417 research outputs found

    A Novel Stochastic Decoding of LDPC Codes with Quantitative Guarantees

    Full text link
    Low-density parity-check codes, a class of capacity-approaching linear codes, are particularly recognized for their efficient decoding scheme. The decoding scheme, known as the sum-product, is an iterative algorithm consisting of passing messages between variable and check nodes of the factor graph. The sum-product algorithm is fully parallelizable, owing to the fact that all messages can be update concurrently. However, since it requires extensive number of highly interconnected wires, the fully-parallel implementation of the sum-product on chips is exceedingly challenging. Stochastic decoding algorithms, which exchange binary messages, are of great interest for mitigating this challenge and have been the focus of extensive research over the past decade. They significantly reduce the required wiring and computational complexity of the message-passing algorithm. Even though stochastic decoders have been shown extremely effective in practice, the theoretical aspect and understanding of such algorithms remains limited at large. Our main objective in this paper is to address this issue. We first propose a novel algorithm referred to as the Markov based stochastic decoding. Then, we provide concrete quantitative guarantees on its performance for tree-structured as well as general factor graphs. More specifically, we provide upper-bounds on the first and second moments of the error, illustrating that the proposed algorithm is an asymptotically consistent estimate of the sum-product algorithm. We also validate our theoretical predictions with experimental results, showing we achieve comparable performance to other practical stochastic decoders.Comment: This paper has been submitted to IEEE Transactions on Information Theory on May 24th 201

    Noisy Gradient Descent Bit-Flip Decoding for LDPC Codes

    Get PDF
    A modified Gradient Descent Bit Flipping (GDBF) algorithm is proposed for decoding Low Density Parity Check (LDPC) codes on the binary-input additive white Gaussian noise channel. The new algorithm, called Noisy GDBF (NGDBF), introduces a random perturbation into each symbol metric at each iteration. The noise perturbation allows the algorithm to escape from undesirable local maxima, resulting in improved performance. A combination of heuristic improvements to the algorithm are proposed and evaluated. When the proposed heuristics are applied, NGDBF performs better than any previously reported GDBF variant, and comes within 0.5 dB of the belief propagation algorithm for several tested codes. Unlike other previous GDBF algorithms that provide an escape from local maxima, the proposed algorithm uses only local, fully parallelizable operations and does not require computing a global objective function or a sort over symbol metrics, making it highly efficient in comparison. The proposed NGDBF algorithm requires channel state information which must be obtained from a signal to noise ratio (SNR) estimator. Architectural details are presented for implementing the NGDBF algorithm. Complexity analysis and optimizations are also discussed.Comment: 16 pages, 22 figures, 2 table

    A Scaling Law to Predict the Finite-Length Performance of Spatially-Coupled LDPC Codes

    Full text link
    Spatially-coupled LDPC codes are known to have excellent asymptotic properties. Much less is known regarding their finite-length performance. We propose a scaling law to predict the error probability of finite-length spatially-coupled ensembles when transmission takes place over the binary erasure channel. We discuss how the parameters of the scaling law are connected to fundamental quantities appearing in the asymptotic analysis of these ensembles and we verify that the predictions of the scaling law fit well to the data derived from simulations over a wide range of parameters. The ultimate goal of this line of research is to develop analytic tools for the design of spatially-coupled LDPC codes under practical constraints
    • …
    corecore