ye crossover
analysis using a new and simple potential function based approach. When applied to our new LLS
algorithm, we derive an O(n2.5 logn log(χ̄∗

A + n)) iteration bound for path following, improving
the polynomial term by an Ω(n/ logn) factor compared to the VY analysis.

Our potential function can be seen as a fine-grained version of the crossover events as described
above. In case of such a crossover event, it is guaranteed that in every subsequent iteration, i
is in a layer before j. Instead, we analyze less radical changes: an “event” parametrized by τ
means that i and j are currently together on a layer of size ≤ τ , and after the event, i is on a
layer before j, or if they are together on the same layer, then this layer must have size ≥ 2τ . For
every LLS step, we can find a parameter τ such that an event of this type happens concurrently
for at least τ − 1 pairs within the next O(

√
nτ log(χ̄∗

A + n)) iterations,

Our improved analysis is also applicable to the original VY algorithm. Let us now comment
on the relation between the VY algorithm and our new algorithm. The VY algorithm starts a
new layer once xπ(i) > gxπ(i+1) between two consecutive variables where the permutation π is
a non-increasing order of the xi variables. Here, g = poly(n)χ̄. Setting the initial ‘estimates’
κ̂ij = g/poly(n) for a suitable polynomial, our algorithm runs the same way as the VY algorithm.
Using these estimates, the layering procedure becomes much simpler: there is no need to verify
‘balancedness’ as in our general algorithm.

However, setting g = κ̂ij has drawbacks. Most importantly, it does not give a lower bound
on the true circuit ratio κij—to the contrary, g will be an upper bound! In effect, this causes
VY’s layers to be “much larger” than ours, and for this reason, the connection to χ̄∗ is lost.
Nevertheless, our potential function analysis can still be adapted to the VY algorithm to obtain
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the same Ω(n/ logn) improvement on the iteration complexity bound; see Section 4.1 for more
details.

1.1 Related work

Since the seminal works of Karmarkar [Kar84] and Renegar [Ren88], there has been a tremendous
amount of work on speeding up and improving interior-point methods. In contrast to the present
work, the focus of these works has mostly been to improve complexity of approximately solving
LPs. Progress has taken many forms, such as the development of novel barrier methods, such
Vaidya’s volumetric barrier [Vai89] and the recent entropic barrier of Bubeck and Eldan [BE14]
and the weighted log-barrier of Lee and Sidford [LS14,LS19], together with new path following
techniques, such as the predictor-corrector framework [Meh92,MTY93], as well as advances in
fast linear system solving [ST04,LS15]. For this last line, there has been substantial progress in
improving IPM by amortizing the cost of the iterative updates, and working with approximate
computations, see e.g. [Ren88,Vai89,CLS19,vdB20]. Very recently, Cohen, Lee and Song [CLS19]
developed a new inverse maintenance scheme to get a randomized Õ(n2.37 log(1/ε))-time algo-
rithm for ε-approximate LP, which was derandomized by van den Brand [vdB20]. For special
classes of LP such as network flow problems, fast algorithms have been obtained by using fast
Laplacian solvers, see e.g. [DS08, Mad13]. Given the progress above, we believe it to be an
interesting problem to understand to what extent these new numerical techniques can be ap-
plied to speed up LLS computations, though we expect that such computations will require very
high precision. We note that no attempt has been made in the present work to optimize the
complexity of the linear algebra.

Ho and Tunçel [HT02] showed how to extend Tardos’ framework to the real model of com-
putation (i.e., to non-integral A), providing a blackbox alternative to the VY algorithm. The
numerical complexity of the LPs arising in their reduction is controlled by the minimum and max-
imum subdeterminant of A restricted to non-singular submatrices and the minimum non-zero
slack of any basic primal or dual solution over a certain grid of right hand sides and objectives.

With regard to LLS algorithms, the original VY algorithm required explicit knowledge of χ̄A

to implement their layering algorithm. [MMT98] showed that this could be avoided by computing
all LLS steps associated with n candidate partitions and picking the best one. In particular, they
showed that all such LLS steps can be computed in O(m2n) time. [MT03] gave an alternate
approach which computes a LLS partition directly from the coefficients of the AS step. We note
that these methods crucially rely on the variable ordering, and hence are not scaling invariant.
Kitahara and Tsuchiya [KT13], gave a 2-layer LLS step which achieves a running time depending
only on χ̄∗

A and right-hand side b, but with no dependence on the objective, assuming the primal
feasible region is bounded.

A series of papers have studied the central path from a differential geometry perspective.
Monteiro and Tsuchiya [MT08] showed that a curvature integral of the central path, first intro-
duced by Sonnevend, Stoer, and Zhao [SSZ91], is in fact upper bounded by O(n3.5 log(χ̄∗

A + n)).
This has been extended to SDP and symmetric cone programming [KOT14], and also studied in
the context of information geometry [KOT13].

Circuits have appeared in several papers on linear and integer optimization (see [DLKS19]
and its references). The idea of using circuits within the context of LP algorithms also appears
in [DLHL15]. They develop an augmentation framework for LP (as well ILP) and show that a
simplex-like algorithm which takes steps according to the “best circuit” direction achieves linear
convergence, though these steps are hard to compute.

Our algorithm makes progress towards strongly polynomial solvability of LP, by improving
the dependence poly(n,m, log χ̄) to poly(n,m, log χ̄∗). However, in a remarkable recent paper,
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Allamigeon et al. [ABGJ18] have shown, using tools from tropical geometry, that path-following
methods for the standard logarithmic barrier cannot be strongly polynomial. In particular,
they give a parametrized family of instances, where, for sufficiently large parameter values, any
sequence of iterations following the central path must be of exponential length—thus, χ̄∗ will be
doubly exponential. We note that it is unclear whether their instance is robust to changing the
barrier method itself; e.g., the weighted log-barrier [LS14].

1.2 Organization

Section 2 begins with the necessary background on the condition measures χ̄A and χ̄∗
A. It

culminates in the approximate χ̄∗
A rescaling and χ̄A approximation algorithm in Section 2.4. This

algorithm relies upon the circuit imbalance measure in Section 2.1, the min-max characterization
in Section 2.2, and a circuit finding algorithm in Section 2.3.

In Section 3, we develop our scaling invariant interior-point method. Interior-point prelim-
inaries are given in Section 3.1, the layered least squares step is explained in Section 3.3, our
scaling invariant layering algorithm is given in Section 3.4, and lastly, our overall algorithm is
given in Section 3.5.

In Section 4, we give the potential function proof for the improved iteration bound, relying
on technical lemmas. The full proof of these lemmas is deferred to Section 6; however, Section 4
provides the high-level ideas to each proof. Section 4.1 shows that our argument also leads to a
factor Ω(n/ logn) improvement in the iteration complexity bound of the VY algorithm.

In Section 5, we prove the technical properties of our LLS step, including its proximity to AS
and step length estimates. Finally, in Section 7, we discuss the initialization of our interior-point
method.

2 Finding an approximately optimal rescaling

Notation Our notation will largely follow [MT03,MT05]. We let R++ denote the set of positive
reals, and R+ the set of nonnegative reals. For n ∈ N, we let [n] = {1, 2, . . . , n}. Let ei ∈
Rn denote the ith unit vector, and e ∈ Rn the all 1s vector. For a vector x ∈ Rn, we let
Diag(x) ∈ Rn×n denote the diagonal matrix with x on the diagonal. We let D denote the set
of all positive definite n × n diagonal matrices. For x, y ∈ Rn, we use the notation xy ∈ Rn

to denote xy = Diag(x)y = (xiyi)i∈[n]. The scalar product of the two vectors is denoted as

x⊤y. For p ∈ Q, we also use the notation xp to denote the vector (xp
i )i∈[n]. Similarly, for

x, y ∈ Rn, we let x/y denote the vector (xi/yi)i∈[n]. We denote the support of a vector x ∈ Rn

by supp(x) = {i ∈ [n] : xi 6= 0}.
For an index subset I ⊆ [n], we use πI : Rn → RI for the coordinate projection. That is,

πI(x) = xI , and for a subset S ⊆ Rn, πI(S) = {xI : x ∈ S}. We let Rn
I = {x ∈ Rn : x[n]\I = 0}.

For a matrix B ∈ Rn×k, I ⊂ [n] and J ⊂ [k] we let BI,J denote the submatrix of B restricted
to the set of rows in I and columns in J . We also use BI,• = BI,[k] and BJ = B•,J = B[n],J . We

let B† ∈ Rk×n denote the pseudo-inverse of B.
We let Ker(A) denote the kernel of the matrix A ⊆ Rm×n. Throughout, we assume that the

matrix A in (LP) has full row rank, and that n ≥ 3.
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Subspace formulation Throughout the paper, we let W = Ker(A) ⊆ Rn denote the kernel
of the matrix A. Using this notation, (LP) can be written in the form

min c⊤x

x ∈W + d

x ≥ 0,

max d⊤(c− s)

s ∈ W⊥ + c

s ≥ 0,

(2)

where d ∈ Rn satisfies Ad = b.

The condition number χ̄ The condition number χ̄A is defined as

χ̄A = sup
{

‖A⊤ (

ADA⊤)−1
AD‖ : D ∈ D

}

= sup

{
∥

∥A⊤y
∥

∥

‖p‖ : y minimizes
∥

∥

∥D1/2(A⊤y − p)
∥

∥

∥ for some 0 6= p ∈ Rn and D ∈ D

}

.
(3)

This condition number was first studied by Dikin [Dik67], Stewart [Ste89], and Todd [Tod90],
among others, and plays a key role in the analysis of the Vavasis-Ye interior point method [VY96].
There is an extensive literature on the properties and applications of χ̄A, as well as its relations
to other condition numbers. We refer the reader to the papers [HT02,MT03,VY96] for further
results and references.

It is important to note that χ̄A only depends on the subspace W = Ker(A). Hence, we can
also write χ̄W for a subspace W ⊆ Rn, defined to be equal to χ̄A for some matrix A ∈ Rk×n

with W = Ker(A). We will use the notations χ̄A and χ̄W interchangeably.
The next lemma summarizes some important known properties of χ̄A.

Proposition 2.1. Let A ∈ Rm×n with full row rank and W = Ker(A).

(i) If the entries of A are all integers, then χ̄A is bounded by 2O(LA), where LA is the input
bit length of A.

(ii) χ̄A = max{‖B−1A‖ : B non-singular m×m-submatrix of A}.

(iii) Let the columns of B ∈ Rn×(n−m) form an orthonormal basis of W . Then

χ̄W = max
{

‖BB†
I,•‖ : ∅ 6= I ⊂ [n]

}

.

(iv) χ̄W = χ̄W⊥ .

Proof. Part (i) was proved in [VY96, Lemma 24]. For part (ii), see [TTY01, Theorem 1] and
[VY96, Lemma 3]. In part (iii), the direction ≥ was proved in [Ste89], and the direction ≤ in
[O’L90]. The duality statement (iv) was shown in [GL97].

In Proposition 3.8, we will also give another proof of (iv). We now define the lifting map, a
key operation in this paper, and explain its connection to χ̄A.

Definition 2.2. Let us define the lifting map LW
I : πI(W )→W by

LW
I (p) = argmin {‖z‖ : zI = p, z ∈W} .

Note that LW
I is the unique linear map from πI(W ) to W such that LW

I (p)I = p and LW
I (p)

is orthogonal to W ∩ Rn
[n]\I .

9



Lemma 2.3. Let W ⊆ Rn be an (n − m)-dimensional linear subspace. Let the columns of
B ∈ Rn×(n−m) denote an orthonormal basis of W . Then, viewing LW

I as a matrix,

LW
I = BB†

I,• .

Proof. If p ∈ πI(W ), then p = BI,•y for some y ∈ Rn−m. By the well-known property of the

pseudo-inverse, B†
I,•p = argminp=BI,•y ‖y‖. This solution satisfies πI(BB†

I,•p) = p, BB†
I,•p ∈ W .

Since the columns of B form form an orthonormal basis of W , we have that ‖BB†
I,•p‖ = ‖B†

I,•p‖.
Consequently, BB†

I,•p is the minimum-norm point with the above properties.

The above lemma and Proposition 2.1(iii) yield the following characterization. This will be
the most suitable characterization of χ̄W for our purposes.

Proposition 2.4. For a linear subspace W ⊆ Rn,

χ̄W = max
{

‖LW
I ‖ : I ⊆ [n], I 6= ∅

}

.

The following notation will be convenient for our algorithm. For a subspace W ⊆ Rn and an
index set I ⊆ [n], if πI(W ) 6= {0}, we define the lifting score

ℓW (I) :=
√

‖LW
I ‖2 − 1 . (4)

Otherwise, we define ℓW (I) = 0. This means that for any z ∈ πI(W ) and x = LW
I (z), ‖x[n]\I‖ ≤

ℓW (I)‖z‖.

The condition number χ̄∗
A For every D ∈ D, we can consider the condition number χ̄WD =

χ̄AD−1 . We let
χ̄∗
W = χ̄∗

A = inf{χ̄WD : D ∈ D}
denote the best possible value of χ̄ that can be attained by rescaling the coordinates of W . The
main result of this section is the following theorem.

Theorem 2.5. There is an O(n2m2+n3) time algorithm that for any matrix A ∈ Rm×n computes
a t such that

t ≤ χ̄W ≤ tn(χ̄∗
W )2

and a D ∈ D such that
χ̄∗
W ≤ χ̄WD ≤ n(χ̄∗

W )3 .

2.1 The circuit imbalance measure

We next introduce the circuit imbalance measure, a more combinatorial condition number, and
show that it gives a good proxy to χ̄A.

Definition 2.6. For a linear subspace W ⊆ Rn and a matrix A such that W = Ker(A), a circuit
is an inclusion-wise minimal dependent set of columns of A. Equivalently, a circuit is a set
C ⊆ [n] such that W ∩ Rn

C is one-dimensional and that no strict subset of C has this property.
Any circuit is associated with a vector g ∈ W with inclusion-wise minimal support. The set of
circuits of W is denoted CW .

Note that these are also known as the circuits in the linear matroid associated with A.
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Definition 2.7. For a circuit C ∈ CW , let gC ∈ W be such that supp(gC) = C. For i, j ∈ C,
we let

κW
ij (C) =

gCj
gCi

. (5)

For any i, j ∈ [n], we define the circuit ratio as the maximum of κW
ij (C) over all choices of the

circuit C:
κW
ij = max

{

κW
ij (C) : C ∈ CW , i, j ∈ C

}

. (6)

By convention we set κW
ij = 0 if there is no circuit supporting i and j. Further, we define the

circuit imbalance measure as

κW = max
{

κW
ij : i, j ∈ [n]

}

.

Minimizing over all coordinate rescalings, we define

κ∗
W = min {κWD : D ∈ D} .

We omit the index W whenever it is clear from context. In such cases, for D = Diag(d) ∈ D,
we write κd

ij = κWD
ij and κd = κd

W = κWD.

We want to remark that a priori it is not clear that κ∗
W is well-defined. Theorem 2.13 will

show that the minimum of {κWD : D ∈ D} is indeed attained. Observe that κW
ij (C) does not

depend on the choice of g, since there is only a single choice up to scalar multiplication.
The circuit ratio, as well as the circuit imbalance measure, are self-dual.

Lemma 2.8. For any subspace W ⊆ Rn and i, j ∈ [n], κW
ij = κW⊥

ji .

Proof. Let C ∈ CW and gC ∈ W ∩ Rn
C be its corresponding vector such that κij = κij(C) =

|gj/gi|. We construct a circuit solution in W⊥ that certifies κW
ij ≥ κW⊥

ji .

Define h ∈ RC by hi = gj , hj = −gi and hk = 0 for all k ∈ C \ {i, j}. Then, h is orthogonal
to g by construction, and hence we have h ∈ πC(W ∩ Rn

C)
⊥ = πC(W

⊥).
We will lift the vector h to a circuit solution in W⊥. The next procedure will be applied first

for I = C, and extended one coordinate at a time; we terminate once I = [n]. Suppose we have
any set I ⊂ [n] and vector v ∈ πI(W

⊥), such that v is a circuit solution supp(v) ∈ CπI(W⊥).
For the starting I = C, the vector v = h is a suitable choice. Pick an arbitrary i ∈ [n] \ I. We

look for a circuit solution v′ ∈ πI∪{i}(W
⊥) with v′I = v. Let V = πI∪{i}(W

⊥) ∩ R
I∪{i}
supp(v)∪{i}.

By our assumption that supp(v) ∈ CπI (W ), we see that v ∈ πI(V ) and that any v′ ∈ V satisfies
v′I ∈ Rv. From here, it is easy to check that dim(V ) ∈ {1, 2} and that dim(V ) = 1 iff ei /∈ V .
If dim(V ) = 1, there is a unique such v′ ∈ V satisfying v′I = v. For this v′, we thus have
supp(v′) ∈ CπI∪{i}(W⊥) and we are done. If dim(V ) = 2, the choice of v′ is not unique. In this

case, since ei ∈ V , we may choose v′ so that (v′I , v
′
i) = (vI , 0). For this choice, supp(v

′) = supp(v)

and dim(πI∪{i}(W
⊥) ∩ R

I∪{i}
supp(v)) = 1. In particular, supp(v′) ∈ CπI∪{i}(W⊥) as needed.

Let v ∈ CW⊥ denote circuit solution obtained by this procedure. Clearly,

κW⊥

ji ≥
∣

∣

∣

∣

vi
vj

∣

∣

∣

∣

=

∣

∣

∣

∣

hi

hj

∣

∣

∣

∣

=

∣

∣

∣

∣

gj
gi

∣

∣

∣

∣

= κW
ij .

By swapping the role of W and W⊥ and i and j, we obtain κW
ij ≥ κW⊥

ji . The statement
follows.
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The next theorem relates the circuit imbalance κW and the condition number χ̄W . The lower
bound was already proven in [Vav94], and the upper bound is new, as far as we know.

Theorem 2.9. For a linear subspace W ⊆ Rn,

√

1 + (κW )2 ≤ χ̄W ≤
√

1 + (nκW )2.

Proof. For the first inequality, let C ∈ CW be the circuit, i 6= j ∈ C s.t. |gj/gi| = κW for the
corresponding solution g = gC . Let us use the characterization of χ̄W in Proposition 2.4. Let
I = ([n] \C)∪ {i}, and p = gie

i, that is, the vector with pi = gi and pk = 0 for k 6= i. Then, the
unique vector z ∈W such that zI = p is z = g. Therefore,

χ̄W ≥ min
z∈W,zI=p

‖z‖
‖p‖ =

‖g‖
|gi|
≥

√

|gi|2 + |gj |2
|gi|

=
√

1 + κ2
W .

The reverse direction is immediate from Lemma 2.11 below.

The next lemmas complete the proof of Theorem 2.9, and will also be used later in the
algorithm. Let us say that the vector y ∈ Rn is sign-consistent with x ∈ Rn if xiyi ≥ 0 for all
i ∈ [n] and xi = 0 implies yi = 0 for all i ∈ [n].

Lemma 2.10. For i ∈ I ⊂ [n] with ei ∈ πI(W ), let z = LW
I (ei). Then for any j ∈ supp(z) we

have κW
ij ≥ |zj |.

Proof. We consider the cone F ⊂ W of vectors sign-consistent with z. The faces of F are
bounded by inequalities of the form zkyk ≥ 0 or yk = 0. The edges (rays) of F are of the form
{αg : α ≥ 0} with supp(g) ∈ CW . It is easy to see from the Minkowski-Weyl theorem that z can
be written as

z =

h
∑

k=1

gk,

where h ≤ n, C1, C2, . . . , Ch ∈ CW are circuits, and the vectors g1, g2, . . . , gh ∈ W are sign-
consistent with z and supp(gk) = Ck for all k ∈ [h]. Note that i ∈ Ck for all k ∈ [h], as
otherwise, z′ = z − gk would also satisfy z′I = ei, but ‖z′‖ < ‖z‖ due to gk being sign-consistent
with z, a contradiction to the definition of z.

At least one k ∈ [h] contributes at least as much to |zj | =
∑h

k=1
|gk

j |∑
h
k=1

gk
i

as average. Hence we

find κW
ij ≥ |gkj /gki | ≥ |zj |.

For the next lemma, recall the definition of the lifting score ℓW (I) from (4).

Lemma 2.11. For a linear subspace W ⊆ Rn and an index set I ⊆ [n], we can efficiently identify
i ∈ I, j ∈ [n] \ I and t ≤ κW

ij such that ℓW (I) ≤ nt.

Proof. Take any minimal I ′ ⊂ I such that dim(πI′(W )) = dim(πI(W )). Then we know that
πI′(W ) = RI′

and for p ∈ πI(W ) we can compute LW
I (p) = LW

I′ (pI′). Let B ∈ R([n]\I)×I′

be the
matrix sending any q ∈ πI′(W ) to the corresponding vector (LW

I′ (q))[n]\I . The column Bi can

be computed as (LW
I′ (ei))[n]\I for ei ∈ RI′

. We have ‖LW
I (p)‖2 = ‖p‖2 + ‖(LW

I′ (pI′))[n]\I‖2 ≤
‖p‖2 + ‖B‖2‖pI′‖2 for any p ∈ πI(W ), and so ℓW (I) =

√

‖LW
I ‖2 − 1 ≤ ‖B‖. We upper bound

the operator norm by the Frobenius norm ‖B‖ ≤ ‖B‖F =
√

∑

ji B
2
ji ≤ nmaxji |Bji|. By

Lemma 2.10 it follows that |Bji| = |(LW
I′ (ei))j | ≤ κW

ij .
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Our LLS algorithm in Section 3 will use the subroutine described in the proof of Lemma 2.11.
For a subspace W ⊆ Rn, an index set I ⊆ [n], and a threshold θ > 0, the algorithm Verify-

Lift(W, I, θ) outputs either of the answers ‘pass’ or ’fail’. If the answer is ‘pass’, then it is
guaranteed that ℓW (I) ≤ θ. If the answer is ‘fail’, then a pair of indices i ∈ I, j ∈ [n] \ I, and a
bound t are returned, such that θ/n ≤ t ≤ κW

i,j .
To implement the algorithm, we first need to select a minimal I ′ ⊂ I such that dim(πI′(W )) =

dim(πI(W )). This can be found by computing a matrix M ∈ R(n−m)×n such that range(M) =
W , and selecting a maximal number of linearly independent columns of MI . Then, we compute
the matrix B ∈ R([n]\I)×I′

that implements the transformation [LW
I′ ][n]\I : πI′(W )→ π[n]\I(W ).

The algorithm returns the pair (i, j) corresponding to the entry maximizing |Bji|.

Remark 2.12. We note that the algorithm Verify-Lift does not need to compute the circuit
as in Lemma 2.10. The following observation will be important in the analysis: the algorithm
returns the answer ‘fail’ even if ℓW (I) ≤ θ, but θ < n|Bji|.

2.2 A min-max theorem on κ
∗
W

We next provide a combinatorial min-max characterization on κ∗
W . Consider the circuit ratio

digraph G = ([n], E) on the node set [n] where (i, j) ∈ E if κ(i, j) > 0, that is, there exists a
circuit C ∈ C with i, j ∈ C. An edge (i, j) ∈ E is said to have weight κij = κW

ij . (Note that
(i, j) ∈ E if and only if (j, i) ∈ E, but the weight of these two edges can be different.)

Let H be a cycle in G, that is, a sequence of points i1, i2, . . . , ik, ik+1 = i1. We use |H | = k to
denote the length of the cycle. (In our terminology, ‘cycles’ always refer to objects in G, whereas
‘circuits’ refer to the minimum supports in Ker(A).)

We use the notation κ(H) = κW (H) =
∏k

j=1 κ
W
ijij+1

. For a vector d ∈ Rn
++, we let κd(H) =

κd
W (H) = κWD(H) for D = Diag(d). A simple but important observation is that such a rescaling

does not change the value associated with the cycle, that is,

κd
W (H) = κW (H) ∀d ∈ Rn

++ for any cycle H in G . (7)

We are ready to formulate our theorem.

Theorem 2.13. For a subspace W ⊂ Rn, we have

κ∗
W = min

d>0
κd
W = max

{

κW (H)1/|H| : H is a cycle in G
}

.

Proof. For the direction κW (H)1/|H| ≤ κ∗
W we use (7). Let d > 0 be a scaling and H a cycle. We

have κd
ij ≤ κd

W for every i, j ∈ [n], and hence κW (H) = κd
W (H) ≤ (κd

W )|H|. Since this inequality

holds for every d > 0, it follows that κW (H) ≤ (κ∗
W )|H|.

For the reverse direction, consider the following optimization problem.

min t

κijdj/di ≤ t ∀(i, j) ∈ E

d > 0.

(8)

Note that any feasible solution (d, t) can be rescaled to a feasible solution (λd, t) for λ > 0 with
equal objective value. As such, we can strengthen the condition d > 0 to d ≥ 1 without changing
the objective value. This makes it clear that the optimum value is achieved by a feasible solution.
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Any rescaling d > 0 provides a feasible solution with objective value κd, which means that
the optimal value t∗ of (8) is t∗ = κ∗. Moreover, (8) can be written as

min s

log κij + zj − zi ≤ s ∀(i, j) ∈ E

z ∈ Rn.

(9)

This is the dual of a minimum-mean cycle problem with respect to the cost function log(κij).
Therefore, an optimal solution corresponds to the cycle maximizing

∑

ij∈H log κij/|H |, or in

other words, maximizing κ(H)1/|H|.

The following example shows that κ∗ ≤ χ̄∗ can be arbitrarily big.

Example 2.14. Take W = span((0, 1, 1,M), (1, 0,M, 1)), where M > 0. Then {2, 3, 4} and
{1, 3, 4} are circuits with κW

34({2, 3, 4}) = M and κW
43({1, 3, 4}) = M . Hence, by Theorem 2.13,

we see that κ∗ ≥M .

The following corollary of Theorem 2.13 particularly useful. It asserts that any arbitrary
circuit containing i and j yields a (κ∗)2 approximation to κij .

Corollary 2.15. We are given a linear subspace W ⊆ Rn and i, j ∈ [n], i 6= j, and a circuit
C ∈ CW with i, j ∈ C. Let g ∈W be the corresponding vector with supp(g) = C. Then,

κW
ij

(κ∗
W )

2 ≤
|gj |
|gi|
≤ κW

ij .

Proof. The second inequality follows by definition. For the first inequality, note that the same
circuit C yields |gi/gj| ≤ κW

ji (C) ≤ κW
ji . Therefore, |gj/gi| ≥ 1/κW

ji .

From Theorem 2.13 we see that κW
ij κ

W
ji ≤ (κ∗

W )2, giving 1/κW
ji ≥ κW

ij /(κ
∗
W )2, completing the

proof.

2.3 Finding circuits: a detour in matroid theory

We now show how to efficiently obtain a family Ĉ ⊆ CW such that for any i, j ∈ [n], Ĉ includes
a circuit containing both i and j, provided there exists such a circuit.

We need some simple concepts and results from matroid theory. We refer the reader to
[Sch03, Chapter 39] or [Fra11, Chapter 5] for definitions and background. LetM = ([n], I) be a
matroid on ground set [n] with independent sets I ⊆ 2V . The rank rk(S) of a set S ⊆ 2[n] is the
maximum size of an independent set contained in S. The maximal independent sets are called
bases. All bases have the same cardinality rk([n]).

For the matrix A ∈ Rm×n, we will work with the linear matroidM(A) = ([n], I(A)), where
a subset I ⊆ [n] is independent if the columns {Ai : i ∈ I} are linearly independent. Note that
rk([n]) = m under the assumption that A has full row rank.

The circuits of the matroid are the inclusion-wise minimal non-independent sets. Let I ∈ I
be an independent set, and i ∈ [n] \ I such that I ∪ {i} /∈ I. Then, there exists a unique
circuit C(I, i) ⊆ I ∪ {i} that is called the fundamental circuit of i with respect to I. Note that
i ∈ C(I, i).

The matroidM is separable, if the ground set [n] can be partitioned to two nonempty subsets
[n] = S ∪ T such that I ∈ I if and only if I ∩ S, I ∩ T ∈ I. In this case, the matroid is the direct
sum of its restrictions to S and T . In particular, every circuit is fully contained in S or in T .
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For the linear matroidM(A), separability means that Ker(A) = Ker(AS)⊕Ker(AT ). In this
case, solving (LP) can be decomposed into two subproblems, restricted to the columns in AS

and in AT , and χ̄A = max{χ̄AS
, χ̄AT

}.
Hence, we can focus on non-separable matroids. The following characterization is well-known,

see e.g. [Fra11, Theorems 5.2.5, 5.2.7–5.2.9]. For a hypergraph H = ([n], E), we define the
underlying graph HG = ([n], E) such that (i, j) ∈ E if there is a hyperedge S ∈ E with i, j ∈ S.
That is, we add a clique corresponding to each hyperedge. The hypergraph is called connected
if the underlying graph G = ([n], E) is connected.

Proposition 2.16. For a matroid M = ([n], I), the following are equivalent:

(i) M is non-separable.

(ii) The hypergraph of the circuits is connected.

(iii) For any base B ofM, the hypergraph formed by the fundamental circuits CB = {C(B, i) :
i ∈ [n] \B} is connected.

(iv) For any i, j ∈ [n], there exists a circuit containing i and j.

Proof. The implications (i)⇔ (ii), (iii)⇒ (ii), and (iv)⇒ (ii) are immediate from the definitions.
For the implication (ii) ⇒ (iii), assume for a contradiction that the hypergraph of the funda-

mental circuits with respect to B is not connected. This means that we can partition [n] = S∪T
such that for each i ∈ S, C(B, i) ⊆ S, and for each i ∈ T , C(B, i) ⊆ T . Consequently,
rk(S) = |B ∩ S|, rk(T ) = |B ∩ T |, and therefore rk([n]) = rk(S) + rk(T ). It is easy to see that
this property is equivalent to separability to S and T ; see e.g. [Fra11, Theorem 5.2.7] for a proof.

Finally, for the implication (ii)⇒ (iv), consider the undirected graph ([n], E) where (i, j) ∈ E
if there is a circuit containing both i and j. This graph is transitive according to [Fra11, Theorem
5.2.5]: if (i, j), (j, k) ∈ E, then also (i, k) ∈ E. Consequently, whenever ([n], E) is connected, it
must be a complete graph.

We now give a different proof of (iii) ⇒ (iv) that will be convenient for our algorithmic
purposes. First, we need a simple lemma that is commonly used in matroid optimization, see
e.g. [Fra11, Lemma 13.1.11] or [Sch03, Theorem 39.13].

Lemma 2.17. Let I be an independent set of a matroidM = ([n], I), and U = {u1, u2, . . . , uℓ} ⊆
I, V = {v1, v2, . . . , vℓ} ⊆ [n] \ I such that I ∪ {vi} is dependent for each i ∈ [ℓ]. Further, assume
that for each t ∈ [ℓ], ut ∈ C(I, vt) and ut /∈ C(I, vh) for all h < t. Then, (I \ U) ∪ V ∈ I.

To prove the lemma, one simply shows that exchanging vt for ut maintains independence,
after which one applies induction on t. Based on this lemma, we show the following exchange
property.

Lemma 2.18. Let B be a basis of the matroid M = ([n], I), and let U = {u1, u2, . . . , uℓ} ⊆ B,
and V = {v1, v2, . . . , vℓ, vℓ+1} ⊆ [n] \ B. Assume C(B, v1) ∩ U = {u1}, C(B, vℓ+1) ∩ U = {uℓ},
and for each 2 ≤ t ≤ ℓ, C(B, vt) ∩ U = {ut−1, ut}. Then (B \ U) ∪ V contains a unique circuit
C, and V ⊆ C.

The situation described here corresponds to a minimal path in the hypergraph CB of the
fundamental circuits with respect to a basis B. The hyperedges C(B, vi) form a path from v1 to
vℓ+1 such that no shortcut is possible (note that this is weaker than requiring a shortest path).
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Proof of Lemma 2.18. Note that S = (B\U)∪V /∈ I since |S| > |B| and B is a basis. For any i ∈
[ℓ+1], we can use Lemma 2.17 to show that S\{vi} = (B\U)∪(V \{vi}) ∈ I (and thus, is a basis).
To see this, we apply Lemma 2.17 for the ordered sets V ′ = {v1, . . . , vi−1, vℓ+1, vℓ, . . . , vi+1} and
U ′ = {u1, . . . , ui−1, uℓ, uℓ−1, . . . , ui}.

Consequently, every circuit in S must contain the entire set V . The uniqueness of the circuit
in S follows by the well-known circuit axiom asserting that if C,C′ ∈ C, C 6= C′ and v ∈ C ∩C′,
then there exists a circuit C′′ ∈ C such that C′′ ⊆ (C ∪ C′) \ {v}, contradicting the claim that
every circuit in S contains the entire set V .

We are ready to describe the algorithm that will be used to obtain lower bounds on all κij

values. For a matrix A ∈ Rm×n, we let Find-Circuits(A) denote the subroutine described in
the lemma for the linear matroidM(A).

Theorem 2.19. Given A ∈ Rm×n, there exists an O(n2m2) time algorithm Find-Circuits(A)
that obtains a decomposition of M(A) to a direct sum of non-separable linear matroids, and
returns a family Ĉ of circuits such that if i and j are in the same non-separable component, then
there exists a circuit in Ĉ containing both i and j. Further, for each i 6= j in the same component,
the algorithm returns a value κ̂ij as the the maximum of |gj/gi| such that g ∈ W , supp(g) = C

for some C ∈ Ĉ containing i and j. For these values, κ̂ij ≤ κij ≤ (κ∗)2κ̂ij.

Proof. Once we have found the set of circuits Ĉ, and computed κ̂ij as in the statement, the
inequalities κ̂ij ≤ κij ≤ (κ∗)2κ̂ij follow easily. The first inequality is by the definition of κij , and
the second inequality is from Corollary 2.15.

We now turn to the computation of Ĉ. We first obtain a basis B ⊆ [n] via Gauss-Jordan
elimination in time O(nm2). Recall the assumption that A has full row-rank. Let us assume
that B = [m] is the set of first m indices. The elimination transforms it to the form A = (Im|H),
where H ∈ Rm×(n−m) corresponds to the non-basis elements. In this form, the fundamental
circuit C(B, i) is the support of the ith column of A together with i for every m + 1 ≤ i ≤ n.
We let CB denote the set of all these fundamental circuits.

We construct an undirected graph G = (B,E) as follows. For each i ∈ [n] \ B, we add a
clique between the nodes in C(B, i) \ {i}. This graph can be constructed in O(nm2) time.

The connected components of G correspond to the connected components of CB restricted to
B. Thus, due to the equivalence shown in Proposition 2.16 we can obtain the decomposition by
identifying the connected components of G. For the rest of the proof, we assume that the entire
hypergraph is connected; connectivity can be checked in O(m2) time.

We initialize Ĉ as CB. We will then check all pairs i, j ∈ [n], i 6= j. If no circuit C ∈ Ĉ exists
with i, j ∈ C, then we will add such a circuit to Ĉ as follows.

Assume first i, j ∈ [n] \ B. We can find a shortest path in G between the sets C(B, i) \ {i}
and C(B, j) \ {j} in time O(m2). This can be represented by the sequences of points V =
{v1, v2, . . . , vℓ+1} ⊆ [n] \ B, v1 = i, vℓ+1 = j, and U = {u1, u2, . . . , uℓ} ⊆ B as in Lemma 2.18.
According to the lemma, S = (B \ U) ∪ V contains a unique circuit C that contains all vt’s,
including i and j.

We now show how this circuit can be identified in O(m) time, along with the vector gC . Let
AS be the submatrix corresponding to the columns in S. Since g = gC is unique up to scaling,
we can set gv1 = 1. Note that for each t ∈ [ℓ], the row of AS corresponding to ut contains only
two nonzero entries: Autvt and Autvt+1

. Thus, the value gv1 = 1 can be propagated to assigning
unique values to gv2 , gv3 , . . . , gvℓ+1

. Once these values are set, there is a unique extension of
g to the indices t ∈ B ∩ S in the basis. Thus, we have identified g as the unique element of
Ker(AS) up to scaling. The circuit C is obtained as supp(g). Clearly, the above procedure can
be implemented in O(m) time.
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The argument easily extends to finding circuits for the case {i, j} ∩ B 6= ∅. If i ∈ B, then
for any choice of V = {v1, v2, . . . , vℓ+1} and U = {u1, u2, . . . , uℓ} as in Lemma 2.18 such that
i ∈ C(B, v1) and i /∈ C(B, vt) for t > 1, the unique circuit in (B \ U) ∪ V also contains i. This
follows from Lemma 2.17 by taking V ′ = {vℓ+1, vℓ, . . . , v1} and U ′ = {uℓ, . . . , u1, i}, which proves
that S \ {i} = (B \ U ′) ∪ V ′ ∈ I. Similarly, if j ∈ B with j ∈ C(B, vℓ+1) and j /∈ C(B, vt) for
t < ℓ+ 1, taking V ′′ = V and U ′′ = {u1, . . . , uℓ, j} gives S \ {j} ∈ I.

The bottleneck for the running time is finding the shortest paths for the n(n − 1) pairs, in
time O(m2) each.

The triangle inequality An interesting additional fact about the circuit ratio graph is that
the logarithm of the weights satisfy the triangle inequality. The proof uses similar arguments as
the proof of Theorem 2.19 above.

Lemma 2.20.

(i) For any distinct i, j, k in the same connected component of CW , and any gC with i, j ∈ C,
C ∈ CW , there exist circuits C1, C2 ∈ CW , i, k ∈ C1, j, k ∈ C2 such that |gCj /gCi | =
|gC2

j /gC2

k | · |gC1

k /gC1

i |.

(ii) For any distinct i, j, k in the same connected component of CW , κij ≤ κik · κkj .

Proof. Note that part (ii) immediately follows from part (i) when taking C ∈ CW such that
κij(C) = κij . We now prove part (i).

Let A ∈ Rm×n be a full-rank matrix with W = Ker(A). If C = {i, j}, then the columns Ai, Aj

are linearly dependent. Writing Ai = λAj , we have λ = −gCj /gCi . Let h be any circuit solution
with i, k ∈ supp(h), and hence j /∈ supp(h). By assumption, the vector h′ = h − hiei + λhiej
will satisfy Ah′ = 0 and have i /∈ supp(h′), j, k ∈ supp(h′). We know that h′ is a circuit solution,
because any circuit C′ ⊂ supp(h′) could, by the above process in reverse, be used to produce
a kernel solution with strictly smaller support than h, contradicting the assumption that h is a
circuit solution. Now we have |h′

j/h
′
k| · |hk/hi| = |h′

j/hi| = |λ| by construction. Thus, h and h′

are the circuit solutions we are looking for.
Now assume C 6= {i, j}. If k ∈ C, the statement is trivially true with C = C1 = C2, so

assume k /∈ C. Pick l ∈ C, l /∈ {i, j} and set B = C \ {l}. Assume without loss of generality
that B ⊆ [m] and apply row operations to A such that AB,B = IB×B is an identity submatrix
and A[n]\B,B = 0. Then the column Al has support given by B, for otherwise gC could not be
in the kernel. The given circuit solution satisfies gCt = −At,lg

C
l for all t ∈ B, and in particular

gCj /g
C
i = Aj,l/Ai,l.

Take any minimal set J ⊂ [n] such that k ∈ J and the linear matroid induced by C ∪ J is
non-separable. We show that we can uniquely lift any vector x ∈ Ker(AB,C∪{k}) to a vector
x′ ∈ Ker(AC∪J ), x

′
C∪k = x. Since this lift will send circuit solutions to circuit solutions by

uniqueness, it suffices to find our desired circuits as solutions to the smaller linear system.
Consider a circuit solution h ∈ W such that {l, k} ⊂ supp(h) ⊂ C ∪ J , which exists by

Proposition 2.16(iv). Minimality of J and Proposition 2.16(ii) imply J ⊂ supp(h). This h
gives rise to the non-zero vector hJ ∈ Ker(A[n]\B,J). Moreover, dim(Ker(A[n]\B,J)) = 1, as
J ⊂ supp(h) ⊂ J ∪ C,A[n]\B,C = 0 and minimality of J . This provides us with clear linear
relations between any two entries in J of any vector in Ker(A[n]\B,J ), implying that we can
apply row operations to A such that AB,J has non-zero entries only in the column AB,{k}.
Note that these row operations leave AC unchanged. From this, we can see that any element
in Ker(AB,C∪{k}) can be uniquely lifted to an element in Ker(AC∪J). Hence we can focus on
Ker(AB,C∪{k}).

17



If Ai,k = Aj,k = 0, then any x ∈ Ker(AB,C∪{k}) satisfies xi +Ai,lxl = xj +Aj,lxl = 0 and, in
particular, any circuit l, k ∈ C̄ ⊂ C ∪ {k} contains {i, j} ⊂ C̄ and fulfills |gCj /gCi | = |Aj,l/Ai,l| =
|gC̄j /gC̄i | = |gC̄j /gC̄k ||gC̄k /gC̄i |. Choosing C1 = C2 = C̄ concludes the case.

Otherwise, we know that Ai,k 6= 0 or Aj,k 6= 0. Any circuit in Ker(A{i,j},{i,j,l,k}) can be
lifted uniquely to an element in Ker(AB,C∪{k}) since AB,B is an identity matrix and we can set
the entries of B \ {i, j} individually to satisfy the equalities. Note that this lifted vector is a
circuit as well. Hence we may restrict our attention to the matrix A{i,j},{i,j,l,k}. If the columns
A{i,j},k, A{i,j},l are linearly dependent, then any circuit solution to A{i,j},{i,j,l}x = 0, xl 6= 0,
such as gC{i,j,l}, is easily transformed into a circuit solution to A{i,j},{i,j,k}x = 0, xk 6= 0 and we
are done.

If A{i,j},k, A{i,j},l are independent, we can write A{i,j},{i,j,l,k} = ( 1 0 a c
0 1 b d ), where gCj /g

C
i =

b/a. For α = ad−bc, which is non-zero since α = det(( a c
b d )) 6= 0 by the independence assumption,

we observe that (α, 0,−d, b) and (0, α, c,−a) are the circuits we are looking for.

2.4 Approximating χ̄ and χ̄
∗

Equipped with Theorem 2.13 and Theorem 2.19, we are ready to prove Theorem 2.5, that is,
given A ∈ Rm×n, find an approximately optimal rescaling D ∈ D of the columns. Recall that
we defined κd

ij := κWD
ij = κijdj/di when d > 0. We can similarly define κ̂d

ij := κ̂ijdj/di, and κ̂d
ij

approximates κd
ij just as in Theorem 2.19.

Proof of Theorem 2.5. Let us run the algorithm Finding-Circuits(A) described in Theorem 2.19
to obtain the values κ̂ij such that κ̂ij ≤ κij ≤ (κ∗

W )2κ̂ij . We let G = ([n], E) be the circuit ratio
digraph, that is, (i, j) ∈ E if κij > 0.

To show the first statement on approximating χ̄, we simply set t =
√

1 + max(i,j)∈E κ̂2
ij .

Then, t ≤ χ̄W ≤ tn(χ̄∗
W )2 follows by Theorem 2.9.

For the second statement on finding a nearly optimal rescaling for χ̄∗
W , we consider the

following optimization problem, which is an approximate version of (8) from Theorem 2.13.

min t

κ̂ijdj/di ≤ t ∀(i, j) ∈ E

d > 0.

(10)

Let d̂ be an optimal solution to (10) with value t̂. We will prove that κd̂ ≤ (κ∗
W )3.

First, observe that κd̂
ij = κij d̂j/d̂i ≤ (κ∗

W )2κ̂ij d̂j/d̂i ≤ (κ∗
W )2t̂ for any (i, j) ∈ E. Now,

let d∗ > 0 be such that κd∗

= κ∗
W . The vector d∗ is a feasible solution to (10), and so t̂ ≤

maxi6=j κ̂ijd
∗
j/d

∗
i ≤ maxi6=j κijd

∗
j/d

∗
i = κd∗

. Hence we find that d̂ gives a rescaling with χ̄WD̂ ≤
√

1 + (nκd̂)2 ≤
√

1 + (n(κ∗
W )3)2.

Using Theorem 2.9, we show that
√

1 + (n(κ∗
W )3)2 ≤ n(χ̄∗

W )3. Indeed,

n(χ̄∗
W )3 ≥ n

(

√

1 + (κ∗
W )2

)3

≥ n
√

1 + (κ∗
W )6 ≥

√

1 + (n(κ∗
W )3)2 .

We can obtain the optimal value t̂ of (10) by solving the corresponding maximum-mean
cycle problem (see Theorem 2.13). It is easy to develop a multiplicative version of the standard
dynamic programming algorithm of the classical minimum-mean cycle problem (see e.g. [AMO93,
Theorem 5.8]) that allows finding the optimum to (10) directly, in the same O(n3) time.
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It is left to find the labels di > 0, i ∈ [n] such that κ̂ijdj/di ≤ t̂ for all (i, j) ∈ E. We define
the following weighted directed graph. We associate the weight wij = log t̂ − log κ̂ij with every
(i, j) ∈ E, and add an extra source vertex r with edges (r, i) of weight wri = 0 for all i ∈ [n].

By the choice of t̂, this graph does not contain any negative weight directed cycles. We can
compute the shortest paths from r to all nodes in O(n3) using the Bellman-Ford algorithm; let
σi be the shortest path label for i. We then set di = exp(σi).

The running time of the whole algorithm will be bounded by O(n2m2+n3). The running time
is dominated by the O(n2m2) complexity of Finding-Circuits(A) and the O(n3) complexity
of solving the minimum-mean cycle problem and shortest path computation.

3 A scaling-invariant layered least squares interior-point

algorithm

3.1 Preliminaries on interior-point methods

In this section, we introduce the standard definitions, concepts and results from the interior-point
literature that will be required for our algorithm. We consider an LP problem in the form (LP),
or equivalently, in the subspace form (2) for W = Ker(A). We let

P++ = {x ∈ Rn : Ax = b, x > 0} , D++ = {(y, s) ∈ Rm+n : A⊤y + s = c, s > 0} .

Recall the central path defined in (CP), with w(µ) = (x(µ), y(µ), s(µ)) denoting the central path
point corresponding to µ > 0. We let w∗ = (x∗, y∗, s∗) denote the primal and dual optimal
solutions to (LP) that correspond to the limit of the central path for µ→ 0.

For a point w = (x, y, s) ∈ P++ ×D++, the normalized duality gap is µ(w) = x⊤s/n.
The ℓ2-neighborhood of the central path with opening β > 0 is the set

N (β) =

{

w ∈ P++ ×D++ :

∥

∥

∥

∥

xs

µ(w)
− e

∥

∥

∥

∥

≤ β

}

Throughout the paper, we will assume β is chosen from (0, 1/4]; in Algorithm 2 we use the
value β = 1/8. The following proposition gives a bound on the distance between w and w(µ) if
w ∈ N (β). See e.g. [Gon92, Lemma 5.4].

Proposition 3.1. Let w = (x, y, s) ∈ N (β) for β ∈ (0, 1/4] and µ = µ(w), and consider the
central path point w(µ) = (x(µ), y(µ), s(µ)). For each i ∈ [n],

xi

1 + 2β
≤ 1− 2β

1− β
· xi ≤ xi(µ) ≤

xi

1− β
, and

si
1 + 2β

≤ 1− 2β

1− β
· si ≤ si(µ) ≤

si
1− β

.

We will often use the following immediate corollary.

Corollary 3.2. Let w = (x, y, s) ∈ N (β) for β ∈ (0, 1/4], and µ = µ(w). Then for each i ∈ [n]

(1− β)
√
µ ≤ √sixi ≤ (1 + 2β)

√
µ .

A key property of the central path is “near monotonicity”, formulated in the following lemma,
see [VY96, Lemma 16].
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Lemma 3.3. Let w = (x, y, s) be a central path point for µ and w′ = (x′, y′, s′) be a central path
point for µ′ ≤ µ. Then ‖x′/x + s′/s‖∞ ≤ n. Further, for the optimal solution w∗ = (x∗, y∗, s∗)
corresponding to the central path limit µ→ 0, we have ‖x∗/x‖1 + ‖s∗/s‖1 = n.

Proof. We now show ‖x′/x‖1+‖s′/s‖1 ≤ 2n and the second statement. For ‖x′/x+s′/s‖∞ ≤ n,
see the proof of [VY96, Lemma 16]. Since x−x′ ∈W and s−s′ ∈ W⊥, we have (x−x′)⊤(s−s′) =
0. This can be rewritten as x⊤s′+(x′)⊤s = x⊤s+(x′)⊤s′. The right hand side equals nµ+nµ′.
Dividing by µ, and noting that xisi = µ for all i ∈ [n], we obtain

∥

∥

∥

∥

x′

x

∥

∥

∥

∥

1

+

∥

∥

∥

∥

s′

s

∥

∥

∥

∥

1

=

n
∑

i=1

x′
i

xi
+

s′i
si

= n

(

1 +
µ′

µ

)

.

Hence ‖x′/x‖ + ‖s′/s‖1 ≤ 2n by µ′ ≤ µ. We get the second statement by taking the limit
µ′ → 0.

3.2 Predictor and corrector steps

Given w = (x, y, s) ∈ P++×D++, the search directions commonly used in interior-point methods
are obtained as the solution (∆x,∆y,∆s) to the following linear system for some σ ∈ [0, 1].

A∆x = 0 (11)

A⊤∆y +∆s = 0 (12)

s∆x+ x∆s = σµe− xs (13)

Predictor-corrector methods, such as the Mizuno-Todd-Ye Predictor-Corrector (MTY P-C) al-
gorithm [MTY93], alternate between two types of steps. In predictor steps, we use σ = 0. This
direction is also called the affine scaling direction, and will be denoted as ∆wa = (∆xa,∆ya,∆sa)
throughout. In corrector steps, we use σ = 1. This gives the centrality direction, denoted as
∆wc = (∆xc,∆yc,∆sc).

In the predictor steps, we make progress along the central path. Given the search direction
on the current iterate w = (x, y, s) ∈ N (β), the step-length is chosen maximal such that we
remain in N (2β), i.e.

αa := sup{α ∈ [0, 1] : ∀α′ ∈ [0, α] : w + α′∆wa ∈ N (2β)}.

Thus, we obtain a point w+ = w + αa∆wa ∈ N (2β). The corrector step finds a next iterate
wc = wa + ∆wc, where ∆wc is the centrality direction computed at wa. The next proposition
summarizes well-known properties, see e.g. [Ye97, Section 4.5.1].

Proposition 3.4. Let w = (x, y, s) ∈ N (β) for β ∈ (0, 1/4].

(i) For the affine scaling step, we have µ(w+) = (1− α)µ(w).

(ii) The affine scaling step-length is

αa ≥ max

{

β√
n
, 1− ‖∆xa∆sa‖

βµ(w)

}

.

(iii) For w+ ∈ N (2β), and wc = w+ +∆wc, we have µ(wc) = µ(w+) and wc ∈ N (β).

(iv) After a sequence of O(
√
nt) predictor and corrector steps, we obtain an iterate w′ =

(x′, y′, s′) ∈ N (β) such that µ(w′) ≤ µ(w)/2t.
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Minimum norm viewpoint and residuals For any point w = (x, y, s) ∈ P++ × D++ we
define

δ = δ(w) = s1/2x−1/2 ∈ Rn. (14)

With this notation, we can write (13) in the form

δ∆x+ δ−1∆s = −s1/2x1/2 . (15)

From Proposition 3.1, we see that if w ∈ N (β), and µ = µ(w), then for each i ∈ [n],

√

1− 2β · δi(w) ≤ δi(w(µ)) ≤
1√

1− 2β
· δi(w) . (16)

The matrix Diag(δ(w)) will be often used for rescaling in the algorithm. That is, for the current
iterate w = (x, y, s) in the interior-point method, we will perform projections in the space

W Diag(δ(w)). To simplify notation, for δ = δ(w), we use Lδ
I and κδ

ij as shorthands for L
W Diag(δ)
I

and κ
W Diag(δ)
ij . The subspace W = Ker(A) will be fixed throughout.

It is easy to see from the optimality conditions that the components of the affine scaling
direction (∆xa,∆ya,∆sa) are the optimal solutions of the following minimum-norm problems.

∆xa = argmin
∆x∈Rn

{‖δ(x+∆x)‖2 : A∆x = 0}

(∆ya,∆sa) = argmin
(∆y,∆s)∈Rm×Rn

{‖δ−1(s+∆s)‖2 : A⊤∆y +∆s = 0} (17)

Following [MT05], for a search direction ∆w = (∆x,∆y,∆s), we define the residuals as

Rx :=
δ(x+∆x)√

µ
, Rs :=

δ−1(s+∆s)√
µ

. (18)

Hence, the primal affine scaling direction ∆xa is the one that minimizes the ℓ2-norm of the primal
residual Rx, and the dual affine scaling direction (∆ya,∆sa) minimizes the ℓ2-norm of the dual
residual Rs. The next lemma summarizes simple properties of the residuals, see [MT05].

Lemma 3.5. For β ∈ (0, 1/4] such that w = (x, y, s) ∈ N (β) and the affine scaling direction
∆w = (∆xa,∆ya,∆sa), we have

(i)

RxaRsa =
∆xa∆sa

µ
, Rxa +Rsa =

x1/2s1/2√
µ

, (19)

(ii)
‖Rxa‖2 + ‖Rsa‖2 = n ,

(iii) We have ‖Rxa‖, ‖Rsa‖ ≤ √n, and for each i ∈ [n], max{|Rxa
i |, |Rsai |} ≥ 1

2 (1− β).

(iv)

Rxa = − 1√
µ
δ−1∆sa, Rsa = − 1√

µ
δ∆xa .
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Proof. Parts (i), (ii), (iv) are immediate from the definitions and from (11)-(13). In part (iii),
the first statement follows by part (ii), noting that Rxa⊤Rsa = 0. The second statement follows
from (i) and Corollary 3.2.

For a subset I ⊂ [n], we define

εaI(w) := max
i∈I

min{|Rxa
i |, |Rsai |} , and εa(w) := εa[n](w) . (20)

The next claim shows that for the affine scaling direction, a small ε(w) yields a long step; see
[MT05, Lemma 2.5].

Lemma 3.6. Let w = (x, y, s) ∈ N (β) for β ∈ (0, 1/4]. Then for the affine scaling step, we have

µ(w + αa∆wa)

µ(w)
≤ min

{

1− β√
n
,

√
nεa(w)

β

}

.

Proof. Let ε := εa(w). From Lemma 3.5(i), we get ‖∆xa∆sa‖/µ = ‖RxaRsa‖. We can bound
‖RxaRsa‖ ≤ ε(‖Rxa‖ + ‖Rsa‖) ≤ ε

√
n, where the latter inequality follows by Lemma 3.5(iii).

From Proposition 3.4(ii), we get αa ≥ max{β/√n, 1−√nε/β}. The claim follows by part (i) of
the same proposition.

3.3 Layered-least-squares direction

Let J = (J1, J2, . . . , Jp) be an ordered partition of [n].1 For k ∈ [p], we use the notations
J<k := J1 ∪ . . . ∪ Jk−1, J>k := Jk+1 ∪ . . . ∪ Jp, and similarly J≤k and J≥k. We will also refer
to the sets Jk as layers, and J as a layering. Layers with lower indices will be referred to as
’higher’ layers.

Given w = (x, y, s) ∈ P++ × D++, and the layering J , the layered-least-squares (LLS)
direction is defined as follows. For the primal direction, we proceed backwards, with k = p, p−
1, . . . , 1. Assume the components on the lower layers ∆xll

J>k
have already been determined. We

define the components in Jk as the coordinate projection ∆xll
Jk

= πJk
(Xk), where the affine

subspace Xk is defined as the set of minimizers

Xk := argmin
∆x∈Rn

{‖δJk
(xJk

+∆xJk
)‖2 : A∆x = 0,∆xJ>k

= ∆xll
J>k
} . (21)

The dual direction ∆sll is determined in the forward order of the layers k = 1, 2, . . . , p. Assume
we already fixed the components ∆sllJ<k

on the higher layers. Then, ∆sllJk
= πJk

(Sk) for

Sk = argmin
∆s∈Rn

{‖δ−1
Jk

(sJk
+∆sJk

)‖2 : ∃y ∈ Rm, A⊤∆y +∆s = 0,∆sJ<k
= ∆sllJ<k

} . (22)

The component ∆yll is obtained as the optimal ∆y for the final layer k = p. We use the
notation Rxll and εll(w) analogously to the affine scaling direction. This search direction was
first introduced in [VY96].

The affine scaling direction is a special case for the single element partition. In this case, the
definitions (21) and (22) coincide with those in (17).

1In contrast to how ordered partitions were defined in [MT05], we use the term ordered only to the p-tuple
(J1, . . . , Jp), which is to be viewed independently of δ.
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3.3.1 A linear system viewpoint

We now present an equivalent definition of the LLS step, generalizing the linear system (12)-(13).
We use the subspace notation. With this notation, (12)-(13) for the affine scaling direction can
be written as

s∆xa + x∆sa = −xs , ∆xa ∈W , and ∆sa ∈ W⊥ . (23)

Recall that (23) is equivalent to δ∆xa + δ−1∆sa = −x1/2s1/2.
Given the layering J and w = (x, y, s), for each k ∈ [p] we define the subspaces

WJ ,k := {xJk
: x ∈ W,xJ>k

= 0} and W⊥
J ,k := {xJk

: x ∈W⊥, xJ<k
= 0} .

It is easy to see that these two subspaces are orthogonal complements. Analogously to (23), the
primal LLS step ∆xll is obtained as the unique solution to the linear system

δ∆xll + δ−1∆s = −x1/2s1/2 , ∆xll ∈W , and ∆s ∈W⊥
J ,1 ⊕ · · · ⊕W⊥

J ,p , (24)

and the dual LLS step ∆sll is the unique solution to

δ∆x+ δ−1∆sll = −x1/2s1/2 , ∆x ∈ WJ ,1 ⊕ · · · ⊕WJ ,p , and ∆sll ∈ W⊥ . (25)

It is important to note that ∆s in (24) may be different from ∆sll, and ∆x in (25) may be
different from ∆xll. In fact, ∆sll = ∆s and ∆xll = ∆x can only be the case for the affine scaling
step.

The following lemma proves that the above linear systems are indeed uniquely solved by the
LLS step.

Lemma 3.7. For t ∈ Rn, W ⊆ Rn, δ ∈ Rn
++, and J = (J1, J2, . . . , Jp), let w = LLSW,δ

J (t) be
defined by

δw + δ−1v = δt, w ∈W, v ∈W⊥
J ,1 ⊕ · · · ⊕W⊥

J ,p.

Then LLSW,δ
J (t) is well-defined and

‖δJk
(tJk
− wJk

)‖ = min
{

‖δJk
(tJk
− zJk

)‖ : z ∈ W, zJ>k
= wJ>k

}

for every k ∈ [p].

In the notation of the above lemma we have, for ordered partitions J = (J1, J2, . . . , Jp),

J̄ = (Jp, Jp−1, . . . , J1), and (x, y, s) ∈ P++×D++ with δ = s1/2x−1/2, that ∆xll = LLSW,δ
J (−x)

and ∆sll = LLSW
⊥,δ−1

J̄ (−s).

Proof of Lemma 3.7. We first prove the equality W ∩(W⊥
J ,1⊕· · ·⊕W⊥

J ,p) = {0}, and by a similar

argument we have W⊥ ∩ (WJ ,1 ⊕ · · · ⊕WJ ,p) = {0}. By duality, this last equality tells us that

(W⊥ ∩ (WJ ,1 ⊕ · · · ⊕WJ ,p))
⊥ = W + (W⊥

J ,1 ⊕ · · · ⊕W⊥
J ,p) = Rn.

Thus, the linear decomposition defining LLSW,δ
J (t) has a solution and its solution is unique.

Suppose y ∈ W ∩ (W⊥
J ,1 ⊕ · · · ⊕W⊥

J ,p). We prove yJk
= 0 by induction on k, starting at

k = p. The induction hypothesis is that yJ>k
= 0, which is an empty requirement when k = p.

The hypothesis yJ>k
= 0 together with the assumption y ∈ W is equivalent to y ∈ W ∩ Rn

J≤k
,

and implies yJk
∈ πJk

(W ∩Rn
J≤k

) := WJ ,k. Since we also have yJk
∈ W⊥

J ,k by assumption, which
is the orthogonal complement of WJ ,k, we must have yJk

= 0. Hence, by induction y = 0. This

finishes the proof that LLSW,δ
J (t) is well-defined.
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Next we prove that w is a minimizer of min
{

‖δJk
(tJk
− zJk

)‖ : z ∈ W, zJ>k
= wJ>k

}

. The
optimality condition is for δJk

(tJk
− zJk

) to be orthogonal to δJk
u for any u ∈ WJ ,k. By

the LLS equation, we have δJk
(tJk
− wJk

) = δ−1
Jk

vJk
, where vJk

∈ W⊥
J ,k. Noting then that

〈δJk
u, δ−1

Jk
v〉 = 〈uJk

, vJk
〉 = 0 for u ∈ WJ ,k, the optimality condition follows immediately.

With these tools, we can prove that the lifting costs are self-dual. This explains the reverse
order in the dual vs primal LLS step and justifies our attention on the lifting cost in a self-dual
algorithm. The next proposition generalizes the result of [GL97]. Note that it gives a proof of
Proposition 2.1(iv).

Proposition 3.8. For a linear subspace W ⊆ Rn and index set I ⊆ [n] with J = [n] \ I,

‖LW
I ‖ ≤ max{1, ‖LW⊥

J ‖}.

In particular, ℓW (I) = ℓW
⊥

(J).

Proof. We first treat the case where πI(W ) = {0} or πJ (W
⊥) = {0}. If πI(W ) = {0} then

‖LW
I ‖ = ℓW (I) = 0. Furthermore, in this case RI = πI(W )⊥ = πI(W

⊥ ∩ Rn
I ), and thus

πRn
J
(W⊥) ⊆ W⊥. In particular, ‖LW

J ‖ ≤ 1 and ℓW
⊥

(J) = 0. Symmetrically, if πJ(W
⊥) = {0}

then ‖LW⊥

J ‖ = ℓW
⊥

(J) = 0, ‖LW
I ‖ ≤ 1 and ℓW (I) = 0.

We now restrict our attention to the case where both πI(W ), πJ (W
⊥) 6= {0}. Under this

assumption, we show that ‖LW
I ‖ = ‖LW⊥

J ‖ and thus that ℓW (I) = ℓW
⊥

(J). Note that by

non-emptyness, we clearly have that ‖LW
I ‖, ‖LW⊥

J ‖ ≥ 1.
We formulate a more general claim. Let {0} 6= U, V ⊂ Rn be linear subspaces such that

U + V = Rn and U ∩ V = {0}. Note that for the orthogonal complements in Rn, we also have
{0} 6= U⊥, V ⊥, U⊥ + V ⊥ = Rn and U⊥ ∩ V ⊥ = {0}.
Claim 3.9. Let {0} 6= U, V ⊂ Rn be linear subspaces such that U + V = Rn and U ∩ V = {0}.
Thus, for z ∈ Rn, there are unique decompositions z = u+ v with u ∈ U , v ∈ V and z = u′ + v′

with u′ ∈ U⊥ and v′ ∈ V ⊥. Let T : Rn → V be the map sending Tz = v. Let T ′ : Rn → V ⊥ be
the map sending T ′z = v′. Then, ‖T ‖ = ‖T ′‖.

Proof. To prove the statement, we claim that it suffices to show that if ‖T ‖ > 1 then ‖T ′‖ ≥ ‖T ‖.
To prove sufficiency, note that by symmetry, we also get that if ‖T ′‖ > 1 then ‖T ‖ ≥ ‖T ′‖. Since
V, V ⊥ 6= {0} by assumption, we always have ‖T ‖, ‖T ′‖ ≥ 1, and thus the equality ‖T ‖ = ‖T ′‖
must hold in all cases. We now assume ‖T ‖ > 1 and show ‖T ′‖ ≥ ‖T ‖.

Representing T as an n × n matrix, we write T =
∑k

i=1 σiviu
⊤
i using a singular value de-

composition with σ1 ≥ · · · ≥ σk > 0. As such, v1, . . . , vk is an orthonormal basis of V , since the
range(T ) = V , and u1, . . . , uk is an orthonormal basis of U⊥, since Ker(T ) = U , noting that we
have restricted to the singular vectors associated with positive singular values. By assumption,
we have that ‖T ‖ = ‖Tu1‖ = σ1 > 1.

The proof is complete by showing that

∥

∥T ′(v1 − σ−1
1 u1)

∥

∥ ≥ σ1‖v1 − u1/σ1‖, (26)

and that ‖v1 − u1/σ1‖ > 0.
The map T is a linear projection with T 2 = T . Hence 〈ui, vi〉 = σ−1

i and 〈ui, vj〉 = 0 for all
i 6= j.

We show that v1−σ−1
1 u1 can be decomposed as v1−σ1u1+(σ1−σ−1

1 )u1 such that v1−σ1u1 ∈
V ⊥ and (σ1 − σ−1

1 )u1 ∈ U⊥.
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The containment (σ1 − σ−1
1 )u1 ∈ U⊥ is immediate. To show v1 − σ1u1 ∈ V ⊥, we need that

〈v1 − σ1u1, vi〉 = 0 for all i ∈ [k]. For i ≥ 2, this is true since 〈ui, vj〉 = 0 and 〈vi, vj〉 = 0.
For i = 1, we have 〈v1 − σ1u1, v1〉 = 0 since ‖v1‖ = 1 and 〈u1, v1〉 = σ−1

1 . Consequently,
T ′(v1 − σ−1

1 u1) = v1 − σ1u1.

We compute
∥

∥v1 − σ−1
1 u1

∥

∥ =
√

1− σ−2
1 > 0, since σ1 > 1, and ‖v1−σ1u1‖ =

√

σ2
1 − 1. This

verifies (26), and thus ‖T ′‖ ≥ σ1 = ‖T ‖.

To prove the lemma, we define J = (J, I), U = W⊥
J ,1⊕W⊥

J ,2 and V = W and let T : Rn → V

and T ′ : Rn → V ⊥ be as in Claim 3.9. By assumption, {0} 6= πI(W ) ⇒ {0} 6= V and {0} 6=
πJ (W

⊥) = W⊥
J ,1 ⇒ {0} 6= U . Applying Lemma 3.7, U, V satisfy the conditions of Claim 3.9 and

T = LLSW,1
J . In particular, ‖T ′‖ = ‖T ‖. Using the fact that U⊥ = WJ ,1⊕WJ ,2 and V ⊥ = W⊥,

we similarly get that T ′ = LLSW
⊥,1

J̄ , where J̄ = (I, J). By (21) we have, for any t ∈ πR
n
I
(W ),

that T t = LLSW,1
J (t) = LW

I (tI). Thus ‖T ‖ ≥ ‖LW
I ‖ ≥ 1.

To finish the proof of the lemma from the claim, we show that ‖T ‖ ≤ ‖LW
I ‖. By a symmetric

argument we get ‖T ′‖ = ‖LW⊥

J ‖.
If x ∈ Rn

J , then Tx ∈ W ∩ Rn
J because any s ∈ W⊥

J ,2, t ∈ πI(W ) with s + t = 0 must

have s = t = 0 since W⊥
J ,2 is orthogonal to πI(W ). But W ∩ Rn

J and W⊥
J ,1 are orthogonal, so

‖Tx‖ ≤ ‖x‖ because x = Tx+ (x− Tx) is an orthogonal decomposition.
If y ∈ Rn

I , then yJ = 0 and hence (Ty)J = (Ty−y)J . Since (Ty−y)J ∈ W⊥
J ,1 = πJ (W∩Rn

J )
⊥,

we see that Ty ∈ (W ∩Rn
J)

⊥. As such, for any x ∈ Rn
J , y ∈ Rn

I , we see that x ⊥ y and Tx ⊥ Ty.
For x, y 6= 0, we thus have that

‖T (x+ y)‖2
‖x+ y‖2 =

‖T (x)‖2 + ‖T (y)‖2
‖x‖2 + ‖y2‖ ≤ max

{‖T (x)‖2
‖x‖2 ,

‖T (y)‖2
‖y‖2

}

≤ max

{

1,
‖T (y)‖2
‖y‖2

}

.

Since ‖LW
I ‖ ≥ 1, we must have that ‖T t‖/‖t‖ is maximized by some t ∈ Rn

I . From Ker(T ) = U
it is clear that ‖T t‖/‖t‖ is maximized by some t ∈ U⊥. Now, U⊥ ∩ Rn

I = πR
n
I
(W ), so any t

maximizing ‖T t‖/‖t‖ satisfies T t = LW
I (tI). Therefore, ‖LW

I ‖ ≥ ‖T ‖.

3.3.2 Partition lifting scores

A key insight is that if the layering J is “well-separated”, then we indeed have x∆sll + s∆xll ≈
−xs, that is, the LLS direction is close to the affine scaling direction. This will be shown
in Lemma 3.11. The notion of “well-separatedness” can be formalized as follows. Recall the
definition of the lifting score (4). The lifting score of the layering J = (J1, J2, . . . , Jp) of [n] with
respect to W is defined as

ℓW (J ) := max
2≤k≤p

ℓW (J≥k) .

For δ ∈ Rn
++, we use ℓW,δ(I) := ℓW Diag(δ)(I) and ℓW,δ(J ) := ℓW Diag(δ)(J ). When the context

is clear, we omit W and write ℓδ(I) := ℓW,δ(I) and ℓδ(J ) := ℓW,δ(J ).
The following important duality claim asserts that the lifting score of a layering equals the

lifting score of the reverse layering in the orthogonal complement subspace. It is an immediate
consequence of Proposition 3.8.

Lemma 3.10. Let W ⊆ Rn be a linear subspace, δ ∈ Rn
++. For an ordered partition J =

(J1, J2, . . . , Jp), let J̄ = (Jp, Jp−1, . . . , J1) denote the reverse ordered partition. Then, we have

ℓW,δ(J ) = ℓW
⊥,δ−1

(J̄ ).
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Proof. Let U = Wdiag(δ). Note that U⊥ = W⊥diag(δ−1). Then by Proposition 3.8, for 2 ≤
k ≤ p, we have that

ℓW,δ(J≥k) = ℓU (J≥k) = ℓU
⊥

(J≤k−1) = ℓU
⊥

(J̄≥p−k+2) = ℓW
⊥,δ−1

(J̄≥p−k+2).

In particular, ℓW,δ(J ) = ℓW
⊥,δ−1

(J̄ ), as needed.

The next lemma summarizes key properties of the LLS steps, assuming the partition has a
small lifting score. The proof is deferred to Section 5.

Lemma 3.11. Let w = (x, y, s) ∈ N (β) for β ∈ (0, 1/4], let µ = µ(w) and δ = δ(w). Let
J = (J1, . . . , Jp) be a layering with ℓδ(J ) ≤ β/(32n2), and let ∆wll = (∆xll,∆yll,∆sll) denote
the LLS direction for the layering J . Then the following properties hold.

(i) We have

‖δJk
∆xll

Jk
+ δ−1

Jk
∆sllJk

+ x
1/2
Jk

s
1/2
Jk
‖ ≤ 6nℓδ(J )√µ , ∀k ∈ [p], and (27)

‖δ∆xll + δ−1∆sll + x1/2s1/2‖ ≤ 6n3/2ℓδ(J )√µ . (28)

(ii) For the affine scaling direction ∆wa = (∆xa,∆ya,∆sa),

‖Rxll −Rxa‖, ‖Rsll −Rsa‖ ≤ 6n3/2ℓδ(J ) .

(iii) For the residuals of the LLS steps we have ‖Rxll‖, ‖Rsll‖ ≤
√
2n. For each i ∈ [n],

max{|Rxll
i |, |Rslli |} ≥ 1

2 − 3
4β.

(iv) Let εll(w) = maxi∈[n] min{|Rxll
i |, |Rslli |}, and define the step length as

α := sup{α′ ∈ [0, 1] : ∀ᾱ ∈ [0, α′] : w + ᾱ∆wll ∈ N (2β)} .

We obtain the following bounds on the progress in the LLS step:

µ(w + α∆wll) = (1− α)µ , and

α ≥ 1− 3
√
nεll(w)

β
.

(v) We have εll(w) = 0 if and only if α = 1. These are further equivalent to w + ∆wll =
(x+∆xll, y +∆yll, s+∆sll) being an optimal solution to (LP).

3.4 The layering procedure

Our algorithm performs LLS steps on a layering with a low lifting score. A further requirement
is that within each layer, the circuit imbalances κδ

ij defined in (6) are suitably bounded. The
rescaling here is with respect to δ = δ(w) for the current iterate w = (x, y, s). To define the
precise requirement on the layering, we first introduce an auxiliary graph. Throughout we use
the parameter

γ :=
β

210n5
. (29)
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The auxiliary graph For a vector δ ∈ Rn
++ and σ > 0, we define the directed graph Gδ,σ =

([n], Eδ,σ) such that (i, j) ∈ Eδ,σ if κδ
ij ≥ σ. This is a subgraph of the circuit ratio digraph studied

in Section 2, including only the edges where the circuit ratio is at least the threshold σ. Note
that we do not have direct access to this graph, as we cannot efficiently compute the values κδ

ij .
At the beginning of the entire algorithm, we run the subroutine Find-Circuits(A) as in

Theorem 2.19, where W = Ker(A). We assume the matroid M(A) is non-separable. For a
separable matroid, we can solve the subproblems of our LP on the components separately. Thus,
for each i 6= j, i, j ∈ [n], we obtain an estimate κ̂ij ≤ κij . These estimates will be gradually
improved throughout the algorithm.

Note that κδ
ij = κijδj/δi and κ̂δ

ij = κ̂ijδj/δi. If κ̂
δ
ij ≥ σ, then we are guaranteed (i, j) ∈ Eδ,σ.

Definition 3.12. Define Ĝδ,σ = ([n], Êδ,σ) to be the directed graph with edges (i, j) such that

κ̂δ
ij ≥ σ; clearly, Ĝδ,σ is a subgraph of Gδ,σ.

Lemma 3.13. Let δ ∈ Rn
++. For every i 6= j, i, j ∈ [n], κ̂δ

ij · κ̂δ
ji ≥ 1. Consequently, for any

0 < σ ≤ 1, at least one of (i, j) ∈ Êδ,σ or (j, i) ∈ Êδ,σ.

Proof. Recall the definition of κ̂ij from Theorem 2.19. This is defined as the maximum of |gj/gi|
such that g ∈ W , supp(g) = C for some C ∈ Ĉ containing i and j. For the same vector g, we get
κ̂ji ≥ |gi/gj|. Consequently, κ̂ij · κ̂ji ≥ 1, and also κ̂δ

ij · κ̂δ
ji ≥ 1. The second claim follows by the

assumption σ ≤ 1.

Balanced layerings We are ready to define the requirements on the layering in the algorithm.
In the algorithm, δ = δ(w) will correspond to the scaling of the current iterate w = (x, y, s).

Definition 3.14. Let δ ∈ Rn
++. The layering J = (J1, J2, . . . , Jp) of [n] is δ-balanced if

(i) ℓδ(J ) ≤ γ, and

(ii) Jk is strongly connected in Gδ,γ/n for all k ∈ [p].

The following lemma shows that within each layer, the κδ
ij values are within a bounded range.

This will play an important role in our potential analysis.

Lemma 3.15. Let 0 < σ < 1 and t > 0, and i, j ∈ [n], i 6= j.

(i) If the graph Gδ,σ contains a directed path of at most t− 1 edges from j to i, then

κδ
ij <

(

χ̄∗

σ

)t

.

(ii) If Gδ,σ contains a directed path of at most t− 1 edges from i to j, then

κδ
ij >

(

σ

χ̄∗

)t

.

Proof. For part (i), let j = i1, i2, . . . , ih = i be a path in Gδ,σ in J from j to i with h ≤ t. That
is, κδ

iℓiℓ+1
≥ σ for each ℓ ∈ [h]. Theorem 2.13 yields

(χ̄∗)t ≥ κδ
ij · σh−1 > κδ

ij · σt ,

since h ≤ t and σ < 1. Part (ii) follows using part (i) for j and i, and that κδ
ij ·κδ

ji ≥ 1 according
to Lemma 3.13.
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Description of the layering subroutine Consider an iterate w = (x, y, s) ∈ N (β) of the
algorithm with δ = δ(w), The subroutine Layering(δ, κ̂), described in Algorithm 1, constructs
a δ-balanced layering. We recall that the approximated auxilliary graph Ĝδ,γ/n with respect to
κ̂ is as in Definition 3.12

Algorithm 1: Layering(δ, κ̂)

Input : δ ∈ Rn
++ and κ̂ ∈ RE

++.
Output: δ-balanced layering J = (J1, . . . , Jp) and updated values κ̂ ∈ RE

++.

1 Compute the strongly connected components C1, C2, . . . , Cℓ of Ĝδ,γ/n, listed in the

ordering imposed by Ĝδ,γ/n;

2 Ē ← Êδ,γ/n;
3 for k = 2, . . . , ℓ do
4 Call Verify-Lift(W Diag(δ), C≥k, γ) that answers ‘pass’ or ‘fail’;
5 if the answer is ‘fail’ then
6 Let i ∈ C≥k, j ∈ C<k, and t be the output of Verify-Lift such that

γ/n ≤ t ≤ κδ
ij ;

7 κ̂ij ← tδi/δj ;
8 Ē ← Ē ∪ {(i, j)};

9 Compute strongly connected components J1, J2, . . . , Jp of ([n], Ē), listed in the ordering

imposed by Ĝδ,γ/n;
10 return J = (J1, J2, . . . , Jp), κ̂.

We now give an overview of the subroutine Layering(δ, κ̂). We start by computing the
strongly connected components (SCCs) of the directed graph Ĝδ,γ/n. The edges of this graph

are obtained using the current estimates κ̂δ
ij . According to Lemma 3.13, we have (i, j) ∈ Êδ,γ/n

or (j, i) ∈ Êδ,γ/n for every i, j ∈ [n], i 6= j. Hence, there is a linear ordering of the components

C1, C2, . . . , Cℓ such that (u, v) ∈ Êδ,γ/n whenever u ∈ Ci, v ∈ Cj , and i < j. We call this the

ordering imposed by Ĝδ,γ/n.
Next, for each k = 2, . . . , ℓ, we use the subroutineVerify-Lift(W Diag(δ), C≥k, γ) described

after Lemma 2.11. If the subroutine returns ‘pass’, then we conclude ℓδ(C≥k) ≤ γ, and proceed
to the next layer. If the answer is ‘fail’, then the subroutine returns as certificates i ∈ C≥k,
j ∈ C<k, and t such that γ/n ≤ t ≤ κδ

ij . In this case, we update κ̂δ
ij to the higher value t. We

add (i, j) to an edge set Ē; this edge set was initialized to contain Êδ,γ/n. After adding (i, j), all
components Cℓ between those containing i and j will be merged into a single strongly connected
component. To see this, recall that if i′ ∈ Cℓ and j′ ∈ Cℓ′ for ℓ < ℓ′, then (i′, j′) ∈ Êδ,γ/n

according to Lemma 3.13.
Finally, we compute the strongly connected components of ([n], Ē). We let J1, J2, . . . , Jp

denote their unique acyclic order, and return these layers.

Lemma 3.16. The subroutine Layering(δ, κ̂) returns a δ-balanced layering in O(nm2 + n2)
time.

The difficult part of the proof is showing the running time bound. We note that the weaker
bound O(n2m2) can be obtained by a simpler argument.

Proof. We first verify that the output layering is indeed δ-balanced. For property (i) of Definition 3.14,
note that each Jq component is the union of some of the Ck’s. In particular, for every q ∈ [p],
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the set J≥q = C≥k for some k ∈ [ℓ]. Assume now ℓδ(C≥k) > γ. At step k of the main cycle,
the subroutine Verify-Lift returned the answer ‘fail’, and a new edge (i, j) ∈ E was added
with i ∈ C≥k, j ∈ C<k. Note that we already had (j, i) ∈ Êδ,γ/n, since j ∈ Cr for some r < k,
and i ∈ Cr′ for r′ ≥ k. This contradicts the choice of J≥q as a maximal strongly connected
component in ([n], E).

Property (ii) follows since all new edges added to E have κij ≥ γ/n. Therefore, ([n], E) is a
subgraph of Gδ,γ/n.

Let us now turn to the computational cost. The initial strongly-connected components can be
obtained in time O(n2), and the same bound holds for the computation of the final components.
(The latter can be also done in linear time, exploiting the special structure that the components
Ci have a complete linear ordering.)

The second computational bottleneck is the subroutine Verify-Lift. We assume a matrix
M ∈ Rn×(n−m) is computed at the very beginning such that range(M) = W . We first explain
how to implement one call to Verify-Lift in O(n(n − m)2) time. We then sketch how to
amortize the work across the different calls to Verify-Lift, using the nested structure of the
layering, to implement the whole procedure in O(n(n−m)2) time. To turn this into O(nm2), we
recall that the layering procedure is the same for W and W⊥ due to duality (Proposition 3.8).
Since dim(W⊥) = m, applying this subroutine on W⊥ instead of W achieves the same result
but in time O(nm2).

We now explain the implementation of Verify-Lift, where we are given as input C ⊆ [n]
and the basis matrix M ∈ Rn×(n−m) as above with range(M) = W . Clearly, the running time
is dominated by the computation of the set I ⊆ C and the matrix B ∈ R([n]\C)×|I| satisfying
LW
C (x)[n]\C = BxI , for x ∈ πC(W ). We explain how to compute I and B from M using

column operations (note that these preserve the range). The valid choices for I ⊆ C are in
correspondence with maximal sets of linear independent rows of MC,•, noting then that |I| = r
where r := rk(MC,•). Let D1 = [n − m − r] and D2 = [n − m] \ [n − m − r]. By applying
columns operations to M , we can compute I ⊆ C such that MI,D2

= Ir (r × r identity) and
MC,D1

= 0. This requires O(n(n−m)|C|) time using Gaussian elimination. At this point, note
that πC(W ) = range(MC,D2

), πI(W ) = RI and range(M•,D1
) = W ∩ Rn

[n]\C . To compute B, we

must transform the columns of M•,D2
into minimum norm lifts of ei ∈ πI(W ) into W , for all

i ∈ I. For this purpose, it suffices to make the columns of M[n]\C,D2
orthogonal to the range of

M[n]\C,D1
. Applying Gram-Schmidt orthogonalization, this requiresO((n−|C|)(n−m)(n−m−r))

time. From here, the desired matrix B = M[n]\C,D2
. Thus, the total running time of Verify-

Lift is O(n(n−m)|C|+ (n− |C|)(n−m)(n−m− r)) = O(n(n−m)2).
We now sketch how to amortize the work of all the calls of Verify-Lift during the layering

algorithm, to achieve a total O(n(n −m)2) running time. Let C1, . . . , Cℓ denote the candidate
SCC layering. Our task is to compute the matrices Bk, 2 ≤ k ≤ ℓ, needed in the calls to Verify-

Lift on W,C≥k, 2 ≤ k ≤ ℓ, in total O(n(n−m)2) time. We achieve this in three steps working
with the basis matrix M as above. Firstly, by applying column operations to M , we compute
sets Ik ⊆ Ck and Dk = [|I≤k|] \ [|I<k|], k ∈ [ℓ], such that MIk,Dk

= Irk , where rk = |Ik|, and
MC≥k,D<k

= 0, 2 ≤ k ≤ ℓ. Note that this enforces
∑ℓ

k=1 rk = (n−m). This computation requires
O(n(n − m)2) time using Gaussian elimination. This computation achieves range(MCk,Dk

) =
πCk

(W ∩ Rn
C≤k

), range(MC≥k,D≥k
) = πC≥k

(W ) and range(M•,D≤k
) = W ∩Rn

C≤k
, for all k ∈ [ℓ].

From here, we block orthogonalize M , such that the columns of M•,Dk
are orthogonal to the

range of M•,D<k
, 2 ≤ k ≤ ℓ. Applying an appropriately adapted Gram-Schmidt orthogonaliza-

tion, this requires O(n(n−m)2) time. Note that this operation maintains MIk,Dk
= Irk , k ∈ [ℓ],

since MC≥k,D<k
= 0. At this point, for k ∈ [ℓ] the columns of M•,Dk

are in correspondence with
minimum norm lifts of ei ∈ πD≥k(W ) into W , for all i ∈ Ik. Note that to compute the matrix Bk
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we need the lifts of ei ∈ πD≥k(W ), for all i ∈ I≥k instead of just i ∈ Ik.
We now compute the matrices Bℓ, . . . , B2 in this order via the following iterative procedure.

Let k denote the iteration counter, which decrements from ℓ to 2. For k = ℓ (first iteration),
we let Bℓ = MC<ℓ,Dℓ

and decrement k. For k < ℓ, we eliminate the entries of MIk,D>k
by using

the columns of M•,Dk
. We then let Bk = MC<k,D≥k

and decrement k. To justify correctness,
one need only notice that at the end of iteration k, we maintain the orthogonality of M•,D≥k

to
the range of M•,D<k

and that MI≥k,D≥k
= I|I≥k| is the appropriate identity. The cost of this

procedure is the same as a full run of Gaussian elimination and thus is bounded by O(n(n−m)2).
The calls to Verify-Lift during the layering procedure can thus be executed in O(n(n−m)2))
amortized time as claimed.

3.5 The overall algorithm

Algorithm 2: LP-Solve(A, b, c, w0)

Input : A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and an initial feasible solution
w0 = (x0, y0, s0) ∈ N (1/8) to (LP).

Output: Optimal solution w∗ = (x∗, y∗, s∗) to (LP).
1 Call Find-Circuits(A) to obtain the lower bounds κ̂ij for each i, j ∈ [n], i 6= j;
2 k ← 0, α← 0;
3 repeat
4 /* Predictor step */

5 Compute affine scaling direction ∆wa = (∆xa,∆ya,∆sa) for w;

6 if εa(w) < 10n3/2γ then // Recall εa(w) defined in (20)

7 δ ← (sk)1/2(xk)−1/2;
8 (J , κ̂)←Layering(δ, κ̂);

9 Compute Layered Least Squares direction ∆wll = (∆xll,∆yll,∆sll) for the layering
J and w;

10 ∆w ← ∆wll;

11 else
12 ∆w ← ∆wa;

13 α← sup{α′ ∈ [0, 1] : ∀ᾱ ∈ [0, α′] : w + ᾱ∆w ∈ N (1/4)};
14 w′ ← wk + α∆w;
15 /* Corrector step */

16 Compute centrality direction ∆wc = (∆xc,∆yc,∆sc) for w′;
17 wk+1 ← w′ +∆wc;
18 k ← k + 1;

19 until µ(wk) = 0;

20 return wk = (xk, yk, sk).

Algorithm 2 presents the overall algorithm LP-Solve(A, b, c, w0). We assume that an initial
feasible solution w0 = (x0, y0, s0) ∈ N (β) is given. We address this in Section 7, by adapting the
extended system used in [VY96]. We note that this subroutine requires an upper bound on χ̄∗.
Since computing χ̄∗ is hard, we can implement it by a doubling search on log χ̄∗, as explained in
Section 7. Other than for initialization, the algorithm does not require an estimate on χ̄∗.

The algorithm starts with the subroutine Find-Circuits(A) as in Theorem 2.19. The iter-
ations are similar to the MTY Predictor-Corrector algorithm [MTY93]. The main difference is

30



that certain affine scaling steps are replaced by LLS steps. In every predictor step, we compute
the affine scaling direction, and consider the quantity εa(w) = maxi∈[n] min{|Rxa

i |, |Rsai |}. If

this is above the threshold 10n3/2γ, then we perform the affine scaling step. However, in case
εa(w) < 10n3/2γ, we use the LLS direction instead. In each such iteration, we call the subrou-
tine Layering(δ, κ̂) (Algorithm 1) to compute the layers, and we compute the LLS step for this
layering.

Another important difference is that the algorithm does not require a final rounding step. It
terminates with the exact optimal solution w∗ once a predictor step is able to perform a full step
with α = 1.

Theorem 3.17. For given A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and an initial feasible solution w0 =
(x0, y0, s0) ∈ N (1/8), Algorithm 2 finds an optimal solution to (LP) in O(n2.5 logn log(χ̄∗

A+n))
iterations.

Remark 3.18. Whereas using LLS steps enables us to give a strong bound on the total number of
iterations, finding LLS directions has a significant computational overhead as compared to finding
affine scaling directions. The layering J can be computed in time O(nm2) (Lemma 3.16), and the
LLS steps also requireO(nm2) time, see [VY96,MMT98]. This is in contrast to the computational
cost O(nω) of an affine scaling direction. Here ω < 2.373 is the matrix multiplication constant
[VW12].

We now sketch a possible approach to amortize the computational cost of the LLS steps over
the sequence of affine scaling steps. It was shown in [MT05] that for the MTY P-C algorithm,
the “bad” scenario between two crossover events amounts to a series of affine scaling steps where
the progress in µ increases exponentially from every iteration to the next. This corresponds to
the term O(min{n2 log log(µ0/η), log(µ0/η)}) in their running time analysis. Roughly speaking,
such a sequence of affine scaling steps indicates that an LLS step is necessary.

Hence, we could observe these accelerating sequences of affine scaling steps, and perform an
LLS step after we see a sequence of length O(log n). The progress made by these affine scaling
steps offsets the cost of computing the LLS direction.

4 The potential function and the overall analysis

Let µ > 0 and δ(µ) = s(µ)1/2x(µ)−1/2 correspond to the point on the central path. For i, j ∈ [n],
i 6= j, we define

̺µ(i, j) :=
log κ

δ(µ)
ij

log (3nχ̄∗
A/γ)

,

and the main potentials in the algorithm as

Ψµ(i, j) := max

{

1,min

{

2n, inf
0<µ′<µ

̺µ
′

(i, j)

}}

and Ψ(µ) :=
∑

i,j∈[n],i6=j

log2 Ψ
µ(i, j) .

The quantity Ψµ(i, j) is motivated by the bounds in Lemma 3.15. The next statement is an
immediate consequence of this lemma and (16).

Lemma 4.1. Let w = (x, y, s) ∈ N (β) for β ∈ (0, 1/4], let µ = µ(w), and δ = δ(w). Let
i, j ∈ [n], i 6= j. If the graph Gδ,γ/(3n) contains a path from j to i of at most t − 1 edges, then
̺µ(i, j) < t. If there is a path of at most t− 1 edges from i to j, then −t < ̺µ(i, j).

If Ψµ(i, j) ≥ t, then i and j cannot be together on a layer of size ≤ t, and j cannot be on a layer
preceding the layer containing i in any δ(w′)-balanced layering, where w′ = (x′, y′, s′) ∈ N (β)
with µ(w′) < µ.
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Our potentials Ψµ(i, j) can be seen as fine-grained analogues of the crossover events analyzed
in [VY96,MT03,MT05]. Roughly speaking, a crossover event corresponds to Ψµ(i, j) increasing
above n, meaning that i and j cannot be contained in the same layer after the normalized duality
gap decreases below µ.

In what follows, we formulate four lemmas and use them to prove Theorem 3.17. For the
lemmas, we only highlight some key ideas here, and defer the full proofs to Section 6.

For a solution w ∈ N (β), ∆wll refers to the LLS direction found in the algorithm, and Rxll

and Rsll denote the residuals as in (18). For a subset I ⊂ [n] recall the definition

εllI (w) := max
i∈I

min{|Rxll
i |, |Rslli |} .

Another important quantity in the analysis is

ξllI (w) := min{‖Rxll
I‖, ‖RsllI‖}

for a subset I ⊂ [n]. For a layering J = (J1, J2, . . . , Jp), we let

ξllJ (w) = max
k∈[p]

ξllJk
(w) .

The key idea of the analysis is to extract information about the optimal solution w∗ = (x∗, y∗, s∗)
from the LLS direction. The first main lemma shows that if ‖Rxll

Jq
‖ is large on some layer Jq,

then for at least one index i ∈ Jq, x
∗
i /xi ≥ 1/poly(n); the analogous statement holds for ‖RsllJq

‖.

Lemma 4.2. Let w = (x, y, s) ∈ N (β) for β ∈ (0, 1/8], and let J = (J1, . . . , Jp) be a δ(w)-
balanced layering, and let ∆wll = (∆xll,∆yll,∆sll) be the corresponding LLS direction. Then the
following statement holds for every q ∈ [p]:

(i) There exists i ∈ Jq such that

x∗
i ≥

2xi

3
√
n
· (‖Rxll

Jq
‖ − 2γn) . (30)

(ii) There exists j ∈ Jq such that

s∗j ≥
2sj
3
√
n
· (‖RsllJq

‖ − 2γn) . (31)

We outline the main idea of the proof of part (i); part (ii) follows analogously using the duality
of the lifting scores (Lemma 3.10). On layer q, the LLS step minimizes ‖δJq

(xJq
+∆xJq

)‖, subject
to ∆xJ>q

= ∆xll
J>q

. By making use of the assumption ℓδ(w)(J>q) ≤ γ, we can show the existence

of a point z ∈ W + x∗ such that ‖δJq
(zJq
− x∗

Jq
)‖ is small, and zJ>q

= xJ>q
+ ∆xll

J>q
. By the

choice of ∆xll
Jq
, we have ‖δJq

zJq
‖ ≥ ‖δJq

(xJq
+ ∆xJq

)‖ = √µ‖Rxll
Jq
‖. Therefore, ‖δJq

x∗
Jq
/
√
µ‖

cannot be much smaller than ‖Rxll
Jq
‖. Noting that δJq

x∗
Jq
/
√
µ ≈ x∗

Jq
/xJq

, we obtain a lower

bound on x∗
i /xi for some i ∈ Jq.

We emphasize that the lemma only shows the existence of such indices i and j, but does not
provide an efficient algorithm for identifying them. It is also useful to note that for any i ∈ [n],
max{|Rxll

i |, |Rslli |} ≥ 1
2 − 5

4β according to Lemma 3.11(iii). Thus, for each q ∈ [p], we obtain a
positive lower bound either in case (i) or in case (ii).

The next lemma shows how we can argue for increase in the potential function value for
multiple pairs of variables, if we have lower bounds on both x∗

i and s∗j for some i, j ∈ [n], along
with a lower bound on ̺µ(i, j).
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Lemma 4.3. Let w = (x, y, s) ∈ N (2β) for β ∈ (0, 1/8], let µ = µ(w) and δ = δ(w). Let i, j ∈ [n]
and 2 ≤ τ ≤ n such that for the optimal solution w∗ = (x∗, y∗, s∗), we have x∗

i ≥ βxi/(2
10n5.5)

and s∗j ≥ βsj/(2
10n5.5), and assume ̺µ(i, j) ≥ −τ . Let µ′ be the normalized duality gap after

Ω(
√
nτ log(χ̄∗ + n)) iterations subsequent to the iterate w. Then Ψµ′

(i, j) ≥ 2τ , and for every
ℓ ∈ [n] \ {i, j}, either Ψµ′

(i, ℓ) ≥ 2τ , or Ψµ′

(ℓ, j) ≥ 2τ .

We note that i and j as in the lemma are necessarily different, since i = j would imply
0 = x∗

i s
∗
i ≥ β2µ/(220n11).

Let us illustrate the idea of the proof of Ψµ′

(i, j) ≥ 2τ . For i and j as in the lemma, and
for a central path element w′ = w(µ′) for µ′ < µ, we have x′

i ≥ x∗
i /n ≥ βxi/(2

10n6.5) and
s′j ≥ s∗j/n ≥ βsj/(2

10n6.5) by the near-monotonicity of the central path (Lemma 3.3). Note that

κδ′

ij = κij ·
δ′j
δ′i

= κij ·
x′
is

′
j

µ′ ≥ κij ·
β2xisj
220n13µ′ ≥

β2(1 − β)2

220n13
· κδ

ij ·
µ

µ′ ,

where the last inequality uses Corollary 3.2. Consequently, as µ′ sufficiently decreases, κδ′

ij will

become much larger than κδ
ij . The claim on ℓ ∈ [n] \ {i, j} can be shown by using the triangle

inequality κik · κkj ≥ κij shown in Lemma 2.20.

Assume now ξllJq
(w) ≥ 4γn for some q ∈ [p] in the LLS step. Then, Lemma 4.2 guarantees

the existence of i, j ∈ Jq such that x∗
i /xi, s

∗
j/sj ≥ 4

3
√
n
γ > β/(210n5.5). Further, Lemma 4.1

gives ̺µ(i, j) ≥ −|Jq|. Hence, Lemma 4.3 is applicable for i and j with τ = |Jq|.
The overall potential argument in the proof of Theorem 3.17 uses Lemma 4.3 in three cases:

ξllJ (w) ≥ 4γn (Lemma 4.2 is applicable as above); ξllJ (w) < 4γn and ℓδ
+

(J ) ≤ 3γn (Lemma 4.4);

and ξllJ (w) < 4γn and ℓδ
+

(J ) > 3γn (Lemma 4.5). Here, δ+ refers to the value of δ after the
LLS step. Note that δ+ > 0 is well-defined, unless the algorithm terminated with an optimal
solution.

To prove these lemmas, we need to study how the layers “move” during the LLS step. We
let B = {t ∈ [n] : |Rsllt | < 4γn} and N = {t ∈ [n] : |Rxll

t | < 4γn}. The assumption ξllJ (w) < 4γn
means that for each layer Jk, either Jk ⊆ B or Jk ⊆ N ; we accordingly refer to B-layers and
N -layers.

Lemma 4.4. Let w = (x, y, s) ∈ N (β) for β ∈ (0, 1/8], and let J = (J1, . . . , Jp) be a δ(w)-
balanced partition. Assume that ξllJ (w) < 4γn, and let w+ = (x+, y+, s+) ∈ N (2β) be the next
iterate obtained by the LLS step with µ+ = µ(w+) and assume µ+ > 0. Let q ∈ [p] such that

ξllJ (w) = ξllJq
(w). If ℓδ

+

(J ) ≤ 3γn, then there exist i, j ∈ Jq such that x∗
i ≥ βx+

i /(16n
3/2) and

s∗j ≥ βs+j /(16n
3/2). Further, for any ℓ, ℓ′ ∈ Jq, we have ̺µ

+

(ℓ, ℓ′) ≥ −|Jq|.

For the proof sketch, without loss of generality, let ξllJ = ξllJq
= ‖Rxll

Jq
‖, that is, Jq is an

N -layer. The case ξllJq
= ‖RsllJq

‖ can be treated analogously. Since the residuals ‖Rxll
Jq
‖ and

‖RsllJq
‖ cannot be both small, Lemma 4.2 readily provides a j ∈ Jq such that s∗j/sj ≥ 1/(6

√
n).

Using Lemma 3.3, s∗j/s
+
j > (1− β)/(6(1 + 4β)n3/2) > β/(16n3/2).

The key ideas of showing the existence of an i ∈ Jq such that x∗
i ≥ x+

i /(16n
3/2) are the

following. With ≈, / and ', we write equalities and inequalities that hold up to constant
and small polynomial factors. First, we show that (i) ‖δJq

x+
Jq
‖ / µ+/

√
µ, and then, that (ii)

‖δJq
x∗
Jq
‖ ' µ+/

√
µ .

If we can show (i) and (ii) as above, we obtain that ‖δJq
x∗
Jq
‖ ' ‖δJq

x+
Jq
‖, and thus, x∗

i ' x+
i

for some i ∈ Jq.
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Let us now sketch the first step. By the assumption Jq ⊂N , one can show x+
Jq
/xJq

≈ µ+/µ,
and therefore

‖δJq
x+
Jq
‖ ≈ µ+

µ
‖δJq

xJq
‖ ≈ |Jq|

µ+

µ

√
µ /

µ+

√
µ
.

The second part of the proof, namely, lower bounding ‖δJq
x∗
Jq
‖, is more difficult. We only show

it now for the special case when Jq = [n]. That is, we have a single layer only; in particular, the
LLS step is the same as the affine scaling step ∆xll = ∆xa. The general case of multiple layers
follows by making use of Lemma 3.11. In particular, for a sufficiently small ℓδ(J ), the LLS step
is close to the affine scaling step.

Hence, assume that ∆xll = ∆xa. Using the equivalent definition of the affine scaling step
(17) as a minimum-norm point, we have ‖δx∗‖ ≥ ‖δ(x + ∆xll)‖ =

√
µ‖Rxll‖ =

√
µξllJ . From

Lemma 3.6, µ+/µ ≤ √nεa(w)/β ≤ √nξllJ /β. Thus, we see that ‖δx∗‖ ≥ βµ+/(
√
nµ).

The final statement on lower bounding ̺µ
+

(ℓ, ℓ′) ≥ −|Jq| for any ℓ, ℓ′ ∈ Jq follows by showing

that δ+ℓ /δ
+
ℓ′ remains close to δℓ/δℓ′ , and hence the values of κµ+

(ℓ, ℓ′) and κµ(ℓ, ℓ′) are sufficiently
close for indices on the same layer (Lemma 6.1).

Lemma 4.5. Let w = (x, y, s) ∈ N (β) for β ∈ (0, 1/8], and let J = (J1, . . . , Jp) be a δ(w)-
balanced partition. Assume that ξllJ (w) < 4γn, and let w+ = (x+, y+, s+) ∈ N (2β) be the next

iterate obtained by the LLS step with µ+ = µ(w+) and assume µ+ > 0. If ℓδ
+

(J ) > 3γn, then
there exist two layers Jq and Jr, and i ∈ Jq and j ∈ Jr, x

∗
i ≥ x+

i /(8n
3/2), and s∗j ≥ s+j /(8n

3/2).

Further, ̺µ
+

(i, j) ≥ −|Jq ∪ Jr|, and for each ℓ, ℓ′ ∈ Jq ∪ Jr, Ψ
µ(ℓ, ℓ′) ≤ |Jq ∪ Jr|.

Consider now any ℓ ∈ Jk ⊆ B. Then, since Rxll
ℓ is very close to 1, x+

ℓ ≈ xℓ; on the other
hand s+ℓ will “shoot down” close near the small value Rsllℓ . Conversely, for ℓ ∈ Jk ⊆N , s+ℓ ≈ sℓ,
and x+

ℓ will “shoot down” to a small value.

The key step of the analysis is showing that the increase in ℓδ
+

(J ) can be attributed to an
N -layer Jr “crashing into” a B-layer Jq. That is, we show the existence of an edge (i′, j′) ∈
Eδ+,γ/(3n) for i′ ∈ Jq and j′ ∈ Jr, where r < q and Jq ⊆ B, Jr ⊆ N . This can be achieved by
analyzing the matrix B used in the subroutine Verify-Lift.

For the layers Jq and Jr, we can use Lemma 4.2 to show that there exists an i ∈ Jq where
x∗
i /xi is lower bounded, and there exists a j ∈ Jr where s∗j/sj is lower bounded. The lower

bound on ̺µ
+

(i, j) and the upper bounds on the Ψµ(ℓ, ℓ′) values can be shown by tracking the

changes between the κδ(ℓ, ℓ′) and κδ+(ℓ, ℓ′) values, and applying Lemma 4.1 both at w and at
w+.

Proof of Theorem 3.17. We analyze the overall potential function Ψ(µ). By definition, 0 ≤
Ψ(µ) ≤ n(n − 1)(log2 n + 1), and if µ′ < µ then Ψ(µ′) ≥ Ψ(µ). By the iteration at µ we mean
the iteration where the normalized duality gap of the current iterate is µ.

If µ+ = 0 at the end of an iteration, the algorithm terminates with an optimal solution.
Recall from Lemma 3.11(v) that this happens if and only if εll(w) = 0 at a certain iteration.

From now on, assume that µ+ > 0. We distinguish three cases at each iteration. These cases
are well-defined even at iterations where affine scaling steps are used. At such iterations, ξllJ (w)
still refers to the LLS residuals, even if these have not been computed by the algorithm. (Case

I) ξllJ (w) ≥ 4γn; (Case II) ξllJ (w) ≤ 4γn and ℓδ
+

(J ) ≤ 3γn; and (Case III) ξllJ (w) ≤ 4γn and

ℓδ
+

(J ) > 3γn.
Recall that the algorithm uses an LLS direction instead of the affine scaling direction whenever

εa(w) < 10n3/2γ. Consider now the case when an affine scaling direction is used, that is,

34



εa(w) ≥ 10n3/2γ. According to Lemma 3.11(ii), ‖Rxll − Rxa‖, ‖Rsll − Rsa‖ ≤ 6n3/2γ. This
implies that ξllJ (w) ≥ 4n3/2γ ≥ 4nγ. Therefore, in cases II and III, an LLS step will be performed.

Starting with any given iteration, in each case we will identify a set J ⊆ [n] of indices
with |J | > 1, and start a phase of O(

√
n|J | log(χ̄∗ + n)) iterations (that can be either affine

scaling or LLS steps). In each phase, we will guarantee that Ψ increases by at least |J | − 1.
As we can decompose the total sequence of iterations into disjoint phases, this yields the bound
O(n2.5 logn log(χ̄∗ + n)) on the total number of iterations.

We now consider each of the cases. We always let µ denote the normalized duality gap at the
current iteration, and we let q ∈ [p] be the layer such that ξllJ (w) = ξllJq

(w).

Case I: ξllJ (w) ≥ 4γn. Lemma 4.2 guarantees the existence of xi, sj ∈ Jq such that x∗
i /xi, s

∗
i /si ≥

4γn/(3
√
n) > 1/(210n5.5). Further, according to Lemma 4.1, ̺µ(i, j) ≥ −|Jq|. Thus, Lemma 4.3

is applicable for J = Jq. The phase starting at µ comprises O(
√
n|Jq| log(χ̄∗+n)) iterations, after

which we get a normalized duality gap µ′ such that Ψµ′

(i, j) ≥ 2|Jq|, and for each ℓ ∈ [n]\ {i, j},
either Ψµ′

(i, ℓ) ≥ 2|Jq|, or Ψµ′

(ℓ, j) ≥ 2|Jq|.
We can take advantage of these bounds for indices ℓ ∈ Jq. Again by Lemma 4.1, for any

ℓ, ℓ′ ∈ Jq, we have Ψµ(ℓ, ℓ′) ≤ ̺µ(ℓ, ℓ′) ≤ |Jq|. Thus, there are at least |Jq| − 1 pairs of indices
(ℓ, ℓ′) for which Ψµ(ℓ, ℓ′) increases by at least |Jq| between iterations at µ and µ′.

We note that this analysis works regardless if an LLS step or an affine scaling step was
performed in the iteration at µ.

Case II: ξllJ (w) ≤ 4γn and ℓδ
+

(J ) ≤ 3γn. As explained above, in this case we perform an
LLS step in the iteration at µ, and we let w+ denote the iterate obtained by the LLS step. For
J = Jq, Lemma 4.4 guarantees the existence of i, j ∈ Jq such that x∗

i /x
+
i , s

∗
j/s

+
j > β/(16n3/2),

and further, ̺µ
+

(i, j) > −|Jq|. We can therefore apply Lemma 4.3. The phase starting at µ
includes the LLS step leading to µ+ (and the subsequent centering step), and the additional
O(
√
n|Jq| log(χ̄∗ + n)) iterations as in Lemma 4.3. As in Case I, we get the desired potential

increase compared to the potentials at µ in layer Jq.

Case III: ξllJ (w) ≤ 4γn and ℓδ
+

(J ) > 3γn. Again, the iteration at µ will use an LLS step.
We apply Lemma 4.5, and set J = Jq ∪ Jr as in the lemma. The argument is the same as in
Case II, using that Lemma 4.5 explicitly states that Ψµ(ℓ, ℓ′) ≤ |J | for any ℓ, ℓ′ ∈ J .

4.1 The iteration complexity bound for the Vavasis-Ye algorithm

We now show that the potential analysis described above also gives an improved boundO(n2.5 logn
log(χ̄A + n)) for the original VY algorithm [VY96].

We recall the VY layering step. Order the variables via π such that δπ(1) ≤ δπ(2) ≤ . . . ≤ δπ(n).
The layers will be consecutive sets in the ordering; a new layer starts with π(i + 1) each time
δπ(i+1) > gδπ(i), for a parameter g = poly(n)χ̄.

As outlined in the Introduction, the VY algorithm can be seen as a special implementation of
our algorithm by setting κ̂ij = gγ/n. With these edge weights, we have that κ̂δ

ij ≥ γ/n precisely

if gδj ≥ δi.
2

With these edge weights, it is easy to see that our Layering(δ, κ̂) subroutine finds the exact
same components as VY. Moreover, the layers will be the initial strongly connected components

2For simplicity, in the Introduction we used gxi ≥ xj instead, which is almost the same in the proximity in
the central path.
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Ci of Gδ,γ/n: due to the choice of g, this partition is automatically δ-balanced. There is no need
to call Verify-Lift.

The essential difference compared to our algorithm is that the values κ̂ij = gγ/n are not
lower bounds on κij as we require, but upper bounds instead. This is convenient to simplify
the construction of the layering. On the negative side, the strongly connected components of
Ĝδ,γ/n may not anymore be strongly connected in Gδ,γ/n. Hence, we cannot use Lemma 4.1, and
consequently, Lemma 4.3 does not hold.

Still, the κ̂ij bounds are overestimating κij by at most a factor poly(n)χ̄. Therefore, the

strongly connected components of Ĝδ,n/γ are strongly connected inGδ,σ for some σ = 1/(poly(n)χ̄).
Hence, the entire argument described in this section is applicable to the VY algorithm, with

a different potential function defined with χ̄ instead of χ̄∗. This is the reason why the iteration
bound in Lemma 4.3, and therefore in Theorem 3.17, also changes to χ̄ dependency.

It is worth noting that due to the overestimation of the κij values, the VY algorithm uses a
coarser layering than our algorithm. Our algorithm splits up the VY layers into smaller parts so
that ℓδ(J ) remains small, but within each part, the gaps between the variables are bounded as
a function of χ̄∗

A instead of χ̄A.

5 Properties of the layered least square step

We now prove Lemma 3.11, showing that for a layering with small enough ℓδ(J ), the LLS step
approximately satisfies (13), that is, δ∆xll+ δ−1∆sll ≈ −x1/2s1/2. This also enables us to derive
bounds on the norm of the residuals and on the step-length. We start by proving a few auxiliary
technical claims. The next simple lemma allows us to take advantage of low lifting scores in the
layering.

Lemma 5.1. Let u, v ∈ Rn be two vectors such that u − v ∈ W . Let I ⊆ [n], and δ ∈ Rn
++.

Then there exists a vector u′ ∈W such that u′ − u ∈ W , u′
I = vI , and

‖δ[n]\I(u′
[n]\I − u[n]\I)‖ ≤ ℓδ(I)‖δI(uI − vI)‖ .

Proof. We let
u′ := u+ δ−1Lδ

I(δI(vI − uI)) .

The claim follows by the definition of the lifting score ℓδ(I).

The next lemma will be the key tool to prove Lemma 3.11. It is helpful to recall the charac-
terization of the LLS step in Section 3.3.1.

Lemma 5.2. Let w = (x, y, s) ∈ N (β) for β ∈ (0, 1/4], let µ = µ(w) and δ = δ(w). Let
J = (J1, . . . , Jp) be a layering, and let ∆wll = (∆xll,∆yll,∆sll) denote the corresponding LLS
direction. Let ∆x ∈⊕p

k=1 WJ ,k and ∆s ∈⊕p
k=1 W

⊥
J ,k as in (24) and (25), that is

δ∆xll + δ−1∆s+ x1/2s1/2 = 0 , (32)

δ∆x+ δ−1∆sll + x1/2s1/2 = 0. (33)

Then, there exist vectors ∆x̄ ∈⊕p
k=1 WJ ,k and ∆s̄ ∈⊕p

k=1 W
⊥
J ,k such that

‖δJk
(∆x̄Jk

−∆xll
Jk
)‖ ≤ 2nℓδ(J )√µ ∀k ∈ [p] and (34)

‖δ−1
Jk

(∆s̄Jk
−∆sllJk

)‖ ≤ 2nℓδ(J )√µ ∀k ∈ [p] . (35)

36



Proof. Throughout, we use the shorthand notation λ = ℓδ(J ). We construct ∆x̄; one can obtain
∆s̄, using that the reverse layering has lifting score λ in W⊥ Diag(δ−1) according to Lemma 3.10.

We proceed by induction, constructing ∆x̄Jk
∈ WJ ,k for k = p, p − 1, . . . , 1. This will be

given as ∆x̄Jk
= ∆x

(k)
Jk

for a vector ∆x(k) ∈ W such that ∆x
(k)
J>k

= 0. We prove the inductive
hypothesis

∥

∥

∥δJ≤k

(

∆x
(k)
J≤k
−∆xll

J≤k

)∥

∥

∥ ≤ 2λ
√
µ

p
∑

q=k+1

√

|Jq| . (36)

Note that (34) follows by restricting the norm on the LHS to Jk and since the sum on the RHS
is ≤ n.

For k = p, the RHS is 0. We simply set ∆x(p) = ∆xll, that is, ∆x̄Jp
= ∆xll

Jp
, trivially

satisfying the hypothesis. Consider now k < p, and assume that we have a ∆x̄Jk+1
= ∆x

(k+1)
Jk+1

satisfying (36) for k + 1. From (32) and the induction hypothesis, we get that

‖δJk+1
∆x̄Jk+1

+ δ−1
Jk+1

∆sJk+1
‖ ≤ ‖x1/2

Jk+1
s
1/2
Jk+1
‖+ ‖δJk+1

(∆x̄Jk+1
−∆xll

Jk+1
)‖

≤ ‖x1/2
Jk+1

s
1/2
Jk+1
‖+ 2λ

√
µ

p
∑

q=k+2

√

|Jq| ≤
√

µ|Jk+1|
1 + 2β

+ 2nλ
√
µ < 2

√

µ|Jk+1| ,

using also that w ∈ N (β), Proposition 3.1, and the assumptions β ≤ 1/4, λ ≤ β/(32n2). Note
that ∆x̄Jk+1

∈WJ ,k and ∆sJk+1
∈W⊥

J ,k are orthogonal vectors. The above inequality therefore
implies

‖δJk+1
∆x̄Jk+1

‖ ≤ 2
√

µ|Jk+1| .
Let us now use Lemma 5.1 to obtain ∆x(k) for u = ∆x(k+1), v = 0, and I = J>k. That is, we

get ∆x
(k)
J>k

= 0, ∆x(k) ∈W , and

‖δJ≤k
(∆x

(k)
J≤k
−∆x

(k+1)
J≤k

)‖ ≤ λ‖δJ>k
∆x

(k+1)
J>k

‖
= λ‖δJk+1

∆x̄Jk+1
‖ ≤ 2λ

√

µ|Jk+1| .

Together with the induction hypothesis (36) for k+ 1, we obtain the induction hypothesis for k.

Proof of Lemma 3.11. Again, we use λ = ℓδ(J ).
Part (i). Clearly, (27) implies (28). To show (27), we use Lemma 5.2 to obtain ∆x̄ and ∆s̄ as
in (34) and (35). We will also use ∆x ∈⊕p

k=1 WJ ,k and ∆s ∈⊕p
k=1 W

⊥
J ,k as in (32) and (33).

Select any layer k ∈ [p]. From (32), we get that

‖δJk
∆x̄Jk

+ δ−1
Jk

∆sJk
+ x

1/2
Jk

s
1/2
Jk
‖ = ‖δJk

(∆x̄Jk
−∆xll

Jk
)‖ ≤ 2nλ

√
µ . (37)

Similarly, from (33), we see that

‖δ−1
Jk

∆s̄Jk
+ δJk

∆xJk
+ x

1/2
Jk

s
1/2
Jk
‖ = ‖δ−1

Jk
(∆s̄Jk

−∆sllJk
)‖ ≤ 2nλ

√
µ .

From the above inequalities, we see that

‖δJk
(∆x̄Jk

−∆xJk
) + δ−1

Jk
(∆sJk

−∆s̄Jk
)‖ ≤ 4nλ

√
µ .

Since δJk
(∆x̄Jk

−∆xJk
) and δ−1

Jk
(∆sJk

−∆s̄Jk
) are orthogonal vectors, we have

‖δJk
(∆x̄Jk

−∆xJk
)‖, ‖δ−1

Jk
(∆sJk

−∆s̄Jk
)‖ ≤ 4nλ

√
µ .
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Together with (34), this yields ‖δJk
(∆xll

Jk
−∆xJk

)‖ ≤ 6nλ
√
µ. Combined with (25), we get

‖δJk
∆xll

Jk
+ δ−1

Jk
∆sllJk

+ x
1/2
Jk

s
1/2
Jk
‖ = ‖δJk

(∆xll
Jk
−∆xJk

)‖ ≤ 6nλ
√
µ ,

thus, (27) follows.

Part (ii). Recall from Lemma 3.5(i) that
√
µRxa +

√
µRsa = x1/2s1/2. From part (i), we can

similarly see that
‖√µRxll +

√
µRsll − x1/2s1/2‖ ≤ 6n3/2λ

√
µ .

From these, we get
‖(Rxll −Rxa) + (Rsll −Rsa)‖ ≤ 6n3/2λ .

The claim follows since Rxll−Rxa ∈ W Diag(δ) and Rsll−Rsa ∈ W⊥Diag(δ−1) are orthogonal
vectors.

Part (iii). Both bounds follow from the previous part and Lemma 3.5(iii), using the assumption
ℓδ(J ) ≤ β/(32n2).

Part (iv). Let w+ = w+α∆wll. We need to find the largest value α > 0 such that w+ ∈ N (2β).
To begin, we first show that normalized duality gap µ(w+) = (1 − α)µ for any α ∈ R. For this
purpose, we use the decomposition:

(x + α∆xll)(s+ α∆sll) = (1− α)xs+ α(x +∆xll)(s+∆sll)− α(1 − α)∆xll∆sll. (38)

Recall from Part (i) that there exists ∆x ∈⊕p
k=1 WJ ,k and ∆s ∈⊕p

k=1 W
⊥
J ,k as in (32) and (33)

such that δ∆xll+δ−1∆s = −δx and δ∆x+δ−1∆sll = −δ−1s. In particular, x+∆xll = δ−2∆s and
s+∆sll = δ2∆x. Noting that ∆xll ⊥ ∆sll and ∆x ⊥ ∆s, taking the average of the coordinates
on both sides of (38), we get that

µ(w + α∆wll) = (1− α)µ(w) + α〈x+∆xll, s+∆sll〉/n− α(1− α)〈∆xll,∆sll〉/n
= (1− α)µ(w) + α〈δ−2∆s, δ2∆x〉/n
= (1− α)µ(w), (39)

as needed.
Let ε := εll(w). To obtain the desired lower bound on the step-length, given (39) it suffices

to show that for all 0 ≤ α < 1− 3
√
nε
β that

∥

∥

∥

∥

(x+ α∆xll)(s+ α∆sll)

(1− α)µ
− e

∥

∥

∥

∥

≤ 2β . (40)

We will need a bound on the product of the LLS residuals:
∥

∥

∥

∥

RxllRsll − 1

µ
∆xll∆sll

∥

∥

∥

∥

=

∥

∥

∥

∥

x1/2s1/2√
µ
· δ∆xll + δ−1∆sll + x1/2s1/2√

µ

∥

∥

∥

∥

≤ 6(1 + 2β)n3/2λ ≤ β

4
,

(41)

using Proposition 3.1, part (i), and the assumptions λ ≤ β/(32n2), β ≤ 1/4. Another useful
bound will be

‖RxllRsll‖2 =
∑

i∈[n]

∣

∣Rxll
i

∣

∣

2 ∣
∣Rslli

∣

∣

2 ≤ ε2
∑

i∈[n]

max
{

∣

∣Rxll
i

∣

∣

2
,
∣

∣Rslli
∣

∣

2
}

≤ ε2(‖Rxll‖2 + ‖Rsll‖2) ≤ 2nε2 .

(42)
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The last inequality uses part (ii). We are ready to get a bound as in (40).

∥

∥

∥

(x+ α∆xll)(s+ α∆sll)

(1 − α)µ
− e

∥

∥

∥ ≤ β +
∥

∥

∥

α2

(1 − α)µ
(x +∆xll)(s+∆sll) +

α

µ
(xs+ x∆sll + s∆xll)

∥

∥

∥

≤ β +
α2

1− α
‖RxllRsll‖+ α

∥

∥

∥

∥

RxllRsll − 1

µ
∆xll∆sll

∥

∥

∥

∥

≤ β +

√
2nε

1 − α
+

β

4
≤ 5

4
β +

√
2nε

1 − α
.

This value is ≤ 2β whenever 2
√
nε/(1− α) ≤ (3/4)β ⇐ α < 1− 3

√
nε
β , as needed.

Part (v). From part (iv), it is immediate that εll(w) = 0 implies α = 1. If α = 1, we have that
w + ∆wll is the limit of (strictly) feasible solutions to (LP) and thus is also a feasible solution.
Optimality of w + ∆wll now follows from Part (iv), since α = 1 implies µ(w + ∆wll) = 0.
The remaining implication is that if w + ∆wll is optimal, then εll(w) = 0. Recall that Rxll

i =
δi(xi+∆xll

i )/
√
µ and Rslli = δ−1

i (si+∆slli )/
√
µ. The optimality of w+∆wll means that for each

i ∈ [n], either xi +∆xll
i = 0 or si +∆slli = 0. Therefore, εll(w) = 0.

6 Proof of the main lemmas for the potential analysis

Proof of Lemma 4.2. We prove part (i); part (ii) follows analogously using Lemma 3.10. Let
z ∈ W + d be the vector obtained from Lemma 5.1, for u = x∗, v = x+∆xll, and I = J>q such
that zJ>q

= xJ>q
+∆xll

J>q
and

∥

∥

∥δJ≤q
(x∗

J≤q
− zJ≤q

)
∥

∥

∥ ≤ γ
∥

∥

∥δJ>q

(

x∗
J>q
− (xJ>q

+∆xll
J>q

)
)

∥

∥

∥

Restricting to the components in Jq, and dividing by
√
µ, we get

∥

∥

∥

∥

∥

δJq
(x∗

Jq
− zJq

)
√
µ

∥

∥

∥

∥

∥

≤ γ

∥

∥

∥

∥

∥

δJ>q

(

x∗
J>q
− (xJ>q

+∆xll
J>q

)
)

√
µ

∥

∥

∥

∥

∥

≤ γ

∥

∥

∥

∥

δJ>q
x∗
J>q√
µ

∥

∥

∥

∥

+ γ‖Rxll
J>q
‖ . (43)

Since w ∈ N (β), from Proposition 3.1 and (16) we see that

δi√
µ
≤ 1√

1− 2β
· δi(w(µ))√

µ
=

1√
1− 2β

· 1

xi(µ)
,

and therefore
∥

∥

∥

∥

δJ>q
x∗
J>q√
µ

∥

∥

∥

∥

≤ 1√
1− 2β

∥

∥

∥x(µ)−1
J>q

x∗
J>q

∥

∥

∥ ≤ 1√
1− 2β

·
∥

∥

∥x(µ)−1
J>q

x∗
J>q

∥

∥

∥

1
≤ n√

1− 2β
,

where the last inequality follows by Lemma 3.3.
Using the above bounds with (43), along with ‖Rxll

J≥q
‖ ≤ ‖Rxll‖ ≤

√
2n from Lemma 3.11(iii),

we get
∥

∥

∥

∥

δJq
zJq√
µ

∥

∥

∥

∥

≤
∥

∥

∥

∥

δJq
x∗
Jq√
µ

∥

∥

∥

∥

+
γn√
1− 2β

+ γ
√
2n ≤

∥

∥

∥

∥

δJq
x∗
Jq√
µ

∥

∥

∥

∥

+ 2γn ,

using that β ≤ 1/8 and n ≥ 3. Note that z−x is a feasible solution to the least-squared problem
optimally solved for layer Jq by xll

Jq
, that is,

‖Rxll
Jq
‖ ≤

∥

∥

∥

∥

δJq
zJq√
µ

∥

∥

∥

∥

.
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It follows that
∥

∥

∥

∥

δJq
x∗
Jq√
µ

∥

∥

∥

∥

≥ ‖Rxll
Jq
‖ − 2γn .

Let us pick i = argmaxt∈Jq
|δtx∗

t |. Using Corollary 3.2,

x∗
i

xi
≥ 1

1 + 2β
· δix

∗
i√
µ
≥
‖Rxll

Jq
‖ − 2γn

(1 + 2β)
√
n
≥ 2

3
√
n
· (‖Rxll

Jq
‖ − 2γn) ,

completing the proof.

Proof of Lemma 4.3. Let us select a value µ′ such that

logµ− logµ′ ≥ 5τ log

(

3nχ̄∗
A

γ

)

+ 29 logn+ 44− 4 log β .

We claim that the normalized duality gap decreases to such value within O(
√
nτ · log(nχ̄∗))

iterations. The step-lengths for the affine scaling and LLS steps are stated in Proposition 3.4
and Lemma 3.11(iv).Whenever the algorithm chooses an LLS step, εa(w) < 10n3/2γ. Thus, the
progress in µ will be at least as much (in fact, much better) than the (1 − β/

√
n) guarantee we

use for the affine scaling step in Proposition 3.4.
Let w′ = (x′, y′, s′) be the central path element corresponding to µ′, and let δ′ = δ(w′). From

now on we use the shorthand notation

Θ := log

(

3nχ̄∗
A

γ

)

.

We first show that Θ̺µ
′

(i, j) ≥ 4Θτ + 16 logn+ 22 log 2 − 2 logβ for all such µ′, and therefore,
ΘΨµ′

(i, j) ≥ min(2Θn, 4Θτ + 16 logn+ 22 log 2− 2 log β) ≥ 2Θτ by choice of τ ≤ n. According
to Corollary 3.2, and recalling the definition κδ

ij = κijδj/δi, we see that

κδ
ij ≤

κij

(1− β)2
· xisj

µ
, and κδ′

ij = κij ·
x′
is

′
j

µ′ .

Thus,

Θ̺µ
′

(i, j) ≥ Θ̺µ(i, j) + logµ− logµ′ + 2 log(1− β) + log x′
i − log xi + log s′j − log sj

≥ Θ̺µ(i, j) + 5Θτ + 29 logn+ 44− 4 logβ + 2 log(1− β) + log x′
i − log xi + log s′j − log sj .

Using the near-monotonicity of the central path (Lemma 3.3), we have x′
i ≥ x∗

i /n and s′j ≥
s∗j/n. Together with our assumptions x∗

i ≥ βxi/(2
10n5.5) and s∗i ≥ βxi/(2

10n5.5), we see that

log x′
i − log xi + log s′j − log sj ≥ −13 logn− 20 log 2 + 2 logβ .

Using the assumption ̺µ(i, j) > −τ of the lemma, we see that Θ̺µ
′

(i, j) ≥ 4Θτ + 16 logn +
22 log 2− 2 logβ follows by the choice of µ′.

Next, consider any ℓ ∈ [n] \ {i, j}. From the triangle inequality Lemma 2.20(ii) it follows
that κδ′

ij ≤ κδ′

iℓ · κδ′

ℓj , which gives ̺µ
′

(i, ℓ) + ̺µ
′

(ℓ, j) ≥ ̺µ
′

(i, j). From the bound Θ̺µ
′

(i, j) ≥
4Θτ + 16 logn+ 22 log 2− 2 log β, we get that

max{Θ̺µ
′

(i, ℓ),Θ̺µ
′

(ℓ, j)} ≥ 2Θτ + 8 logn+ 11 log 2− log β.
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We next show that if Θ̺µ
′

(i, ℓ) ≥ 2Θτ + 8 logn + 11 log 2 − log β, then Ψµ′

(i, ℓ) ≥ 2τ . The
case Θ̺µ

′

(ℓ, j) ≥ 2Θτ + 8 logn+ 11 log 2− log β follows similarly.
Consider any 0 < µ̄ < µ′ with the corresponding central path point w̄ = (x̄, ȳ, s̄). The proof

is complete by showing Θ̺µ̄(i, ℓ) ≥ Θ̺µ
′

(i, ℓ)− 8 logn− 11 log 2 + log β. Recall that for central
path elements, we have κδ′

ij = κijx
′
i/x

′
j , and κδ̄

ij = κij x̄i/x̄j . Therefore

Θ̺µ̄(i, j) = Θ̺µ
′

(i, j) + log x̄i − log x′
i − log x̄j + log x′

j .

Using Proposition 3.1, Lemma 3.3 and the assumption x∗
i ≥ βxi/(2

10n5.5), we have x̄j ≤ nx′
j

and

x̄i ≥
x∗
i

n
≥ βxi

210n6.5
≥ β(1 − β)x′

i

210n7.5
≥ βx′

i

211n7.5
.

Using these bounds, we get

Θ̺µ̄(i, j) ≥ Θ̺µ
′

(i, j)− 8 logn− 11 log 2 + log β,

completing the proof.

It remains to prove Lemma 4.4 and Lemma 4.5, addressing the more difficult case ξllJ < 4γn.
It is useful to decompose the variables into two sets. We let

B := {t ∈ [n] : |Rsllt | < 4γn}, and N := {t ∈ [n] : |Rxll
t | < 4γn} . (44)

The assumption ξllJ < 4γn implies that for every layer Jk, either Jk ⊆ B or Jk ⊆ N . The next
two lemma describes the relations between δ and δ+.

Lemma 6.1. Let w ∈ N (β) for β ∈ (0, 1/8], and assume ℓδ(J ) ≤ γ and εll(w) < 4γn. For the
next iterate w+ = (x+, y+, s+) ∈ N (2β), we have

(i) For i ∈ B,

0.5 ·
√

µ+

µ
≤ δ+i

δi
≤ 1.5 ·

√

µ+

µ
and δ−1

i s+i ≤
2µ+

√
µ

.

(ii) For i ∈ N ,

0.5 ·
√

µ

µ+
≤ δ+i

δi
≤ 1.5 ·

√

µ

µ+
and δix

+
i ≤

2µ+

√
µ

.

(iii) If i, j ∈ B or i, j ∈N , then

1

3
≤

κδ
ij

κδ+
ij

=
δ+i δj

δiδ
+
j

≤ 3 .

(iv) If i ∈ N and j ∈ B, then

κδ
ij

κδ+
ij

=
δ+i δj

δiδ
+
j

≥ β

9
√
nεll(w)

≥ 4n3.5 .
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Proof. Part (i). By Lemma 3.11(i), we see that

‖δB∆xll
B‖∞ ≤ ‖δB∆xll

B + δ−1
B ∆sllB + x

1/2
B s

1/2
B ‖∞ + ‖δ−1

B (∆sllB + sB)‖∞
= ‖δB∆xll

B + δ−1
B ∆sllB + x

1/2
B s

1/2
B ‖∞ +

√
µ‖RsllB‖∞

≤ √µ
(

6nℓδ(J ) + 4nγ
)

≤ 10nγ
√
µ ≤ √µ/64 ,

by the assumption on ℓδ(J ) and the definition of B.
By construction of the LLS step, |x+

i −xi| = α+|∆xll| ≤ |∆xll|, by recalling that 0 ≤ α+ ≤ 1.
Using the bound derived above, for i ∈ B we get

∣

∣

∣

∣

x+
i

xi
− 1

∣

∣

∣

∣

≤
∣

∣

∣

∣

∆xll
i

xi

∣

∣

∣

∣

=
|δi∆xll

i |
δixi

≤
√
µ

64δixi
≤ 1

32
,

using also Corollary 3.2. We can write

δ+i
δi

=

√

x+
i s

+
i

xisi
· xi

x+
i

.

The claimed bounds follow again using Corollary 3.2 with the choice β ≤ 1/8.
To get the upper bound on δ−1

i s+i , we use

δ−1
i s+i =

δ+i
δiδ

+
i

s+i =
δ+i
δi
·
√

x+
i s

+
i .

We can upper bound the first term by 1.5
√

µ+/µ as above, and the second term by 5
√

µ+/4
again from Corollary 3.2.

Part (ii). Analogously to (i).

Part (iii). Immediate from parts (i) and (ii).

Part (iv). Follows by parts (i) and (ii), and by the lower bound on
√

µ/µ+ obtained from
Lemma 3.11(iv).

Proof of Lemma 4.4. Without loss of generality, let ξllJ = ξllJq
= ‖Rxll

Jq
‖; thus, Jq ⊆ N . The

case ξllJq
= ‖RsllJq

‖ and Jq ⊆ B can be treated analogously.

By Lemma 3.11(iii), ‖RsllJq
‖ ≥ 1

2 − 3
4β > 1

4 +2nγ, and therefore Lemma 4.2 provides a j ∈ Jq

such that s∗j/s
+
j ≥ 1/(6

√
n). Using Lemma 3.3, s∗j/sj ≥ (1 − β)/(6(1 + 4β)n3/2) > β/(16n3/2).

The final statement ̺µ
+

(ℓ, ℓ′) ≥ −|Jq| for any ℓ, ℓ′ ∈ Jq is also easy to see. From Lemma 6.1(iii)
and the strong connectivity of Jq in Gδ,γ/n, we obtain that Jq is strongly connected in Gδ+,γ/(3n).

Hence, ̺µ
+

(ℓ, ℓ′) ≥ −|Jq| follows by Lemma 4.1.
The rest of the proof is dedicated to showing the existence of an i ∈ Jq such that x∗

i ≥
βx+

i /(16n). For this purpose, we will prove that

‖δJq
x∗
Jq
‖ ≥ βµ+

8
√
nµ

. (45)
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By Lemma 6.1(ii), we see that

‖δJq
x+
Jq
‖ ≤ √n‖δJq

x+
Jq
‖∞ ≤

2
√
nµ+

√
µ

.

Thus, the lemma follows immediately from (45): for at least one i ∈ Jq, we must have x∗
i /xi ≥

β/(16n).
In order to prove (45), we define

z := (δ+)−1Lδ+

J>q

(

δ+J>q
(x∗

J>q
− x+

J>q
)
)

and w := x∗ − x+ − z ,

as in Lemma 5.1. By construction, w ∈ W and wJ>q
= 0. Thus, wJq

∈WJ ,q.
Using the triangle inequality, we get

‖δJq
x∗
Jq
‖ ≥ ‖δJq

(x+
Jq

+ wJq
)‖ − ‖δJq

zJq
‖ . (46)

We bound the two terms separately, starting with an upper bound on ‖δJq
zJq
‖. Since ℓδ

+

(J ) ≤
3γn, we have that

∥

∥

∥δ+Jq
zJq

∥

∥

∥ ≤ ℓδ
+

(J )
∥

∥

∥δ+J>q

(

x∗
J>q
− x+

J>q

)∥

∥

∥ ≤ 3nγ
∥

∥

∥δ+J>q

(

x∗
J>q
− x+

J>q

)∥

∥

∥ ≤ 4n2
√

µ+γ,

where the last inequality follows by Lemma 3.3, Corollary 3.2. and ‖δ+x∗‖ ≤ ‖δ+x+‖·‖x∗/x+‖∞ ≤
4
3n

3/2
√

µ+. We can use this and Lemma 6.1(ii) to obtain

‖δJq
zJq
‖ ≤ ‖δJq

/δ+Jq
‖∞ · ‖δ+Jq

zJq
‖ ≤ 16n2γµ+

√
µ

≤ βµ+

64n3√µ , (47)

using the definition of γ.
The first term in (46) will be bounded as follows.

Claim 6.2. ‖δJq
(x+

Jq
+ wJq

)‖ ≥ √µξllJ /2 .

Before proving the claim, we show how the inequality (45), and thus, the lemma, follow.
Using Lemma 3.11(iv),

µ+ ≤ 3
√
nξllJµ

β
,

implying ‖δJq
(x+

Jq
+ wJq

)‖ ≥ βµ+/(6
√
nµ). Now (45) follows using (46) and (47).

Proof of Claim 6.2. We recall the characterization (24) of the LLS step ∆xll ∈ W . Namely,
there exists ∆s ∈W⊥

J ,1 ⊕ · · · ⊕W⊥
J ,q that is the unique solution to δ−1∆s+ δ∆xll = −δx. From

the above, note that

‖δ−1
Jq

∆sJq
‖ = ‖δJq

(xJq
+∆xll

Jq
)‖ = √µ‖Rxll

Jq
‖ = √µξllJ .

From the Cauchy-Schwarz inequality,

‖δ−1
Jq

∆sJq
‖ · ‖δJq

(x+
Jq

+ wJq
)‖ ≥

∣

∣

∣

〈

δ−1
Jq

∆sJq
, δJq

(x+
Jq

+ wJq
)
〉∣

∣

∣

=
∣

∣

∣

〈

δ−1
Jq

∆sJq
, δJq

x+
Jq

〉∣

∣

∣
.

(48)
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Here, we used that ∆sJq
∈ W⊥

J ,q and wJq
∈WJ ,q. Note that

x+ = x+ α∆xll = x+∆xll − (1− α)∆xll = −δ−2∆s− (1− α)∆xll .

Therefore,
∣

∣

∣

〈

δ−1
Jq

∆sJq
, δJq

x+
Jq

〉∣

∣

∣ =
∣

∣

∣

〈

δ−1
Jq

∆sJq
,−δ−1

Jq
∆sJq

− (1 − α)δJq
∆xll

Jq

〉∣

∣

∣

≥ ‖δ−1
Jq

∆sJq
‖2 − (1− α)

∣

∣

∣

〈

δ−1
Jq

∆sJq
, δJq

∆xll
Jq

〉∣

∣

∣
.

By Lemma 5.2, there exists ∆x̄ ∈ WJ ,1 ⊕ · · · ⊕WJ ,p such that ‖δ(∆xll −∆x̄)‖ ≤ 2nℓδ(J )√µ.
Therefore, using the orthogonality of ∆sJq

and ∆x̄Jq
, we get that

∣

∣

∣

〈

δ−1
Jq

∆sJq
, δJq

∆xll
Jq

〉∣

∣

∣ =
∣

∣

∣

〈

δ−1
Jq

∆sJq
, δJq

(∆xll
Jq
−∆x̄ll

Jq
)
〉∣

∣

∣ ≤ 2nℓδ(J )√µ · ‖δ−1
Jq

∆sJq
‖ .

From the above inequalities, we see that

‖δJq
(x+

Jq
+ wJq

)‖ ≥ ‖δ−1
Jq

∆sJq
‖ − 2(1− α)nℓδ(J )√µ =

√
µξllJ − 2(1− α)nℓδ(J )√µ .

The claim follows by showing (1 − α)nℓδ(J ) ≤ ξllJ /4. From Lemma 3.11(iv), we obtain

(1 − α)nℓδ(J ) ≤ 3n3/2ℓδ(J )ξllJ /β .

The claim follows by the assumption ℓδ(J ) ≤ γ, and the choice of γ.

As pointed out at the beginning of the proof of the claim, this finishes the proof of the
lemma.

Proof of Lemma 4.5. Recall the sets B and N defined in (44). The key is to show the existence
of an edge

(i′, j′) ∈ Eδ+,γ/(3n) such that i′ ∈ Jq ⊆ B, j′ ∈ Jr ⊆N , r < q . (49)

Before proving the existence of such i′ and j′, we show how the rest of the statements follow,
namely, that ̺µ

+

(i, j) ≥ −|Jq∪Jr|, and for each ℓ, ℓ′ ∈ Jq∪Jr, Ψµ(ℓ, ℓ′) ≤ |Jq∪Jr|. According to
Lemma 4.1, the latter is true (even with the stronger bound max{|Jq|, |Jr|}) whenever ℓ, ℓ′ ∈ Jq,

or ℓ, ℓ′ ∈ Jr, or if ℓ ∈ Jq and ℓ′ ∈ Jr. It is left to show the lower bound on ̺µ
+

(i, j) and
Ψµ(ℓ, ℓ′) ≤ |Jq ∪ Jr| for ℓ′ ∈ Jq and ℓ ∈ Jr.

From Lemma 6.1(iii), we have that if ℓ, ℓ′ ∈ Jq ⊆ B or ℓ, ℓ′ ∈ Jr ⊆ N , then κδ
ℓℓ′/3 ≤ κδ+

ℓℓ′ .
Hence, the strong connectivity of Jr and Jq in Gδ,γ implies the strong connectivity of these sets
in Gδ+,γ/(3n). Together with the edge (i′, j′), we see that every ℓ′ ∈ Jq can reach every ℓ ∈ Jr
on a directed path of length ≤ |Jq ∪ Jr| − 1 in Gδ+,γ/(3n). Applying Lemma 4.1 for this setting,

we obtain Ψµ(ℓ, ℓ′) ≤ ̺µ
+

(ℓ, ℓ′) ≤ |Jq ∪ Jr| for all such pairs, and also ̺µ
+

(i, j) ≥ −|Jq ∪ Jr|.
The rest of the proof is dedicated to showing the existence of i′ and j′ as in (49). We let

k ∈ [p] such that ℓδ
+

(J≥k) = ℓδ
+

(J ) > 3nγ. To simplify the notation, we let I = J≥k.
When constructing J In Layering(δ, κ̂), the subroutine Verify-Lift(W Diag(δ), I, γ) was

called for the set I = J≥k, with the answer ‘pass’. Besides ℓδ(I) ≤ γ, this guaranteed the stronger
property that maxji |Bji| ≤ γ for the matrix B implementing the lift (see Remark 2.12).

Let us recall how this matrix B was obtained. The subroutine starts by finding a minimal
I ′ ⊂ I such that dim(πI′ (W )) = dim(πI(W )). Recall that πI′(W ) ∼= RI′

and Lδ
I(p) = Lδ

I′(pI′)
for every p ∈ πI(W Diag(δ)).
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Consider the optimal lifting Lδ
I : πI(W Diag(δ)) → W Diag(δ). We defined B ∈ R([n]\I)×I′

as the matrix sending any q ∈ πI′(W Diag(δ)) to the corresponding vector [Lδ
I′(q)][n]\I . The

column Bi can be computed as [Lδ
I′(ei)][n]\I for ei ∈ RI′

.
We consider the transformation

B̄ := Diag(δ+δ−1)BDiag
(

(δ+I′)
−1δI′

)

.

This maps πI′(W Diag(δ+))→ π[n]\I(W Diag(δ+)).
Let z ∈ πI(W Diag(δ+)) be the singular vector corresponding to the maximum singular value

of Lδ+

I , namely, ‖[Lδ+

I (z)][n]\I‖ > 3nγ‖z‖. Let us normalize z such that ‖zI′‖ = 1. Thus,

∥

∥

∥
[Lδ+

I′ (zI′)][n]\I

∥

∥

∥
> 3nγ .

Let us now apply B̄ to zI′ ∈ πI′(W Diag(δ+)). Since Lδ+

I is the minimum-norm lift operator, we
see that

∥

∥B̄zI′

∥

∥ ≥
∥

∥

∥[Lδ+

I′ (zI′)]n\I

∥

∥

∥ > 3nγ .

We can upper bound the operator norm by the Frobenius norm ‖B̄‖ ≤ ‖B̄‖F =
√

∑

ji B̄ji
2 ≤

nmaxji |B̄ji|, and therefore
max
ji
|B̄ji| > 3γ .

Let us fix i′ ∈ I ′ and j′ ∈ [n] \ I as the indices giving the maximum value of B̄ji. Note that
B̄j′i′ = Bj′i′δ

+
j′δi′/(δ

+
i′ δj′).

Let us now use Lemma 2.10 for the pair i′, j′, the matrix B and the subspace W Diag(δ).
Noting that Bj′i′ = [Lδ

I′(ei
′

)]j′ , we obtain κδ
i′j′ ≥ |Bj′i′ |. Now,

κδ+

i′j′ = κδ
i′j′ ·

δ+j′δi′

δ+i′ δj′
≥ |Bj′i′ | ·

δ+j′δi′

δ+i′ δj′
= |B̄j′i′ | > 3γ . (50)

The next claim finishes the proof.

Claim 6.3. For i′ and j′ selected as above, (49) holds.

Proof. (i′, j′) ∈ Eδ+,γ/(3n) holds by (50). From the above, we have

|Bj′i′ | > 3γ · δ
+
i′ δj′

δi′δ
+
j′

.

According to Remark 2.12, |Bj′i′ | ≤ γ follows since Verify-Lift(W Diag(δ), I, γ) returned with
‘pass’. We thus have

δ+i′ δj′

δi′δ
+
j′

<
1

3
.

Lemma 6.1 excludes the scenarios i′, j′ ∈ N , i′, j′ ∈ B, and i′ ∈ N , j′ ∈ B, leaving i′ ∈ B and
j′ ∈ N as the only possibility. Therefore, i′ ∈ Jq ⊆ B and j′ ∈ Jr ⊆ N . We have r < q since
i ∈ I = J≥k and j ∈ [n] \ I = J<k.
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7 Initialization

Our main algorithm (Algorithm 2 in Section 3.5), requires an initial solution w0 = (x0, y0, s0) ∈
N (β). In this section, we remove this assumption by adapting the initialization method of [VY96]
to our setting.

We use the “big-M method”, a standard initialization approach for path-following interior
point methods that introduces an auxiliary system whose optimal solutions map back to the
optimal solutions of the original system. The primal-dual system we consider is

min c⊤x+Me⊤
¯
x max y⊤b+ 2Me⊤z

Ax−A
¯
x = b A⊤y + z + s = c

x+ x̄ = 2Me z + s̄ = 0

x, x̄,
¯
x ≥ 0 −A⊤y +

¯
s = Me

s, s̄,
¯
s ≥ 0.

(Init-LP)

The constraint matrix used in this system is

Â =





A 0 −A
I I 0





The next lemma, asserts that the χ̄ condition number of Â is not much bigger than that of A of
the original system (LP).

Lemma 7.1 ([VY96, Lemma 23]). χ̄Â ≤ 3
√
2(χ̄A + 1).

We extend this bound for χ̄∗.

Lemma 7.2. χ̄∗
Â
≤ 3
√
2(χ̄∗

A + 1).

Proof. Let D ∈ Dn and let D̂ ∈ D3n the matrix consisting of three copies of D, i.e.

D̂ =











D 0 0

0 D 0

0 0 D











.

Then

ÂD̂ =





AD −AD 0

D 0 D





Row-scaling does not change χ̄ as the kernel of the matrix remains unchanged. Thus, we can
rescale the last n rows of ÂD̂, to the identity matrix, i.e. multiplying by (I,D−1) from the left
hand side. So, we observe that

χ̄ÂD̂ = χ̄









AD −AD 0

I 0 I







 ≤ 3
√
2(χ̄AD + 1)

where the inequality follows from Lemma 7.1. The lemma now readily follows as

χ̄∗
Â
= inf{χ̄ÂD̂ : D ∈ D3n} ≤ inf{3

√
2(χ̄AD + 1) : D ∈ Dn} = 3

√
2(χ̄∗

A + 1).
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Also, for sufficiently large M , the optimal solutions of the original system are preserved. We
let d be the min-norm solution to Ax = b, i.e., d = A⊤(AA⊤)−1b.

Proposition 7.3. Assume both primal and dual of (LP) are feasible, and M > max{(χ̄A +
1)‖c‖, χ̄A‖d‖}. Every optimal solution (x, y, s) to (LP), can be extended to an optimal solution
(x,

¯
x, x̄, y, s,

¯
s, s̄) to (Init-LP); and conversely, from every optimal solution (x,

¯
x, x̄, y, z, s,

¯
s, s̄) to

(Init-LP), we obtain an optimal solution (x, y, s) by deleting the auxiliary variables.

Proof. If system (LP) is feasible, it admits a basic optimal solution (x∗, y∗, s∗) with basis B such
that ABx

∗
B = b, x∗ ≥ 0, A⊤

By
∗ = c and A⊤y ≤ c. Using Proposition 2.1(ii) we see that

‖x∗
B‖ = ‖A−1

B b‖ = ‖A−1
B Ad‖ ≤ χ̄A‖d‖ < M (51)

and using that ‖A‖ = ‖A⊤‖ we observe

‖A⊤y∗‖ = ‖A⊤A−⊤
B c‖ ≤ ‖A⊤A−⊤

B ‖‖c‖ = ‖A−1
B A‖‖c‖ ≤ χ̄A‖c‖ < M. (52)

We can extend this solution to a solution of system (Init-LP) via setting x̄∗ = 2Me− x∗,
¯
x∗ =

0, z∗ = s̄∗ = 0 and
¯
s∗ = Me + A⊤y∗. Observe that x̄∗ > 0 and

¯
s∗ > 0 by (51) and (52).

Furthermore observe that by complementary slackness this extended solution for (Init-LP) is an
optimal solution. The property that

¯
s∗ > 0 immediately tells us that

¯
x vanishes for all optimal

solutions of (Init-LP) and thus all optimal solutions of (LP) coincide with the optimal solutions
of (Init-LP), with the auxiliary variables removed.

The next lemma is from [MT03, Lemma 4.4]. Recall that w = (x, y, s) ∈ N (β) if ‖xs/µ(w)−
e‖ ≤ β.

Lemma 7.4. Let w = (x, y, s) ∈ P++ × D++, and let ν > 0. Assume that ‖xs/ν − e‖ ≤ τ .
Then (1− τ/

√
n)ν ≤ µ(w) ≤ (1 + τ/

√
n)ν and w ∈ N (τ/(1 − τ)).

The new system has the advantage that we can easily initialize the system with a feasible
solution in close proximity to central path:

Proposition 7.5. We can initialize system (Init-LP) close to the central path with initial solution
w0 = (x0, y0, s0) ∈ N (1/8) and parameter µ(w0) ≈M2 if M > 15max{(χ̄A + 1)‖c‖, χ̄A‖d‖}.
Proof. The initialization follows along the lines of [VY96, Section 10]. We let d as above, and
set

x̄0 = Me, x0 = Me,
¯
x0 = Me− d

y0 = 0, z0 = −Me

s̄0 = Me, s0 = Me+ c,
¯
s0 = Me.

This is a feasible primal-dual solution to system (Init-LP) with parameter

µ0 =
3nM2 +Mc⊤e−Md⊤e

3n
≈M2 .

We see that
∥

∥

∥

∥

x̄0s̄0 + x0s0 +
¯
x0

¯
s0

M2
− e

∥

∥

∥

∥

2

= M−2‖c‖2 +M−2‖d‖2 ≤ 1

92χ̄2
A

≤ 1

92
.

With Lemma 7.4 we conclude that w0 = (x0, y0, s0) ∈ N
(

1/9
1−1/9

)

= N (1/8).
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Detecting infeasibility For using the extended system (Init-LP), we still need to assume that
both the primal and dual programs in (LP) are feasible. For arbitrary instances, we first need
to check if this is the case, or conclude that the primal or the dual (or both) are infeasible.

This can be done by employing a two-phase method. The first phase decides feasibility by
running (Init-LP) with data (A, b, 0) and M > χ̄A‖d‖. The objective value of the optimal primal-
dual pair is 0 if and only if (LP) has a feasible solution. If the optimal primal/dual solution
(x∗,

¯
x∗, x̄∗, y∗, s∗,

¯
s∗, s̄∗) has positive objective value, we can extract an infeasibility certificate in

the following way.
By the characterization of χ̄A as in Proposition 2.1(ii), there exists an optimal solution x′

with x̄′ > 0, and so by strong duality, s̄∗ = 0. From the dual, we conclude that z = 0, and
therefore A⊤y∗ ≤ A⊤y∗ + s∗ + z = c = 0. On the other hand, by assumption the objective value
of the dual is positive, and so y⊤b ≥ y⊤b+ 2Me⊤z > 0.

Feasibility of the dual of (LP) can be decided by running (Init-LP) on data (A, 0, c) and
M > (χ̄A+1)‖c‖ with the same argumentation: Either the objective of the dual is 0 and therefore
the dual optimal solution (y∗,

¯
s∗, s∗, s̄∗) corresponds to a feasible dual solution of (LP) or the

objective value is negative and we extract a dual infeasibility certificate in the following way: By
assumption c⊤x ≤ c⊤x +Me⊤

¯
x < 0. Furthermore, there exists a basic optimal solution to the

dual of (Init-LP) with
¯
s > 0 and therefore

¯
x∗ = 0 for the optimal primal solution (

¯
x∗, x∗, x̄∗).

So, we have Ax∗ = b = 0, together with c⊤x < 0 yielding the certificate.

Finding the right value of M Whereas Algorithm 2 does not require any estimate on χ̄∗ or
χ̄, for the initialization we need to set M ≥ max{(χ̄A + 1)‖c‖, χ̄A‖d‖} as in Proposition 7.3.

A straightforward guessing approach (attributed to J. Renegar in [VY96]) starts with a
constant guess, say χ̄A = 100, constructs the extended system, and runs the algorithm. In
case the optimal solution to the extended system does not map to an optimal solution of (LP),
we restart with χ̄A = 1002 and try again; we continue squaring the guess until an optimal solution
is found.

This would still require a series of log log χ̄A guesses, and thus, result in a dependence on χ̄A

in the running time. However, if we initially rescale our system using the near-optimal rescaling
Theorem 2.5, the we can turn the dependence from χ̄A to χ̄∗

A. The overall iteration complexity
remains O(n2.5 logn log(χ̄∗

A+n)), since the running time for the final guess on χ̄∗
A dominates the

total running time of all previous computations due to the repeated squaring.
An alternative approach, that does not rescale the system, is to use Theorem 2.5 to approxi-

mate χ̄A. In this case we repeatedly square a guess of χ̄∗
A instead of χ̄A which takes O(log log χ̄∗

A)
iterations until our guess corresponds to a valid upper bound for χ̄A.

Note that either guessing technique can handle bad guesses gracefully. For the first phase,
if neither a feasible solution to (LP) is returned nor a Farkas’ certificate can be extracted, we
have proof that the guess was too low by the above paragraph. Similarly, in phase two, when
feasibility was decided in the affirmative for primal and dual, an optimal solution to (Init-LP)
that corresponds to an infeasible solution to (LP) serves as a certificate that another squaring of
the guess is necessary.
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[Tun99] Levent Tunçel. Approximating the complexity measure of Vavasis-Ye algorithm is NP-
hard. Mathematical Programming, 86(1):219–223, Sep 1999. 5

[Vai89] Pravin M Vaidya. Speeding-up linear programming using fast matrix multiplication. In
Proceedings of the 30th IEEE Annual Symposium on Foundations of Computer Science,
pages 332–337, 1989. 7

51



[Vav94] Stephen A Vavasis. Stable numerical algorithms for equilibrium systems. SIAM Journal
on Matrix Analysis and Applications, 15(4):1108–1131, 1994. 5, 12

[vdB20] Jan van den Brand. A deterministic linear program solver in current matrix multipli-
cation time. In Proceedings of the Symposium on Discrete Algorithms (SODA), 2020.
To appear. Available at https://arxiv.org/abs/1910.11957. 7
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