19,998 research outputs found

    Linear fuzzy gene network models obtained from microarray data by exhaustive search

    Get PDF
    BACKGROUND: Recent technological advances in high-throughput data collection allow for experimental study of increasingly complex systems on the scale of the whole cellular genome and proteome. Gene network models are needed to interpret the resulting large and complex data sets. Rationally designed perturbations (e.g., gene knock-outs) can be used to iteratively refine hypothetical models, suggesting an approach for high-throughput biological system analysis. We introduce an approach to gene network modeling based on a scalable linear variant of fuzzy logic: a framework with greater resolution than Boolean logic models, but which, while still semi-quantitative, does not require the precise parameter measurement needed for chemical kinetics-based modeling. RESULTS: We demonstrated our approach with exhaustive search for fuzzy gene interaction models that best fit transcription measurements by microarray of twelve selected genes regulating the yeast cell cycle. Applying an efficient, universally applicable data normalization and fuzzification scheme, the search converged to a small number of models that individually predict experimental data within an error tolerance. Because only gene transcription levels are used to develop the models, they include both direct and indirect regulation of genes. CONCLUSION: Biological relationships in the best-fitting fuzzy gene network models successfully recover direct and indirect interactions predicted from previous knowledge to result in transcriptional correlation. Fuzzy models fit on one yeast cell cycle data set robustly predict another experimental data set for the same system. Linear fuzzy gene networks and exhaustive rule search are the first steps towards a framework for an integrated modeling and experiment approach to high-throughput "reverse engineering" of complex biological systems

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    BioCloud Search EnGene: Surfing Biological Data on the Cloud

    Get PDF
    The massive production and spread of biomedical data around the web introduces new challenges related to identify computational approaches for providing quality search and browsing of web resources. This papers presents BioCloud Search EnGene (BSE), a cloud application that facilitates searching and integration of the many layers of biological information offered by public large-scale genomic repositories. Grounding on the concept of dataspace, BSE is built on top of a cloud platform that severely curtails issues associated with scalability and performance. Like popular online gene portals, BSE adopts a gene-centric approach: researchers can find their information of interest by means of a simple “Google-like” query interface that accepts standard gene identification as keywords. We present BSE architecture and functionality and discuss how our strategies contribute to successfully tackle big data problems in querying gene-based web resources. BSE is publically available at: http://biocloud-unica.appspot.com/
    corecore