8 research outputs found

    Distributed Control with Low-Rank Coordination

    Full text link
    A common approach to distributed control design is to impose sparsity constraints on the controller structure. Such constraints, however, may greatly complicate the control design procedure. This paper puts forward an alternative structure, which is not sparse yet might nevertheless be well suited for distributed control purposes. The structure appears as the optimal solution to a class of coordination problems arising in multi-agent applications. The controller comprises a diagonal (decentralized) part, complemented by a rank-one coordination term. Although this term relies on information about all subsystems, its implementation only requires a simple averaging operation

    Cloud-assisted Distributed Nonlinear Optimal Control for Dynamics over Graph

    Get PDF
    Dynamics over graph are large-scale systems in which the dynamic coupling among subsystems is modeled by a graph. Examples arise in spatially distributed systems (as discretized PDEs), multi-agent control systems or social dynamics. In this paper, we propose a cloud-assisted distributed algorithm to solve optimal control problems for nonlinear dynamics over graph. Inspired by the centralized Hauser's projection operator approach for optimal control, our main contribution is the design of a descent method in which at each step agents of a network compute a local descent direction, and then obtain a new system trajectory through a distributed feedback controller. Such a controller, iteratively designed by a cloud, allows agents of the network to use only information from neighboring agents, thus resulting into a distributed projection operator over graph. The main advantages of our globally convergent algorithm are dynamic feasibility at each iteration and numerical robustness (thanks to the closed-loop updates) even for unstable dynamics. In order to show the effectiveness of our strategy, we present numerical computations on a discretized model of the Burgers\u2019 nonlinear partial differential equation

    Distributed controller design for a class of sparse singular systems with privacy constraints

    No full text
    In the current research on distributed control of interconnected large-scale dynamical systems an often neglected issue is the desire to ensure privacy of subsystems. This gives motivation for the presented distributed controller design method which requires communication and the exchange of model data only with direct neighbors. Thus, no global system knowledge is required. An important property of many large-scale systems is the presence of algebraic conservation constraints, for example in terms of energy or mass flow. Therefore, the presented controller design takes these constraints explicitly into account while preserving the sparsity structure of the distributed system necessary for a distributed design. The computation is based on the simulation of the system states and of adjoint states. The control objective is represented by the finite horizon linear quadratic cost functional

    Distributed infinite-horizon optimal control of continuous-time linear systems over network

    Get PDF
    This article deals with the distributed infinite-horizon linear-quadratic-Gaussian optimal control problem for continuous-time systems over networks. In particular, the feedback controller is composed of local control stations, which receive some measurement data from the plant process and regulates a portion of the input signal. We provide a solution when the nodes have information on the structural data of the whole network but takes local actions, and also when only local information on the network are available to the nodes. The proposed solution is arbitrarily close to the optimal centralized one (in terms of cost index) when a design parameter is set sufficiently large. Numerical simulation validate the theoretical results

    Gradient Methods for Large-Scale and Distributed Linear Quadratic Control

    Get PDF
    This thesis considers methods for synthesis of linear quadratic controllers for large-scale, interconnected systems. Conventional methods that solve the linear quadratic control problem are only applicable to systems with moderate size, due to the rapid increase in both computational time and memory requirements as the system size increases. The methods presented in this thesis show a much slower increase in these requirements when faced with system matrices with a sparse structure. Hence, they are useful for control design for systems of large order, since they usually have sparse systems matrices. An equally important feature of the methods is that the controllers are restricted to have a distributed nature, meaning that they respect a potential interconnection structure of the system. The controllers considered in the thesis have the same structure as the centralized LQG solution, that is, they are consisting of a state predictor and feedback from the estimated states. Strategies for determining the feedback matrix and predictor matrix separately, are suggested. The strategies use gradient directions of the cost function to iteratively approach a locally optimal solution in either problem. A scheme to determine bounds on the degree of suboptimality of the partial solution in every iteration, is presented. It is also shown that these bounds can be combined to give a bound on the degree of suboptimality of the full output feedback controller. Another method that treats the synthesis of the feedback matrix and predictor matrix simultaneously is also presented. The functionality of the developed methods is illustrated by an application, where the methods are used to compute controllers for a large deformable mirror, found in a telescope to compensate for atmospheric disturbances. The model of the mirror is obtained by discretizing a partial differential equation. This gives a linear, sparse representation of the mirror with a very large state space, which is suitable for the methods presented in the thesis. The performance of the controllers is evaluated using performance measures from the adaptive optics community

    Cooperative Strategies for Management of Power Quality Problems in Voltage-Source Converter-based Microgrids

    Get PDF
    The development of cooperative control strategies for microgrids has become an area of increasing research interest in recent years, often a result of advances in other areas of control theory such as multi-agent systems and enabled by emerging wireless communications technology, machine learning techniques, and power electronics. While some possible applications of the cooperative control theory to microgrids have been described in the research literature, a comprehensive survey of this approach with respect to its limitations and wide-ranging potential applications has not yet been provided. In this regard, an important area of research into microgrids is developing intelligent cooperative operating strategies within and between microgrids which implement and allocate tasks at the local level, and do not rely on centralized command and control structures. Multi-agent techniques are one focus of this research, but have not been applied to the full range of power quality problems in microgrids. The ability for microgrid control systems to manage harmonics, unbalance, flicker, and black start capability are some examples of applications yet to be fully exploited. During islanded operation, the normal buffer against disturbances and power imbalances provided by the main grid coupling is removed, this together with the reduced inertia of the microgrid (MG), makes power quality (PQ) management a critical control function. This research will investigate new cooperative control techniques for solving power quality problems in voltage source converter (VSC)-based AC microgrids. A set of specific power quality problems have been selected for the application focus, based on a survey of relevant published literature, international standards, and electricity utility regulations. The control problems which will be addressed are voltage regulation, unbalance load sharing, and flicker mitigation. The thesis introduces novel approaches based on multi-agent consensus problems and differential games. It was decided to exclude the management of harmonics, which is a more challenging issue, and is the focus of future research. Rather than using model-based engineering design for optimization of controller parameters, the thesis describes a novel technique for controller synthesis using off-policy reinforcement learning. The thesis also addresses the topic of communication and control system co-design. In this regard, stability of secondary voltage control considering communication time-delays will be addressed, while a performance-oriented approach to rate allocation using a novel solution method is described based on convex optimization

    A Scalable Method for Continuous-Time Distributed Control Synthesis

    No full text
    corecore