850 research outputs found

    Application of Lyapunov matrix inequality based unsymmetrical saturated control to a multi-vectored propeller airship

    Get PDF
    The problem of the design of a controller for a multi-vectored propeller airship is addressed. The controller includes anti-windup that takes into account unsymmetrical actuator constraints. First, a linear transformation is applied to transform the unsymmetrical constraints into symmetric constraints with an amplitude-bounded exogenous disturbance. Then, a stability condition based on a quadratic Lyapunov function for the saturated closed-loop system is proposed. The condition considers both amplitude-bounded and energy-bounded exogenous disturbances. Thus, the controller design problem is transformed into a convex optimization problem expressed in a bilinear matrix inequality form. Two controller design methods were applied: one-step controller and traditional anti-windup controller. The one-step method obtains the controller and the anti-windup compensator in one step while the anti-windup controller method separates this process into the linear controller design and the compensator design. Simulation results showed that both controllers enlarge the stability zone of the saturation system and have good tracking performance. It is shown that the anti-windup controller design method not only has a larger region of stability, but the demanded actuator output exceeds the constraints less and has a smaller anti-windup coefficient matrix compared to the one-step method

    Application of Lyapunov matrix inequality based unsymmetrical saturated control to a multi-vectored propeller airship

    No full text
    The problem of the design of a controller for a multi-vectored propeller airship is addressed. The controller includes anti-windup that takes into account unsymmetrical actuator constraints. First, a linear transformation is applied to transform the unsymmetrical constraints into symmetric constraints with an amplitude-bounded exogenous disturbance. Then, a stability condition based on a quadratic Lyapunov function for the saturated closed-loop system is proposed. The condition considers both amplitude-bounded and energy-bounded exogenous disturbances. Thus, the controller design problem is transformed into a convex optimization problem expressed in a bilinear matrix inequality form. Two controller design methods were applied: one-step controller and traditional anti-windup controller. The one-step method obtains the controller and the anti-windup compensator in one step while the anti-windup controller method separates this process into the linear controller design and the compensator design. Simulation results showed that both controllers enlarge the stability zone of the saturation system and have good tracking performance. It is shown that the anti-windup controller design method not only has a larger region of stability, but the demanded actuator output exceeds the constraints less and has a smaller anti-windup coefficient matrix compared to the one-step method

    Safe Manual Control of Unstable Systems

    Get PDF
    This thesis deals with manual control of unstable systems, subject to control signal constraints. Allocation of control authority is critical in this situation. The manual control, or reference following, must not be performed at the risk of loosing stability. The conflicting objective is to achieve acceptable reference following performance. Design of control systems under such circumstances is critical, and has several important applications. One example is modern flight control systems for unstable fighter aircrafts. Experiments have been an important part of this work. An inverted pendulum of the Furuta type, has been used for experimental verification of the controller designs. This plant is unstable, but reasonably easy to analyze and perform experiments with. Theoretical as well as practical results are presented in this report. Controllers for the linearized pendulum model have been designed and simulated. Some of the designs were also implemented and evaluated on the real Furuta pendulum. The translation of the controllers from a simulation environment to the real plant proved quite difficult. Some modifications of the controllers had to be made, in order to achieve the desired results on the real Furuta pendulum. Compensation for friction also had to be done

    Active vibration control techniques for flexible space structures

    Get PDF
    Two proposed control system design techniques for active vibration control in flexible space structures are detailed. Control issues relevant only to flexible-body dynamics are addressed, whereas no attempt was made to integrate the flexible and rigid-body spacecraft dynamics. Both of the proposed approaches revealed encouraging results; however, further investigation of the interaction of the flexible and rigid-body dynamics is warranted

    Fuzzy-Model-Based Output Feedback Steering Control in Autonomous Driving Subject to Actuator Constraints

    Get PDF

    Nonlinear constrained and saturated control of power electronics and electromechanical systems

    Get PDF
    Power electronic converters are extensively adopted for the solution of timely issues, such as power quality improvement in industrial plants, energy management in hybrid electrical systems, and control of electrical generators for renewables. Beside nonlinearity, this systems are typically characterized by hard constraints on the control inputs, and sometimes the state variables. In this respect, control laws able to handle input saturation are crucial to formally characterize the systems stability and performance properties. From a practical viewpoint, a proper saturation management allows to extend the systems transient and steady-state operating ranges, improving their reliability and availability. The main topic of this thesis concern saturated control methodologies, based on modern approaches, applied to power electronics and electromechanical systems. The pursued objective is to provide formal results under any saturation scenario, overcoming the drawbacks of the classic solution commonly applied to cope with saturation of power converters, and enhancing performance. For this purpose two main approaches are exploited and extended to deal with power electronic applications: modern anti-windup strategies, providing formal results and systematic design rules for the anti-windup compensator, devoted to handle control saturation, and “one step” saturated feedback design techniques, relying on a suitable characterization of the saturation nonlinearity and less conservative extensions of standard absolute stability theory results. The first part of the thesis is devoted to present and develop a novel general anti-windup scheme, which is then specifically applied to a class of power converters adopted for power quality enhancement in industrial plants. In the second part a polytopic differential inclusion representation of saturation nonlinearity is presented and extended to deal with a class of multiple input power converters, used to manage hybrid electrical energy sources. The third part regards adaptive observers design for robust estimation of the parameters required for high performance control of power systems

    Global stabilization of a Korteweg-de Vries equation with saturating distributed control

    Full text link
    This article deals with the design of saturated controls in the context of partial differential equations. It focuses on a Korteweg-de Vries equation, which is a nonlinear mathematical model of waves on shallow water surfaces. Two different types of saturated controls are considered. The well-posedness is proven applying a Banach fixed point theorem, using some estimates of this equation and some properties of the saturation function. The proof of the asymptotic stability of the closed-loop system is separated in two cases: i) when the control acts on all the domain, a Lyapunov function together with a sector condition describing the saturating input is used to conclude on the stability, ii) when the control is localized, we argue by contradiction. Some numerical simulations illustrate the stability of the closed-loop nonlinear partial differential equation. 1. Introduction. In recent decades, a great effort has been made to take into account input saturations in control designs (see e.g [39], [15] or more recently [17]). In most applications, actuators are limited due to some physical constraints and the control input has to be bounded. Neglecting the amplitude actuator limitation can be source of undesirable and catastrophic behaviors for the closed-loop system. The standard method to analyze the stability with such nonlinear controls follows a two steps design. First the design is carried out without taking into account the saturation. In a second step, a nonlinear analysis of the closed-loop system is made when adding the saturation. In this way, we often get local stabilization results. Tackling this particular nonlinearity in the case of finite dimensional systems is already a difficult problem. However, nowadays, numerous techniques are available (see e.g. [39, 41, 37]) and such systems can be analyzed with an appropriate Lyapunov function and a sector condition of the saturation map, as introduced in [39]. In the literature, there are few papers studying this topic in the infinite dimensional case. Among them, we can cite [18], [29], where a wave equation equipped with a saturated distributed actuator is studied, and [12], where a coupled PDE/ODE system modeling a switched power converter with a transmission line is considered. Due to some restrictions on the system, a saturated feedback has to be designed in the latter paper. There exist also some papers using the nonlinear semigroup theory and focusing on abstract systems ([20],[34],[36]). Let us note that in [36], [34] and [20], the study of a priori bounded controller is tackled using abstract nonlinear theory. To be more specific, for bounded ([36],[34]) and unbounded ([34]) control operators, some conditions are derived to deduce, from the asymptotic stability of an infinite-dimensional linear system in abstract form, the asymptotic stability when closing the loop with saturating controller. These articles use the nonlinear semigroup theory (see e.g. [24] or [1]). The Korteweg-de Vries equation (KdV for short)Comment: arXiv admin note: text overlap with arXiv:1609.0144

    Nonlinear control of feedforward systems with bounded signals

    No full text
    Published versio
    • …
    corecore